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Optoelectronics

Optoelectronics is a practical and self-contained graduate-level textbook and reference, which
will be of great value to both students and practising engineers in the field. Sophisticated
concepts are introduced by the authors in a clear and coherent way, including such topics as
quantum mechanics of electron—photon interaction, quantization of the electromagnetic field,
semiconductor properties, quantum theory of heterostructures, and non-linear optics. The book
builds on these concepts to describe the physics, properties, and performances of the main
optoelectronic devices: light emitting diodes, quantum well lasers, photodetectors, optical
parametric oscillators, and waveguides. Emphasis is placed on the unifying theoretical analogies
of optoelectronics, such as equivalence of quantization in heterostructure wells and waveguide
modes, entanglement of blackbody radiation and semiconductor statistics. The book concludes
by presenting the latest devices, including vertical surface emitting lasers, quantum well infrared
photodetectors, quantum cascade lasers, and optical frequency converters.
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6.B.1 Phonons 273
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Preface

The field of optoelectronics is currently in full expansion, drawing to its classrooms
and laboratories numerous science and engineering students eager to master the
discipline. From the lecturer’s perspective, optoelectronics is a considerable chal-
lenge to teach as it emerges from a complex interplay of separate and often
seemingly disjointed subjects such as quantum optics, semiconductor band struc-
ture, or the physics of carrier transport in electronic devices. As a result, the
student (or lecturer) is left to navigate through a vast literature, often found to be
confusing and incoherent.

The aim of this text is to teach optoelectronics as a science in itself. To do so, a
tailored presentation of its various sub-disciplines is required, emphasizing within
each of these, those concepts which are key to the study of optoelectronics. Also,
we were determined to offer a partial description of quantum mechanics oriented
towards its application in optoelectronics. We have therefore limited ourselves to a
utilitarian treatment without elaborating on many fundamental concepts such as
electron spin or spherical harmonic solutions to the hydrogen atom. On the other
hand, we have placed emphasis on developing formalisms such as those involved
in the quantization of the electromagnetic field (well suited to a discussion of
spontaneous emission), or the density matrix formalism (of value in treating
problems in non-linear optics).

Similarly, our treatment of semiconductor physics ignores any discussion of the
effect of the crystallographic structure in these materials. Rather, a priori use is
made of the semiconductor band structures which implicitly incorporate these
effects on the electrical and optical properties of these materials. In carrying out
our rather utilitarian-minded presentation of these disciplines, we have claimed as
ours Erwin Schrödinger’s maxim that it mattered little whether his theory be an
exact description of reality insofar as it proved itself useful.

We have sought in this work to underline wherever possible the coherence of the
concepts touched on in each of these different areas of physics, as it is from this
vantage point that optoelectronics may be seen as a science in its own right. There
exists, for instance, a profound parallel between the behaviour of an electron in a
quantum well and that of an electromagnetic wave in an optical waveguide. As
well, one finds between the photon statistics of black bodies, the mechanics of
quantum transitions within semiconductor band structures and the statistics of

xv



charge carriers in these materials, an entanglement of concepts comprising the
basis for infrared detection. In the same spirit, this work does not pretend to
present an exhaustive list of all known optoelectronic devices. Such an effort could
only come at the cost of the overall coherence aimed at in this work, and add to the
type of confusion we have claimed as our enemy. The goal is rather to present
those optoelectronic concepts which will allow an overall understanding of prin-
ciples necessary in solving problems of a general or device-specific nature. Thus,
only the analysis of generic classes of optoelectronic components will be under-
taken here without entering into the labyrinth offered by more particular applica-
tions.

Lastly, regarding the problem of notation (a problem inherent to any multidis-
ciplinary study), we have chosen simply to follow the lead of standard physics
notation in any given chapter. Thus, the symbol ‘�’ may be used indiscriminately to
represent the permittivity, the quantum confinement energy, or the saturation
coefficient of a semiconductor laser. We could have attempted the introduction of
various notations for each of these different uses based on the Latin, Greek, and
Hebrew character sets, but we realized that even these would have soon been
exhausted. We have thus chosen merely to redefine in each chapter the correspon-
dence between the symbols and their respective notions.

The authors wish to thank all those having assisted with the preparation of this
manuscript, such as Erwan LeCochec, Andrea Fiore, Arnaud Fily, Jean-Yves
Duboz, Eric Costard, Florence Binet, Eric Herniou, Jean-Dominique Orwen,
Anna Rakovska, and Anne Rosencher among many others. This work could never
have seen the light of day without the support of ONERA and THALES (ex
THOMSON-CSF) and most particularly the encouragement of Mr Pierre Tour-
nois, formerly scientific director of THOMSON-CSF. Finally, the authors are
deeply indebted to Paul Piva, whose translation from French to English reflects
his competence, intelligence, and culture.
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1 Quantum mechanics of the electron

1.1 Introduction

This chapter reviews the fundamental principles and techniques of quantum
mechanics that are necessary to understand the subject of optoelectronics. Often,
concepts are not presented in depth: the aim, rather, is to provide the tools and
notation required to work through this book. Thus, in spite of their immense
importance in other areas of physics, and the severe scientific injustice resulting
from their being placed aside, we shall pass almost entirely in silence over Heisen-
berg’s uncertainty principle, spherical harmonics, electron spin, etc. The reader
wishing to deepen his/her understanding of these concepts is greatly encouraged to
read or reread the remarkable work by C. Cohen-Tannoudji et al. (1992).

1.2 The postulates of quantum mechanics

We consider an electron of charge q and mass m
�

subjected to a generalized
potential of the form V(r, t) varying in three-dimensional space r, and time t.
Quantum mechanics tells us that the notion of a classical electron trajectory loses
its meaning when the distance over which this potential varies is of the order of the
de Broglie wavelength (�


�
). This length is given by:

�

�
�

2��
�2m

�
E

�
1.23 (nm)

�V (V)
(1.1)

where � is Planck’s constant (1.04� 10��� J s��), V is the average potential experi-
enced by the particle, and E is the energy of the particle. We will see that in a
crystalline solid where electrons are subjected to spatially varying potentials of the
order of 5 eV (1 eV� 1.6� 10�� J), their de Broglie wavelength turns out to be of
the order of 5 Å. As this length corresponds to the interatomic distance between
atoms in a crystalline lattice, conduction electrons in this medium will be expected
to display interference effects specific to the mechanics of wave-motion. These
effects (studied in Chapter 5) are the origin of the semiconductor band gap, and
cannot readily be discussed in terms of classical theories based upon the notion of
a well-defined trajectory.

Quantum mechanics also teaches us that we must forgo the idea of a trajectory

1



in favour of a more subtle description in terms of quantum states and wavefunc-
tions. The electron is then represented by a state vector evolving in time �	(t)
. One
of the strongest postulates of quantum mechanics is that all these state vectors
span a Hilbert space. For instance, the existence of linear combinations of states
(which leads to dramatic effects such as molecular stability, energy bandgaps, . . .)
is a direct consequence of this postulate. This vector space possesses a Hermitian
scalar product, whose physical significance will be given later. We will use Dirac
notation to represent the scalar product between two vector states �	

�

 and �	

�

 as

�	
�
�	
�

. Now, we recall the properties of a Hermitian scalar product:

���	
��	��
*
����	

�
� 	

�

� ����	

�

����	

�



(1.2)
���

�
� �

�
�	
� �*��

�
�	
� *��

�
�	


�	�	
 real, positive, and zero if and only if �	
� 0





where the asterisk indicates that the complex conjugate is taken. By definition a
physical state possesses a norm of unity, which is to say that �	(t)
 is a physical
state if:

�	(t)�	(t)
� 1 (1.3)

A certain number of linear operators act within this Hilbert space. A second
postulate of quantum mechanics is that classically measurable quantities such as
position, energy, etc. are represented by Hermitian operators A (i.e. operators
such thatA��A, where † is the adjoint orHermitian conjugate) called observables,
and that the result of the measurement of such an observable can only be one of
the eigenvalues associated with the observable. If the ensemble of eigenvalues of
the observableA forms a discrete set, then the set of all possible measurements of a
system are given by the a

�
solutions of the eigenvalue equation:

A�	
�

� a

�
�	
�

 (1.4)

As the observable operators are Hermitian, it follows that their eigenvalues are
necessarily real (consistent with the familiar fact that the result of a physical
measurement is a real number). We also define the commutator of two operatorsA
and B as:

[A,B]�AB�BA (1.5)

It can be shown that if two operators commute (i.e. if their commutator equals
zero), then they share a complete set of simultaneous eigenvectors. A noteworthy
consequence of this is that physical states exist in which the results of measurement
of both of these observables (A and B) can be obtained simultaneously with
certainty: these are their common eigenstates.

2 Quantum mechanics of the electron



If the orthonormal eigenvector basis of observable A is complete, then any
physical state �	(t)
 of the electron can be described in terms of a linear combina-
tion of eigenvectors:

�	(t)
��
�

c
�
(t)�	

�

 (1.6)

where the coefficients c
�

are given by:

c
�
(t)� �	

�
�	(t)
 (1.7)

The probabilistic interpretation of quantum mechanics states that the square of the
norm of the coefficient �c

�
(t)�� gives the probability of finding the electron in the

�	
�

 state at time t (implying that measurement of the observable A at that time

will yield the value of a
�

with equal probability �c
�
(t)��). A further postulate is that,

immediately after a measurement of observable A has been performed, the state
function resides entirely in one of the eigenstates of the observable A (i.e. c

�
(t)� 1

or �	
� �	
�

). In the event that a particular eigenvalue is degenerate, the state

function after measurement is restricted to the subspace spanned by the degenerate
eigenstates. The latter postulate, which is still the subject of intense investigation, is
necessary for the coherence of quantum mechanics.

It is therefore implicit in the probabilistic interpretation that we may not, in
general, know the outcome of a measurement with certainty. We can, however,
extract the average value of an observableA taken over the course of a statistically
significant number of independent measurements. This value will then correspond
to an average value of all possible measurement outcomes a

�
of an observable

weighted by the individual probabilities �c
�
(t)�� of finding the system in an eigen-

state �	
�

 associated with this particular eigenvalue a

�
:

�A
(t)��
�

a
�
�c
�
(t)�� (1.8)

This average value is easily found to be:

�A
(t)��	(t)�A�	(t)
 (1.9)

Some of theseA observables may be vectorial, such as the position r̂� (x, y, z) and
momentum p̂ operators. For these operators, the eigenvalues belong to a continu-
um of values. Therefore, the eigenvector �r
 of the position operator r̂ is interpreted
as describing the state of the system once the measurement of the position has
yielded a particular value r. We then say that the particle may be found at r with
certainty.

The decomposition of a state vector onto any particular basis set of eigenvectors
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is called a representation. One important representation is the projection of the
state vector onto the eigenstates of the position operator r̂. Each component of this
projection is the wavefunction 	(r, t) given by:

	(r, t)��r�	(t)
 (1.10)

Referring back to the probabilistic interpretation of quantum mechanics, we see
that the norm of the wavefunction �	(r, t)�� gives the probability of finding an
electron at r at time t. Furthermore, in the r representation, the inner product of
the two states �	

�

 and �	

�

 may be shown to be written as:

�	
�
�	
�

��	*

�
(r)	

�
(r) d�r (1.11)

where the integral is evaluated over all space. Finally, evolution of the state of the
system with time is given by Schrödinger’s equation:

i�
�
�t
�	(t)
�H0 (t)�	(t)
 (1.12)

Schrödinger’s equation

where H0 (t) is the Hamiltonian of the system, which yields as an observable the
energy� of the system. Its general expression takes the form:

H0 (t)�
p̂�

2m
�

�V(r, t) (1.13)

Hamiltonian for a particle with mass me

subject to a potential V

where p̂ is the momentum operator. In the r representation (i.e. projected onto the
position eigenvectors of �r
), the correspondence principle gives the following
expression for the p̂ operator:

p̂�
�
i
��

�
i �

�
�x
�
�y
�
�z
� (1.14)

and in the r representation, takes the following form when acting upon a
wavefunction 	(r, t):

� The symbol ˆ is generally used when confusion may arise between a classical physical quantity (such as
position r) and its corresponding quantum observable (r̂).
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�r�p̂�	(t)
� p̂	(r, t)�
�
i �

�
�x

	(r, t)

�
�y

	(r, t)

�
�z

	(r, t) � (1.15)

This correspondence results from the requirement that the p̂ operator acting upon
the de Broglie matter-waves (e�k·r) yields an associated momentum eigenvalue of
p� �k, i.e. satisfying the de Broglie relation. The momentum operator p̂ therefore
takes on the form �/i�.

The operators r̂ and p̂ are linked by the important commutator relation:

r̂ · p̂	(r, t)�
�
i �x

�
�x

	(r, t)� y
�
�y

	(r, t)� z
�
�z

	(r,t)� (1.16)

and

p̂ · r̂	(r, t)�
�
i �

�
�x

[x	(r, t)]�
�
�y

[y	(r, t)]�
�
�z

[z	(r, t)]� (1.17)

from which we deduce the commutation relation:

[x̂
�
, p̂
�
]� i��

��
(1.18)

Anticommutation of position and momentum observables

leading to the first of the Heisenberg uncertainty relations

A corollary of the properties stated earlier for commuting observables, is that
non-commuting observables cannot share a common basis set of eigenvectors.
Therefore, neither of these position or momentum observables may be known
simultaneously with arbitrary precision. This is the first of Heisenberg’s uncertain-
ty principles, which can be shown to lead to the following relationships between
the momentum and position uncertainties:

�x�p
	
� �/2

�y�p


� �/2 (1.19)

�z�p
�
� �/2





Returning to Schrödinger’s equation in the position representation, we may now
write:

i�
�
�t

	(r, t)��
��

2m
�

�	(r, t)�V(r, t)	(r, t) (1.20)

where � is the Laplacian operator ((��/�x�)� (��/�y�)� (��/�z�)). Once given the
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space and time evolution of the potential, this last equation allows one, in prin-
ciple, to calculate the evolution of electron probability in the structure. We note
that this equation preserves the norm of a function, which is consistent with the
fact that every physical state evolves in time and space to some other physical
state.

1.3 The time-independent Schrödinger equation

1.3.1 Stationary states

We will interest ourselves, in this section, with the description of the physical state
of an electron subjected to a time-independent potential (i.e. a conservative system).
This system could be a hydrogen atom, in which case the potential V(r) is a
Coulomb field localized in space, or a crystal, where the potential V(r) is periodic
(corresponding to the regular spacing of the constituent atoms). Schrödinger’s
equation may then be written as:

i�
�
�t
�	(t)
�H0 �	(t)
��

p̂�

2m
�

�V(r)��	(t)
 (1.21)

Let us first begin by considering the eigenstates of the Hamiltonian:

H0 �	
�
(t)
�E

�
�	
�
(t)
 (1.22)

Time-independent Schrödinger equation

For the time being we will suppose that these states are:
∑ discrete, i.e. they can be denoted by integers;
∑ non-degenerate, i.e. no two or more distinct quantum states may have the same

energy;
∑ complete, i.e. any physical state may be projected in a unique fashion onto the

basis set formed by the eigenfunctions of H0 of type (1.6).
Substituting Eq. (1.22) into (1.21), we find the time evolution of an eigenstate �	

�



to be:

�	
�
(t)
� �	

�
(0)
e����� (1.23)

where

E
�
� ��

�
(1.24)

and �
�

is the Bohr oscillation frequency associated with the state �	
�

. Equation

(1.23) is noteworthy as it allows an important prediction to be made. Let us
suppose the system is in an eigenstate �	

�

 and that we seek the average value of

some observable A:
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�A
(t)��	
�
e������A�	

�
e�����
� �	

�
�A�	

�

 (1.25)

This average value therefore does not vary over time, i.e. the eigenstates are
stationary states for all observables. These stationary states are particularly im-
portant as they form states which yield unchanging values for observables. Addi-
tionally, they allow a description of the time evolution of a non-stationary state.
Let us suppose an arbitrary state �	(t)
, for which we know its projection at t� 0
onto the basis set of stationary states �	

�

:

�	(0)
��
�

c
�
�	
�

 (1.26)

We then determine the time evolution of the coefficients c
�
(t). To do this we

substitute the �	(t)
 stationary state decomposition into the time-independent
Schrödinger equation (1.21), which gives:

�
�

i�
d

dt
c
�
(t)�	

�

�H0 ��

�

c
�
(t)�	

�

���

�

c
�
(t)E

�
�	
�

 (1.27)

Projecting this equation onto each eigenvector �	
�

 we find that:

c
�
(t)� c

�
e����� (1.28)

Therefore, once we know the effect of decomposition of the state function at t� 0
on the stationary states of the system, we will know the state function at any
ulterior time t.

�	(t)
��
�

c
�
e������	

�

 (1.29)

This decomposition may be generalized for a basis set consisting of degenerate
eigenstates and/or forming a continuum. This generalization comes, however, at
the cost of a more cumbersome notation, and so we shall limit ourselves to its use
only in those situations in which such a treatment cannot be avoided.

1.3.2 Calculation of stationary states in a one-dimensional potential

Let us consider a one-dimensional space mapped by the co-ordinate x and let us
suppose a confinement potential V(x), such that V(x)� 0 over all space, and
V(x)� 0 as x���. In x representation, the time-independent one-dimensional
Schrödinger equation for stationary states may be written as:
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�
��

2m
�

d�

dx�
	
�
(x)� [V(x)�E

�
]	

�
(x)� 0 (1.30)

Time-independent Schrödinger equation

in x representation

We recall that the unknowns are the eigenvalues E
�
, and the stationary state

wavefunctions 	
�
(x). For each value of E

�
, Eq. (1.30) becomes a second-order

differential equation. We can show that the 	
�
(x) solutions of this equation are

continuous, as are their first derivatives d	
�
(x)/dx over all space.� These two

conditions, added to the normalization requirement of all physical states, lead to
the quantization of energy, i.e. the existence of discrete energy levels. It is therefore
the wave nature of the wavefunctions and their integrability and continuity require-
ments which lead to the quantized nature of the energy levels. We will illustrate this
point with a precise example which plays a primordial role in the remainder of this
text — the quantum well.

1.4 The quantum well

1.4.1 The general case

We now consider an electron subject to a potential well as described in Fig. 1.1, i.e.
defined by:

V(x)� 0, if �x ��
a

2
(1.31)

V(x)��V
�

, if �x ��
a

2

The first region (�x�� a/2) defines the potential barrier, whereas the second region
(�x�� a/2) defines the well. The Schrödinger equation which governs the electron
in this structure is:

��
2m

�

d�

dx�
	(x)�E	(x)� 0, for �x ��

a

2
(1.32)

�
��

2m
�

d�

dx�
	(x)� (V

�
�E)	(x)� 0, for �x ��

a

2

We first seek solutions to this equation having energies less than the potential
barrier, i.e. E� 0. For this, we introduce three quantities, k, �, and k

�
, having as

� When the mass of a particle varies as a function of position x, in a semiconductor heterostructure for
example, it is the quantity 1/m(x)d/dx which is conserved.
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Fig. 1.1. A one-dimensional quantum well. Represented are the eigenenergies and
wavefunctions associated with the three bound states of the system. This particular quantum
well may be implemented in the GaAs/Al

����
Ga
����

As system. The difference between the first
two energy levels is 104 meV and leads to photon absorption at 11.9 �m.

dimension the inverse of a length, i.e. having the dimensions of a wavevector (the
number of spatial periods in 2�), defined by:

E��
����
2m

�

V
�
�E�

��k�
2m

�

(1.33)

V
�
�

��k�
�

2m
�

We note that 2�/k
�

is the de Broglie wavelength associated with the energy V
�

of
the confining potential.

Using this notation, the most general solutions to (1.32) are:

	

(x)�A


e��	�B


e���	, for �x ��

a

2

	
�
(x)�A

�
e�	�B

�
e��	, for x��

a

2
(1.34)

	
�
(x)�A

�
e�	�B

�
e��	, for x�

a

2

where c, l, and r designate the centre, left, and right regions, respectively. We will
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now illustrate the process of quantization by propagating the continuity condi-
tions of the wavefunction and its first derivative (also referred to as boundary
conditions) from �� to �� and, furthermore, by requiring that the results be
normalized.

As the wavefunction must be normalized, its value cannot diverge as x���.
Therefore, B

�
� 0. Additionally, the boundary conditions at x��a/2 lead to:

A

�

�� ik

2ik
e����������A

�

(1.35)

B

��

�� ik

2ik
e����������A

�

A


and B


are related by the following useful equation:

A

B


��
�� ik

�� ik
e��� (1.36)

The boundary conditions at x� a/2 give:

A
�
e�����B

�
e������A


e������B


e������

(1.37)

A
�
e �����B

�
e��������

ik

�
(A

e������B


e��������)

We propagate the boundary conditions by bringing (1.37) into (1.35) where:

A
�
�

[(�� ik)�e���� (�� ik)�e����]

4ik�
e���A

�

(1.38)

B
�
�

��� k�

2k�
sin kaA

�

As the wavefunction must remain finite as x���, this requires that A
�
� 0 or

that:

�
�� ik

�� ik�
�
� e���� (1.39)

which may also be expressed as:

�
k
� tan�

ka

2 � (1.40)

or

cos��
ka

2 ���
k

k
�
�
�

(1.41)
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These solutions, of which there are two types, are expressed in the transcendental
equations that follow.

(1) Even solutions

�
�� ik

�� ik���e��� (1.42)

or

� cos�
ka

2 � ��
k

k
� (1.43)

tan�
ka

2 �� 0

Equation (1.36) informs us that A

�B


, or that the solutions are even. The energy

levels, solutions of Schrödinger’s equation, can then be determined from Fig. 1.2,
and are represented by the intersection points where the line of slope 1/k

�
meets

the sinusoidal arches (dotted lines). Therefore, the energies accessible to an elec-
tron with total energy less than that of the potential barrier constitute a discrete
spectrum (implying the energy levels are quantized).

The wavefunction then takes the form:

	
��

(x)�A
�

cos k
�
x, for �x ��

a

2

	
���

(x) �B
�
e�	, for x��

a

2
(1.44a)

	
���

(x)�B
�
e��	, for x�

a

2

where n designates the nth even solution of the equation. The values for A
�

and B
�

are obtained by noting that the integral of the square of 	
�
(x) from �� to ��

equals 1. For the ground state (n� 1), we obtain:

A
�
��

2

a� 2/��
���

(1.44b)

B
�
��

2

a� 2/��
��� k

�
k
�

e�����

where k
�

is the wavevector for the ground state from (1.43). Equation (1.44) shows
that the electron wavefunction penetrates into the barrier over a distance given by
1/�, which signifies that the probability of finding the electron in the barrier region
is non-zero (see Fig. 1.1). This phenomenon, known as tunnelling, possesses no
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Fig. 1.2. Graphical determination of the quantized states for a symmetric quantum well
using Eqs. (1.43) and (1.46), with k

�
� 0.78 nm��, and a well width a� 10 nm (see the example).

classical equivalent and results from the fundamental wave nature of the electron
and recalls analogous behaviour in light. We now recall the equation relating the
energy of the eigenstate to its penetration depth into the barrier region:

�
����	


�
1

�
�

�
�2m

�
(�E)

(1.45)

(2) Odd solutions
These correspond to an alternative solution to (1.39):

�
�� ik

�� ik�� e���

Namely:

� sin�
ka

2 � ��
k

k
� (1.46)

tan�
ka

2 �� 0

This time Eq. (1.36) tells us that A

��B


, i.e. that the solutions are odd. The

energy levels are now given by the intersection of the same line, with slope 1/k
�

,
with the other series of sinusoidal arches appearing as solid lines in Fig. 1.2.

It is also interesting to calculate the number of quantum levels within the well.
Inspection of Fig. 1.2 gives

N� 1� Int�
�2m

�
V
�

�
a

�� (1.47)

where ‘Int’ designates the ‘integer function’.
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Also, no matter how shallow the well is, there is always at least one quantized
state which lies within it. While this is a general observation which applies to all
one-dimensional wells, this may not hold in three dimensions. The quantized levels
are also referred to as: localized, as the wavefunctions have a non-negligible
amplitude only in the vicinity of the well; and bound, as the probability of finding
the electron is only significant near the well (the electrons are not mobile and
cannot participate in current flow). The energy levels residing above the barrier
(E� 0) are called delocalized or free (consult Complement 1.A for further details).

It is important to note that this line of reasoning may be generalized to any sort
of potential: i.e. that quantification of the energy levels results from propagation of
the boundary conditions from �� to ��, and from the requirement that the
amplitudes of the wavefunctions vanish at infinity.

Example
We will later see in Chapter 8, that an electron in a semiconductor heterostructure
fabricated with GaAs/Al

����
Ga
����

As is subjected to a potential well of 360 meV
depth. Furthermore, the interaction of the electron with the periodic potential of
the GaAs host crystal is taken into account by multiplication of the electron mass
by a coefficient equal to 0.067. The result of this product corresponds to the
effective mass of the electron m*� 0.067m

�
. Application of Eq. (1.33) allows us to

solve for the wavevector k
�

:

k
�
��(2� 0.067� 0.9� 10��� (kg)� 0.36 (eV)� 1.6� 10�C)/

1.05� 10��� J s

or

k
�
� 0.78 nm��

which corresponds to a wavelength of �
�
� 8.05 nm.

Let us now consider a quantum well with a width of 10 nm. As the well width is
of the order of the de Broglie wavelength �

�
associated with V

�
� 360 meV, we

may expect the system to exhibit quantization. Using Eq. (1.47), we see that we can
expect three bound states in this particular system (i.e. 1� Int(0.78� 10/3.14)).
The wavefunctions corresponding to each of these states are shown in Fig. 1.1.

The MA THEMATICA program below is very useful for solving quantum
confinement problems:

m0=0.91 10 ˆ -30 (*kg*);hbar=1.05 10 ˆ -34 (*J.s*);
q=1.6 10 ˆ -19 (*C*);
meff=0.067 (* effective electron mass in GaAs*);
V0=.36 (*well depth in eV*);
a=10. (*well width in nm*);
k0=Sqrt[2*meff*m0*q*V0]*10 ˆ -9/hbar (*in nm-1*)
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eq1=Cos[k*a/2];
eq2=Sin[k*a/2];
eq3=k/k0;
plot1=Plot[Abs[eq1],�k,0,k0�]
plot2=Plot[Abs[eq2],�k,0,k0�]
plot3=Plot[Abs[eq3],�k,0,k0�]
Show[plot1,plot2,plot3]
FindRoot[eq1==eq3,�k,0.2�]
E1 =hbar ˆ 2*(k*10 ˆ 9) ˆ 2/(2*meff*m0*q)/.%
FindRoot[eq2==eq3,�k,0.5�]
E2 =hbar ˆ 2*(k*10 ˆ 9) ˆ 2/(2*meff*m0*q)/.%
hnu=E2-E1 (*optical transition energy in eV*)

1.4.2 The infinite square well

A particularly important case worth investigating is that of the infinite square well
(see Fig. 1.3). In this case, the solution to Schrödinger’s equation is found immedi-
ately:

ka� n odd, 	
�
(x)�	

2

a
cos n�

x

a
(1.48)

ka� n even, 	
�
(x)�	

2

a
sin n�

x

a

and in both cases:

E
�
� n�

����
2m

�
a�
� n�E

�
(1.49)

Energy levels for the infinite square well

E
�

is the confinement energy. We thereby uncover an alternate interpretation of the
de Brogliewavelength given in (1.1), i.e. it is the width required of an infinite square
well to yield a confinement energy E

�
equal to the energy of the particle. An

important definition is the thermal de Broglie wavelength �

����

: this is the width of
an infinite square well necessary for a confinement energy equal to the thermal
energy kT:

�

����

�
2��

�2m
�
kT

(1.50)

Therefore, potential wells having widths less than �

����

at T� 300 K will show
quantum effects unhindered by thermal vibrations in the system. Only in these
cases may we speak of quantum wells at room temperature.
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Fig. 1.3. Infinite quantum well with a width of 10 nm. In contrast to the finite square well
solutions depicted in Fig. 1.1, the wavefunctions do not penetrate into the barriers and the
energy levels are lifted up relative to the base of the well as a result.

Example
Assuming an infinite (although unachievable in practice) square well consisting of
GaAs, at 300 K we calculate a �


����
� 6.28� 1.05� 10��� (J s��)/�(2�

0.067� 0.9� 10��� (kg)� 0.0259 (eV)� 1.6� 10��C) � 12 nm.
Therefore, quantum effects will only be discernible in GaAs layers thinner than

this value and only in these cases will we be able to speak of GaAs quantum wells
existing at room temperature.

1.5 Time-independent perturbation theory

Very few physical systems present solutions as simple as those afforded by quan-
tum wells. We find among such analytically tractable systems, the hydrogen atom
(not treated in the present text) and the harmonic oscillator (treated in Comple-
ment 1.D). More general systems seldom have analytical solutions. However, by
elaborating on simpler systems possessing better known solutions, we will attempt
to approximate solutions to those that are more complex. The most popular (and
arguably the most fruitful in terms of its success in expanding our conceptual
understanding of many physical systems) is time-independent perturbation theory.

Consider an electron in a system described by a time-independent Hamiltonian
H
�

for which the complete basis set of stationary states ��	
�

� consists of solutions

to Schrödinger’s equation:

H
�
�	
�

�E

�
�	
�

 (1.51)

(Note that from this point onwards, to simplify the notation, we will drop the
‘ ˆ ’ used earlier to identify operators, as we assume the reader is now able to
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distinguish between an operator and a variable.) For the present, we will suppose
that the states are discrete and non-degenerate. An important case involving the
extension of perturbation theory to degenerate systems is given in Complement
1.B. We will now submit this system to a small additional perturbation W� �U,
such as may be achieved by the application of an electric field to a quantum well.
By small, we mean that �� 1 and that the eigenvalues ofU are of the order E

�
(i.e.

that U�H
�

or that the eigenenergies of U are roughly the same size as those of
the unperturbed Hamiltonian H

�
). The eigenvalues of the new Hamiltonian

H�H
�
�W are:

(H
�
� �U)�	

�
(�)
�E

�
(�)�	

�
(�)
 (1.52)

Then, make the important hypothesis that a sufficiently weak perturbation will
allow us to consider the solutions of the modified system in terms of the original
levels of the unperturbed system (i.e. that such a small perturbation has not
distorted the original energy spectrum of the system beyond recognition). The new
eigenvalues and eigenvectors of the perturbed system are then written in terms of
the original eigenenergies and eigenvectors and the perturbation coefficient �:

E
�
(�)� �

�
� ��

�
� ���

�
� · · ·

(1.53)
� 	

�
(�)
� �0
� ��1
� ���2
� · · ·

Substitute (1.53) into (1.52) and obtain by identifying like terms in powers of �:

Order 0 H
�
�0
� �

�
�0
 (1.54a)

Order 1 (H
�
� �

�
)�1
� (U� �

�
)�0
� 0 (1.54b)

Order 2 (H
�
� �

�
)�2
� (U� �

�
)�1
� �

�
�0
� 0 (1.54c)

0th order
As we have assumed that the levels are non-degenerate, Eq. (1.54a) shows that �0

is an eigenstate of H

�
. By continuity, as �� 0, we find that �0
� �	

�

. This is not

true when the levels are degenerate, as Eq. (1.54a) no longer corresponds to a single
quantum level.

1st order
Project (1.54b) on �0
� �	

�

 and use the identity:

�0�H
�
� �

�
�1
� 0 (1.55)

to find the first-order energy correction:

�
�
��	

�
�U�	

�

 (1.56)

or, in terms of earlier definitions:
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E�
�
�E

�
��	

�
�W�	

�

 (1.57)

First-order energy perturbation

where the perturbed energy E�
�

is expressed without reference to �.
To find a limited expansion for the eigenvector, we need only project (1.54b)

onto the other states �	
�

 with p� n:

(E
�
�E

�
)�	

�
�1
� �	

�
�U�	

�

� 0 (1.58)

We then obtain for the perturbed eigenvectors the following first-order expansion:

� 	�
�

� � 	

�

� �

���

�	
�
�W�	

�



E
�
�E

�

�	
�

 (1.59)

First-order perturbation of the eigenstates

We notice that the unperturbed stationary state �	
�

 is contaminated by other

eigenstates �	
�

, and all the more so for those states �	

�

 closest to �	

�

 in energy.

Therefore, in describing the effect of a perturbation, we will be content to limit
ourselves to a description in terms of those levels closest in energy (see, for
example, the treatment of the Stark effect given in Complement 1.C).

2nd order
In a certain number of cases, the first-order perturbation will be null when:

�	
�
�W�	

�

� 0 (1.60)

This occurs as a result of symmetry considerations (as, for instance, in the case of
the perturbation of a quantum well confinement potential by an electric field). As a
result, it is often necessary to continue the perturbation expansion to higher
orders. Projecting (1.54c) onto �	

�

, we find:

�
�
��	

�
�U�1
 (1.61)

after which using (1.59) we may write for the second-order perturbation:

E�
�
�E

�
��	

�
�W�	

�

� �

���

��	
�
�W�	

�

��

E
�
�E

�

(1.62)

Second-order energy perturbation

where again we note that the magnitude of the contribution of any given state
increases for those closest to �	

�

 in energy.
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1.6 Time-dependent perturbations and transition probabilities

1.6.1 The general case

Situations where exact solutions may be found to Schrödinger’s time-dependent
equation (1.12) are unfortunately few and far between. The time-dependent behav-
iour of an electron in a quantum well is worth citing; it may be worked out as an
exercise. Generally, we employ a perturbative approach, which will enable defini-
tion of the transition rate. Let us consider a system described by the Hamiltonian
H
�

which is in an initial state �	
�

 at time 0. At time t� 0 we turn on a perturbation

W(t)� �U(t), where the conditions placed on � and U(t) are same as in the
preceding section (namely that �� 1 andU�H

�
). In order to solve Schrödinger’s

time-dependent equation:

i�
d

dt
�	(t)
� [H

�
�W(t)]�	(t)
 (1.63)

to describe the evolution of the system, we can expand �	(t)
 in terms of the basis of
stationary states, as described in (1.6):

� 	(t)
��
�

c
�
(t)�	

�

 (1.64)

Substituting (1.64) into (1.63) and identifying like terms, we obtain a system of
coupled differential equations, relating the coefficients c

�
(t) to one another:

i�
d

dt
c
�
(t)�E

�
c
�
(t)��

�

�U
��

(t)c
�
(t) (1.65)

whereU
��

are the elements in the matrix:

U
��

(t)� �	
�
�U(t)�	

�

 (1.66)

We will suppose that, for reasons of symmetry, U
��
� 0 for any given level n. We

then make the following change of variables:

b
�
(t)� c

�
(t)e������ (1.67)

which leads us to:

i�
d

dt
b
�
(t)� ��

�

e�����U
��

(t)b
�
(t) (1.68)

where �
��
� (E

�
�E

�
)/� is the Bohr oscillation frequency for the transition n� p.

As in Section 1.5, we perform a limited expansion:
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b
�
(t)� b���

�
(t)� �b���

�
(t)� ��b���

�
(t)� · · · (1.69)

allowing us to identify like terms in � after substitution of (1.69) into (1.68).

0th-order term
We find that b

�
(0) is a constant which corresponds to the stationary state solutions

given by (1.29).

qth-order term
We obtain:

i�
d

dt
b���
�

(t)��
�

e�����U
��

(t)b�����
�

(t) (1.70)

Therefore, once the zeroth-order solution is known, we may calculate the first-
order solution and then any other order solution by recurrence. We will interest
ourselves in the remainder of this chapter with first-order perturbations. Second-
order perturbation will be developed in Chapter 12, in the context of non-linear
optics.

At t� 0, the system is in the state �	
�

, with initial conditions:

b���
�

(t� 0)� 1
(1.71)

b���
�

(t� 0)� 0, for i� n

To zeroth order, these values remain constant with respect to time. Inserting these
values into (1.70), we obtain the first-order time evolution equation:

i�
d

dt
b���
�

(t)� e�����U
��

(t) (1.72)

which takes the integral form:

b���
�

(t)�
1

i�

�

�
�

e������U
��

(t�)dt� (1.73)

We are now in a position to calculate the probabilityP
��

(t) of finding the system in
a final stationary state �	

�

 at time t. Following the probabilistic interpretation of

quantum mechanics, this is obtained by evaluating �b
�

(t)�� or:
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P
��

(t)�
1

�� �
�

�
�

e������W
��

(t�)dt� �
�

(1.74a)

Transition probability between levels i and f

under the effect of a time-varying perturbation

where

W
��

(t)� �	
�
�W(t)�	

�

 (1.74b)

This formula is one of the most important in quantum mechanics and will be
referred to throughout this book. We will presently apply it to the particularly
interesting and useful problem of a time-varying sinusoidal perturbation.

1.6.2 Sinusoidal perturbation

This perturbation potential may be written as:

W(r, t)�W(r) sin�t (1.75)

Equation (1.74) leads immediately to a time-dependent transition probability
P
��

(t) between initial and final states:

P
��

(t)�
�W

��
��

4�� �
1� e���������
�
��
��

�
1� e���������
�
��
�� �

�
(1.76)

We therefore make what is classically referred to as the rotating phase or the
quasi-resonance approximation, which ignores the contribution of the term pos-
sessing the larger denominator �

��
�� in favour of that with �

��
��. Thus,

keeping only the second term in (1.76) we obtain:

P
��

(t)�
�W

��
��

4�� �
1� e���������
�
��
�� �

�
�

�W
��
��

4�� � �sin
(�
��
��)t

2 �

(�
��
��)

2 �
�

(1.77)

Figure 1.4 shows the evolution of this probability as a function of time for
different frequencies (or detuning) between the perturbing field and resonant
transition frequency ���

��
. We note that as the frequency of the perturbation

field approaches that of the resonant Bohr oscillation frequency (i.e. ���
��

), the
time dependence of the transition amplitude changes from a sinusoidally varying
function to a parabola in t. In a complementary fashion, we show in Fig. 1.5 the
spectral distribution of the transition probability as a function of detuning for
various times t. This function is a sinus cardinal multiplied by t�, which tends
towards a Dirac delta function as t��. We therefore rewrite (1.77) as:

P
��

(t)�
�W

��
��

4��
t��sinc

(�
��
��)t

2 �
�

(1.78)
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Fig. 1.4. Time evolution of the transition probability between levels i and f for different
detuning values of �
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��. In off-resonance conditions, the electrons oscillate between both

levels.
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Fig. 1.5. Transition probability between two levels i and f as a function of detuning
frequency for different observation times t (arb. units). At longer times, only transitions
between states satisfying the requirement of energy conservation are accessible. This behaviour
is in accordance with Heisenberg’s second uncertainty principle.

where sinc(x) is the sinus cardinal sin x/x. Equation (1.78), while appearing simple,
is in fact rather difficult to grasp in its entirety, as it is a function of two intimately
related quantities, namely frequency and time. To investigate its behaviour better,
we will distinguish between three different cases.

Case 1: transitions induced between discrete levels by single frequency excitation
In this case, the resonant transition largely dominates the behaviour whereby:

P
��

(t)�
�W

��
��

4��
t� (1.79)

As the transition probability thus stated increases quadratically with time, this
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description is clearly an approximation as its value cannot exceed unity. We will
see in Complement 1.E that this approximation holds only for very short times
over which the zeroth-order expansion employed in (1.69) may be seen as valid. We
note that the resonance condition ���

��
may be written, alternately, as

���E
�
�E

�
� ��

��
(1.80)

Bohr frequency

This equation describes the conservation of energy between the energy quantum
transferred to the system and the energy difference of the system between the final
and initial states �E�E

�
�E

�
. From a technical point of view concerning the

calculation of these quantities, we note that the ordering of the indices in these
equations (�W

��
�� �W

��
�) plays no explicit role owing to the properties of Her-

mitian products. This, however, is not the case for the Bohr oscillation frequency
�
��
���

��
!

Additionally, Fig. 1.5 shows that the transition probability becomes negligible
once:

�Et� � (1.81)

This last condition is also known as Heisenberg’s second uncertainty relation and it
allows the classical restriction of energy conservation to be violated by excitations
acting over short time periods.

Case 2: transitions induced between a discrete level and a continuum state by single
frequency excitation
In this case, the final states form a continuum described by the continuous variable
�
��

, and the transition probability between the discrete level and the continuum
P
�

(t) is calculated by summing the probabilities over the density of final states
�(�

��
):

P
�

(t)�
1

4��
t�

��

�
��

�W
��

(�
��

)���sinc
(�
��
��)t

2 �
�
�(�

��
)d�

��
(1.82)

Distribution theory tells us that if a function �W
��

(�
��

)���(�
��

) is well behaved (i.e.
square normalizable and slowly varying), then:

lim

���
�sinc�

1

2
(�
��
��)t��

�
�

2�
t
�(�

��
��) (1.83)

where � is the Dirac delta function. Therefore, for long times, Eq. (1.82) takes the
form:

P
�

(t)�
�

2��
�W

��
(�
��

)���(���
��

)t (1.84)
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The above equation tells us that when a transition occurs from a discrete state to a
continuum, the transition rate G

�
� dP

�
/dt is constant as a function of time and

has a value given by:

G
�

(�)�
�

2��
�W

��
(�
��

)���(���
��

) (1.85a)

Fermi’s golden rule in terms of frequency

or

G
�

(��)�
�

2�
�W

��
���(���E

�
�E

�
) (1.85b)

Fermi’s golden rule in terms of energy

This important equation is referred to as Fermi’s golden rule. It stipulates that
under the influence of monochromatic excitation ��, only continuum levels
having energy E

�
�E

�
� �� will be populated by the optical excitation with a

transition rate given by the above equation.

Case 3: transitions induced between two discrete levels by multi-frequency
excitation
In this case, the perturbation consists of a continuum of excitation frequencies:

W
��

(t)�

�

�
�

g(�)W
��

(�)sin(�t)d� (1.86)

where g(�) is the excitation spectrum and W
��

is the matrix element of the
interaction Hamiltonian at each particular wavelength. A development strictly
equivalent to the one given above leads to a transition rate:

G
��

(��)�
�

2�
�W

��
��g(���E

�
�E

�
) (1.87)

Transition rate for broad frequency excitation

1.7 The density matrix

Two kinds of uncertainty coexist within the description of a physical system. There
is a purely quantum uncertainty related to the probabilistic interpretation of the
results of the operator algebra applied to the system. There is also uncertainty
resulting from the thermal agitation of the system’s constituent parts, which is
described by statistical mechanics. Density matrix formalism presents itself as a
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very powerful and elegant framework which integrates these two notions into a
single mathematical description.

1.7.1 Pure quantum ensembles

Let us consider a quantum system in a state �	(t)
 described by (1.64). We wish to
know the average value of an operator A. Following Eq. (1.8), this average value
�A
 may be written in a particular basis �	

�

 as:

�A
� �
���

A
��
c*
�

(t)c
�
(t) (1.88)

where A
��

is an element of the matrix:

A
��
��	

�
�A�	

�

 (1.89)

Equation (1.88) is somewhat deceiving as it seems to suggest that a privileged basis
set exists in which to carry out the decomposition. If we change this basis, however,
the A

��
, c

�
(t), and c

�
(t) entries will change in such a manner as to leave (1.88)

invariant. This inconvenience is eliminated by introducing the density matrix,
whose elements are:

�
��

(t)� c*
�

(t)c
�
(t) (1.90)

In fact, the matrix �(t) may be written as:

�(t)� � 	(t)
�	(t)� (1.91)

With this definition, Eq. (1.88) then becomes:

�A
�Tr(�A) (1.92)

which is independent of the decomposition basis �� � 	(t)
�	(t)� as its trace is a
linear operator whose value is independent of the basis in which it is evaluated.
Furthermore, using (1.91), we immediately see that the evolution of �(t) as a
function of time is given by:

i�
d

dt
�(t)� [H(t),�(t)]�H(t)�(t)� �(t)H(t) (1.93)

Schrödinger’s equation in density matrix formalism

1.7.2 Mixed quantum ensembles

We now consider a system consisting of a statistically distributed mixture of states
���

�

�. This system has a thermodynamic probability p

�
of being in a state ��

�

.

24 Quantum mechanics of the electron



Neglecting quantum interferences between thermodynamically blurred states, it
seems natural to define the average value of observable A as:

�A
��
�

p
�
�A
�

�
(1.94)

where �A
��
is the average value of observable A when the system is in the state

��
�

. Following Eq. (1.92), this may be written as:

�A
��
�

p
�
Tr(�

�
A)�Tr(�� A) (1.95)

where �� is the density matrix of the mixed ensemble:

�� ��
�

p
�
�
�
��

�

p
�
��
�

��

�
� (1.96)

In Eq. (1.96) we see the advantage obtained by introducing the density matrix. It is
the linear dependence of �A
 on the density matrix � which allows the introduc-
tion of the density or averaging operator �� .

As each matrix �� allows the same time-evolution equation (1.93), the density
matrix for the mixed ensemble may be written:

i�
d

dt
�� (t)� [H,�� (t)] (1.97)

Schrödinger’s equation for a mixed ensemble

The fundamental equations of the density matrix are (1.95)—(1.97). Within the
density matrix itself, we may differentiate between two conceptually distinct
constituents.

(a) Diagonal elements
From equations (1.90) to (1.96), the diagonal terms may be expressed in the
stationary state basis as:

��
��
��

�

p
�
�c�
�
��

where c�
�

is the ���
 component in the �	
�

 basis. An immediate physical interpreta-

tion of the diagonal terms in ��
��

is that they represent the probability of finding the
system, upon measurement, in a stationary state �	

�

 given both the quantum and

statistical uncertainties. Therefore, �
��

represents the population of the state �	
�

.

As these elements result from the summation of positive terms, they may not be
zero unless the value of each of these terms is zero (i.e. that the occupation of each
state is null).
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(b) Off-diagonal elements
The significance of these terms is a little more difficult to understand. They are
sometimes referred to as the coherence elements: they describe the quantum
behaviour of the system. When thermal fluctuations completely smear out the
quantum interference effects, these are the terms that become zero.

In Section 1.7.3, we will give an example of a two-level system which will allow
us to grasp the usefulness of this powerful and elegant formalism better. We note in
closing that the distinction between population and coherence depends on the
decomposition basis ��	

�

�.

1.7.3 Density matrix and relaxation time for a two-level system

We consider a two-level system with a Hamiltonian H
�

, possessing eigenenergies
E
�

and E
�

, and stationary states �1
 and �2
 (i.e. H
�
�i
�E

�
�i
). In the stationary

state basis, the HamiltonianH
�

may be written:

H
�
��

E
�

0

0 E
�
� (1.98)

We subject this system at time t� t
�

to a sinusoidal perturbation W(t) which may
be expressed in the basis of �1
 and �2
 as:

W��
m
��

m
��

m
��

m
��
� cos�t (1.99)

wherem
��
� �i�W�j
. We may assume by symmetry, that the elementsm

��
andm

��
are null, and that the terms m

��
and m

��
are real and thus equal. The general case

may be determined as an exercise. Equation (1.97) then may be written as:

d�
��

dt
��i

m
��
�

(�
��
� �

��
)cos�t

d

dt
(�
��
��

��
)� 0 (1.100)

d�
��

dt
��i�

��
�
��
� i

m
��
�

(�
��
��

��
)cos�t

The second equation of (1.100) states that the total population is conserved (i.e.
�
��
��

��
� 1). Solutions to this very important set of coupled differential equa-

tions are given in Complement 1.E. Nonetheless, we may investigate the transitory
behaviour of the system at this point. For instance, it is clear that the terms in
cos�t will act to drive the system into oscillation. If the excitation ceases (i.e.
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supposing we set m
��

to zero), the diagonal terms will remain constant and the
off-diagonal terms will continue to oscillate with frequency �

��
.

Intuitively, we may expect that once the excitation stops, the populations �
��

will
tend toward their thermodynamic equilibrium levels �	�

��
with a certain time

constant resulting from stochastic interactions. This time constant is often referred
to as the diagonal relaxation time or the population lifetime, to name but a few. It is
written as T

�
when its value is independent of i in �

��
, i.e. level independent. In

converse situations, the custom is to make use of the relaxation rate �
��
. In the

same way, we expect the off-diagonal elements to lose coherence with a time
constant of ���

��
or T

�
if this time is independent of ij.� Introducing these different

relaxation times, the equations in the density matrix become:

d�
��

dt
��i

m
��
�

(�
��
� �

��
)cos�t�

�
��
� �	�

��
T
�

d�
��

dt
� i

m
��
�

(�
��
��

��
)cos�t�

�
��
��	�

��
T
�

(1.101a)

d�
��

dt
��i�

��
�
��
� i

m
��
�

(�
��
��

��
)cos�t�

�
��

T
�
Time-evolution of elements in a density matrix

for a two-level system

or

d�
��

dt
��i

m
��
�

(�
��
��

��
)cos�t��

�
(�
��
��	�

��
)

d�
��

dt
� i

m
��
�

(�
��
��

��
)cos�t��

�
(�
��
��	�

��
) (1.101b)

d�
��

dt
��i(�

��
� i�

��
)�
��
� i

m
��
�

(�
��
� �

��
)cos�t

Time-evolution of elements in a density matrix

for a two-level system

These last two expressions are one of the major conclusions from this first chapter
and they will be used intensively throughout this book. Complement 1.E gives as

� Interestingly, the introduction of a relaxation time reintroduces the set of stationary states as a privileged
basis. This observation is of theoretical interest, however, and will not receive further consideration by us.
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an example an application whose treatment using this theory leads to the optical
Bloch equations.
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Complement to Chapter 1

1.A Problems posed by continuums: the fictitious quantum box and the
density of states

The quantum description of delocalized states, which therefore belong to a con-
tinuum, makes reference to the theory of distributions. It attempts to deal with
difficult problems such as the normalization of wavefunctions in a null potential
from �� to ��. In this book, systematic use is made of the theoretical trick
afforded by introduction of a fictitious infinite square well of width L in which the
motion of the continuum electrons are later shown to be pseudo-quantified. What
we mean by pseudo-quantification is that when we take L tending towards infinity
in the expressions obtained, the dependence of L will conveniently disappear from
physical predictions. There is no moral in this; only the tutelar protection of
distribution theory! We now proceed to an illustrative example: photoemission
from a one-dimensional well.

We consider a quantum well of width d as represented in Fig. 1.A.1. This
quantum well admits a quantized level �i
 described by a square integrable
wavefunction 	

�
(z) and a quantized energy level �E

�
(where the index I stands for

ionization, for reasons which shall soon be clear). We further presume that the well
is sufficiently deep for 	

�
(z) to be considered the wavefunction for the ground state

of the infinite well such that:

	
�
(z)�	

2

d
cos

�
d
z (1.A.1)

This well also admits delocalized states, where the electrons may take on any value
of positive energy. We will neglect the influence of the well on the free electrons, i.e.
we will suppose that the free electrons are subject to a null potential once they are
in the continuum. To avoid problems involving the normalization of these
wavefunctions, we introduce a fictitious square well of width L within which the
continuum electrons are trapped. The corresponding eigenenergies and eigenfunc-
tions of the unbound states are:
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Fig. 1.A.1. Procedure for pseudo-quantification of the potential barrier states. The width L
of the infinite quantum well is arbitrary.

e
�
� n�e

�

	
�
(z)�	

2

L
sin nk

�
z, if n is even (1.A.2)

	
�
(z)�	

2

L
cos nk

�
z, if n is odd

where e
�

is the confinement energy of the fictitious well:

e
�
�

��
2m*

k�
�

(1.A.3)

with wavevector k
�

k
�
�

�
L

(1.A.4)

If L takes on dimensions of centimetres, then e
�

is of the order of 10��� eV. In this
sense, such a box would be fictitious as the energy level spacings would be
infinitesimal in comparison with typical interaction or thermal energies (of the
order of meV). The energy levels given in (1.A.2) are so close that rather than
attempting to take each one into account individually, we group them together by
means of infinitesimal batches of the density of states.

Let us consider a certain wavevector interval dk. In this interval the individual
states of the fictitious box are separated in the wavevector by �/L. Without taking
into account electron spin, the number of states in this interval is clearly:

dn�
L
�

dk (1.A.5)
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The density of states dn/dk is then given by:

�(k)�
dn

dk
�

L
�

(1.A.6)

In this same interval, as obtained by differentiation of (1.A.3), the corresponding
change in energy relates to dk as:

dk�
1

2

�2m*

�
dE

E
(1.A.7)

The energy density of states dn/dE is then finally:

�(E)�
L
2�

�2m*

�
1

�E
(1.A.8)

One-dimensional density of states without spin

We note that as L tends towards infinity, �(E) increases without bound. This is to
be expected as more and more states become available over the same energy range
as the energy separation between levels decreases.

We will now calculate the transition probability between an initial quantized
state �i
 and the continuum under the effect of a sinusoidally varying dipole
perturbation:

W(z, t)��qFz cos(�t) (1.A.9)

From Fermi’s golden rule (1.85b), the transition probability may be written as:

G
�

(��)�
�q�F�

2�
�z
��
���(���E

�
�E

�
) (1.A.10)

The transition element z
��

is non-zero only for odd parity final states and is given
by:

�z
��
��� ��	

�
�z�	

�

��� �

2

�Ld

���

�
����

cos�
�
d
z� sin(k

�
z)zdz �

�
(1.A.11)

or

�z
��
��� 4

d�

L
f �(E

�
) (1.A.12)

where f (E) is the dimensionless integral in equation (1.A.11) and is found to be:

f (E
�

)�
�

��� d�k�
�
�sin

k
�
d

2
�

4k
�
d

��� d�k�
�

cos
k
�
d

2 � (1.A.13)
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and k
�

is the wavevector of the associated state with energy E
�
:

E
�
� ���E

�
�

��k�
�

2m*
(1.A.14)

We then substitute the expression for �z
��
� into (1.A.10). Notice that the width of the

fictitious box L,which appears in the denominator of the transition element and in the
numerator of the density of states, cancels out as advertised. In physical terms, the
wider the width of the pseudo-well, the greater the final density of states; however,
this effect on the transition probability is cancelled out as the increased width also
serves to dilute the probability density of the electron states above the quantum
well (of width d) by a similar amount.

Taking into account the fact that the density of final states is only one-half of the
expression we derived in (1.A.8) (because of the spin of the electrons, which is
conserved in the transition) and since only the odd parity wavefunctions partici-
pate in the transitions, we therefore find for the transition probability from an
initial quantized state to the continuum:

G
��

(��)� q�F�d�
�m*
��

f �(���E
�
)

�2(���E
�
)

(1.A.15)

The behaviour of the system is therefore found to be independent of the size of the
fictitious box we introduced at the onset. This technique is referred to as pseudo-
quantification, and is in fact a very powerful tool in spite of its simplistic appear-
ance. Figure 1.A.2 shows the variation of the transition rate as a function of the
excitation frequency �.

We notice the presence of an ionization threshold for the transition probability.
The cut-off energy for detected photons corresponds to the ionization energy E

�
.

Furthermore, the absorption near the detection threshold, i.e. for photons with
���E

�
is given by:

G
��
	����E

�
, for ���E

�
(1.A.16)

A second characteristic is the quasi-resonant nature of the transition probability
near the energy threshold for photoionization. This quasi-resonance results from
decreases in both the density of states (in k��

�
) and in the dipole moment (in k�

�
�)

which leads to:

G
��
	

1

(���E
�
)���

, for ��
E
�

(1.A.17)

These expressions give a reasonable description of the spectral response of quan-
tum well based detectors.
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Fig. 1.A.2. Ionization transition rate (s��) of a quantum well as a function of incident photon
energy in multiples of the ionization energy, E
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1.B Perturbation on a degenerate state

Consider a system described by a Hamiltonian H
�

which possesses a degenerate
state E

�
with degeneracy g

�
(i.e. that g

�
independent eigenvectors ��	�

�

, i�

1, . . ., g
�
�, forming an eigenvector subspace, share the same eigenenergy E

�
). We

seek the perturbation induced in this eigenvector subspace by a perturbing field
W� �U. Equation (1.54a) stipulates that the perturbed state always belongs to the
eigenvector subspace but does not allow one to find the perturbed state �0
 since
all linear combinations of the eigenvectors �	�

�

 form possible solutions of this

equation. It is therefore necessary to use (1.54b) to obtain the perturbed state �0
.
Projecting (1.54b) onto the vectors �	�

�

, we obtain:

�	�
�
�U�0
� �

�
�	�

�
�0
 (1.B.1)

We recall that the unknowns are the new perturbed state �0
 and the perturbation
�E� ��

�
. Equation (1.B.1) is nothing other than the eigenvalue and eigenvector

equation of the perturbation operator W in the eigenvector subspace ��	�
�

, i�

1, . . ., g
�
�. More convincingly, for the time being let us designate c

�
as the compo-

nent of �0
 on the basis �	�
�

 (i.e. c

�
��	�

�
�0
) and w

��
as the element of the

perturbation matrix w
��
� �	�

�
�W�	�

�

. Written in matrix form (1.B.1) then be-

comes:

�
. . .

. w
��

.

. . .��
.

c
�

. � �E�
.

c
�

. � (1.B.2)
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We recognize the above secular equation as corresponding to the diagonalization
of the perturbation operator W in the subspace spanned by the eigenvectors �	�

�

.

In order to refine our ideas, we now turn to an example illustrating the use of
this formalism. We consider two identical physical systems far removed from one
another (see Fig. 1.B.1). The system on the left is centred at r

�
, while the system on

the right is centred at r
�
. Their respective Hamiltonians are:

H
�
�
p�

2m
�V(r

�
)

(1.B.3)

H
�
�
p�

2m
�V(r

�
)

These two systems share similar Hamiltonians and therefore have identical
eigenenergies. For example, both �l
 and �r
 share the same ground state energy:

H
�
�l


H
�
�r

�E�l

�E�r


(1.B.4)

Let us now bring these two systems into closer proximity with one another in such
a manner as to cause each system to engender a perturbing influence on the other.
We may therefore represent this effect by a perturbation Hamilton W. Equation
(1.B.2) then takes the form:

�
w
��

w
��

w
��

w
��
��
c
�
c
�
���E�

c
�
c
�
� (1.B.5)

Without loss of generality, we may suppose w
��
�w

��
� 0; and w

��
to be real and

equal to A. Equation (1.B.5) may then be rewritten as:

�
0 A

A 0 ��
c
�
c
�
���E�

c
�
c
�
� (1.B.6)

From which the system admits the following eigenenergies and eigenvectors:

E��E�A ��
�
1

�2
(�r
� �l
)

(1.B.7)

E��E�A ��
�
1

�2
(�r
� �l
)

The ground state energyE is then no longer an eigenenergy of the states �l
 and �r
.
We say that the interaction between the systems has lifted the degeneracy and that
the states �l
 and �r
 have hybridized. This mechanism is represented schematically
in Fig. 1.B.2. This mechanism forms the basis for chemical bonding. Let us
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Fig. 1.B.1. A degenerate system consisting of two identical atoms separated spatially by L.
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Fig. 1.B.2. When the two states �l
 and �r
 are brought into close proximity, they hybridize,
thereby lifting the degeneracy of the system.

consider the simple example of two hydrogen atoms. Far away from one another,
the energy of their two electrons is 2E (where E represents each electron’s ground
state energy). As they are brought together, the strength of their interaction W
increases, lifting the degeneracy and the two electrons on the �—
 level have now
only a total energy of 2(E�A) (thanks to spin degeneracy). We continue below
with a particularly illuminating example.

Example: coupled quantum wells
Advances in the growth of high quality, crystalline semiconductor heterostruc-
tures have allowed the growth of quantum wells separated by barriers measuring
on the order of lattice constants (a few nanometres or more). We will consider two
such quantum wells of width a, centred at �b and �b, respectively (see Fig. 1.B.3).
The energy depth of these wells is taken to be V

�
. The total Hamiltonian for an

electron in this system is then given by:

H
�
�
p̂�

2m
�V(x� b)�V(x� b) (1.B.8)

where V is a step function which equals �V
�

between �a/2 and a/2, and zero
everywhere else. We have seen that we may write the total Hamiltonian as a sum of
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Fig. 1.B.3. Lifting of the degeneracy in two coupled quantum wells by electron tunnelling.

the unperturbed Hamiltonians in addition to that of the interaction perturbation:

H
�
�H

�
�V(x� b)�H

�
�V(x� b) (1.B.9)

Each well possesses the same ground state energy E
�

solution to Schrödinger’s
equation. If the depth V

�
of the quantum wells is sufficient, the wavefunctions for

the stationary states in each of the wells may be written from the limited develop-
ment of (1.44b) as:

�
�
(x) �	

2

a
cos k(x� b), for �(L/2� a)�x��L/2

(1.B.10)

�
�
(x) �	

2

a

�
�a

e���	�����, for x��L/2

and

�
�
(x) �	

2

a
cos k(x� b), for L/2� x�L/2� a

(1.B.11)

�
�
(x) �	

2

a

�
�a

e���	�����, for x�L/2

where k and � are, respectively, the electron wavelength and the tunnelling
penetration coefficient given in (1.33) with L� 2b� a. The matrix elements (1.B.5)
are therefore easy to calculate. The off-diagonal terms are:
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w
��
��V

�

�����

�
���

�
�
(x)�

�
(x)dx

(1.B.12)

��
2�
�a�

V
�

�

�
�

e��� cos k(u� a/2)du

and yield with little difficulty:

w
��
��

4

�a
E
�

e��� (1.B.13)

A similar calculation allows one to obtain the values for the diagonal elements.
These are proportional to e���� and are negligible in comparison to the off-
diagonal terms. The tunnelling effect coupling between the two quantum wells
therefore lifts the degeneracy of the system by 2w

��
or:

�E�
8e���
�a

E
�

(1.B.14)

Lifting of degeneracy for two coupled quantum wells

For two 40 Å wide quantum wells, with potential depths of 250 meV, (1.43) gives a
confinement energy E

�
of 106 meV and a tunnelling attenuation coefficient of

0.502 nm��. If these two wells are separated by 5 nm, the degeneracy will be lifted
by (8� e��������)/(0.502� 4)� 106 meV or 34 meV. Figure 1.B.3 shows the result
from an exact calculation, indicating an actual value for the splitting of 10 meV.
The discrepancy between these two values originates from the fact that the infinite
square well approximation is not valid for these finite square wells.

FURTHER READING

C. Cohen-Tannoudji, B. Diu, and F. Laloë, QuantumMechanics, Wiley, New York (1992).
C. Weisbuch and B. Vinter, Quantum Semiconductor Structures, Academic Press, Boston (1991).

1.C The quantum confined Stark effect

We consider a GaAs/AlGaAs quantum well where the growth axis is defined along
the Oz direction (see Chapter 8). The electrons trapped in the quantum well
conduction bands are described by the localized wavefunctions �i
 and quantiz-
ation energy E

�
(Fig. 1.1). We are interested in uncovering the effect of a static
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electric field F, applied across this structure, on the energy levels of the electrons
situated within the well. We employ a dipole perturbation Hamiltonian of the
form:

W��qFz (1.C.1)
If the quantum well is symmetric, the perturbation is clearly null to first order.
Neglecting the contribution from states with high quantum numbers (i� 2), (1.62)
then gives the second-order perturbation correction to E

�
from the electric field:

�E
�
�E�

�
�E

�
���E

�
� q�F�

�z
��
��

E
�
�E

�

(1.C.2)

where z
��
��1�z�2
 is the element of the dipole matrix. This calculation may be

performed simply if one uses the infinite square well approximation. Equation
(1.49) gives the expressions for the energy levels E

�
and E

�
, and (1.48) gives those

for the corresponding wavefunctions. Integration along the width of the well leads
us to the dipole element:

�z
��
��

2�

3�

a

��
(1.C.3)

The energy levels E
�

and E
�

become increasingly separated as the field strength F
is augmented (see Figure 1.C.1).

In spectroscopic terms, we say that the resonant optical transition connecting
these two levels is blue-shifted in energy by:

�E� 2��E
�
��

2��

3���
q�F�a�m*

��
(1.C.4)

or after some degree of simplification:

�E�
2

3����
qFa

E
�
� qFa (1.C.5)

where E
�

is the confinement energy from (1.49). We recall that m* is the effective
mass of the electron and is equal to 0.067m

�
in GaAs. We see, therefore, that the

effect begins to become important when the potential drop across the quantum
well qFa becomes non-negligible in comparison to the quantum confinement
energy E

�
. Perturbation theory clearly breaks down when the electron wavefunc-

tion does not vanish outside the quantum well (see Fig. 1.C.1). In that case, the
electron in the ground state can tunnel through the triangular barrier, leading to
electric field ionization of the quantum well.

Example
In a GaAs/AlGaAs quantum well with a thickness of 12 nm and possessing an

38 Complement to Chapter 1



500

400

300

200

100

0

E
ne

rg
y 

(m
eV

)

0 10 20

Position (nm)

20 10

Fig. 1.C.1. A quantum well identical to that in Fig. 1.1, under the influence of a static electric
field. The energy separation between the first two energy levels increases as a result of the
applied field. This effect is the blue shift due to the Stark effect.

effective electron mass of m*� 0.067m
�
, a Stark shift of �E� 2/

(3�� ��)� (10�V cm��� 10�� cm)�/0.115 eV or 2 meV, is expected for an applied
electric field of 10 V �m��. This shift is enormous in comparison with the magni-
tude of shifts which may be induced in atoms. This is a direct result of the low
effective mass of electrons in GaAs and of the much greater electric field strengths
which may be applied to condensed matter structures with the aid of conventional
microfabrication techniques (A. Harwit and J. J. S. Harris,Appl.Phys. Lett. 50, 685
(1987)).

This shift is very important as it can be larger than the linewidth of the E
�
�E

�
transition (typically 5 meV), and was observed for the first time by Harwit and
Harris (1987). Figure 1.C.2 compares their experimental results with theoretical
values. Their results for the symmetric well are seen to be compatible with a
parabolic dependence of the Stark shift on the electric field strength.

If the quantum well is asymmetric (see Fig. 1.C.3), then the first-order perturba-
tion is non-zero and is equal to:

�E� qF�
��

(1.C.6)

where �
��
� �1�z�1
��2�z�2
 is the displacement of the average position of the

electron from the �1
 state to the �2
 state.

Example
For the quantum well in Fig. 1.C.3, the solution to Schrödinger’s equation yields a
displacement dipole �

��
� 4.2 nm. We derive a Stark shift for the transition

E
�
�E

�
:�E� 42 meV for an applied field of 10 V �m��. The effect, to first order
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Fig. 1.C.3. Asymmetric quantum well under the influence of an electric field.
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then, is much more important than in the preceding example involving the
symmetric well (E. Martinet, F. Luc, E. Rosencher, P. Bois, E. Costard, S. Delaı̂tre,
and E. Böckenhoff, in Intersubband Transitions in Quantum Wells, edited by E.
Rosencher, B. Vinter, and B. Levine, Plenum, London (1992) p. 299).

This experiment has been performed in asymmetric GaAs/AlGaAs structures.
Figure 1.C.2 shows the experimental results for the Stark shift as a function of the
applied field. In these data, the linear dependence of the transition resonance shift
on field strength is apparent and in agreement with the predictions of (1.C.6) for
the parameters given in the example above. This effect has been harnessed in the
new generation of infrared detectors and will be explored further in Chapter 11.

FURTHER READING

G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, Wiley, New York
(1991).

E. Rosencher, B. Vinter, and B. Levine, Eds, IntersubbandTransitions in QuantumWells, Plenum
Press, New York (1992).

C. Weisbuch and B. Vinter, Quantum Semiconductor Structures, Academic Press, Boston (1991).

1.D The harmonic oscillator

The study of the harmonic oscillator in quantum mechanics provides one with an
exceptional wealth of physical insights. We shall therefore investigate the quantum
mechanical description of an electron bound elastically to an attractive centre.
This system is of equal use whether describing the behaviour of an electron bound
to a nucleus, the vibration of atoms in a crystal, or even, as we shall soon see in
Chapter 2, the mode of an electromagnetic wave, otherwise referred to as a photon.

We will now consider a particle of mass m subjected to an attractive one-
dimensional parabolic potential:

V(x)�
1

2
kx� (1.D.1)

where k is the force constant of the quantum mechanical spring (see Fig. 1.D.1).
(While generalization of this problem to three dimensions does not pose any great
theoretical difficulties, the plethora of indices required to do so would add little
more than clutter to the present discussion.) The particle’s Hamiltonian:
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Fig. 1.D.1. Harmonic oscillator potential showing confined energy levels and wavefunctions
for its corresponding eigenstates.

H�
p�

2m
�

1

2
m��

�
x� (1.D.2)

Classical Hamiltonian for the harmonic oscillator

where �
�

is the resonant frequency of the system:

�
�
�	

k

m
(1.D.3)

The classical behaviour in this case is well known: the system oscillates and the
position of the particle is given by:

x
�
���

(t)� x
�
sin(�

�
t��) (1.D.4)

where x
�

is the amplitude of the oscillation and � is the phase. To obtain the
quantum mechanical behaviour of the particle, the stationary states are found by
solving:

�
p̂�

2m
�

1

2
m��

�
x̂�� �	
�E�	
 (1.D.5)

The correspondence principle gives us the form of Schrödinger’s equation in the r̂
(p̂��i� (d/dx)) representation:

�
��
2m

d�

dx�
	(x)�

1

2
m��

�
x�	(x)�E	(x) (1.D.6)

Schrödinger’s equation for a stationary

one-dimensional harmonic oscillator

We need to find physically admissible solutions to this equation (i.e. square
integrable solutions). This differential equation can be solved by many diverse
means (the polynomial method, for instance), but it is much more powerful to tame
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this problem using operator algebra as first developed by P. A. M. Dirac. We begin
by introducing the dimensionless operators:

x� �	
m�

�
�
x̂

(1.D.7)

p� �
1

�m��
�

p̂

The Hamiltonian may then be written:

H� ��
�
H� (1.D.8)

where the dimensionless operatorH� is given by:

H� �
1

2
[x� �� p� �] (1.D.9)

We recall that the anticommutation relation between the position and momentum
operators is given by:

[x̂, p̂]� x̂p̂� p̂x̂� i� (1.D.10)

where for dimensionless operators:

[x� , p� ]� i (1.D.11)

We will now show that this anticommutation relation — which is nothing more
than a reformulation of the first of Heisenberg’s uncertainty relations — also leads
to energy quantization. We seek therefore to solve the system:

1

2
(x� �� p� �)�	
� ��	


(1.D.12)
[x� , p� ]� i

To do this, we need two new operators:

a �
1

�2
(x� � ip� )�

1

�2�	
m�

�
�
x̂� i

1

�m��
�

p̂�
(1.D.13)

a��
1

�2
(x� � ip� )�

1

�2�	
m�

�
�
x̂� i

1

�m��
�

p̂�
Definition of the creation and annihilation operators

The position and momentum operators are given by:

x̂�	
�

2m�
�

(a� a�)
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(1.D.14)

p̂�
l

i	
�m�

�
2

(a� a�)

For reasons which shall become apparent shortly, a will be referred to as the
annihilation operator and a� the creation operator. Let us calculate the product
a�a:

a�a�
1

2
(x� � ip� )(x� � ip� )�

1

2
[x� �� p� �� i(x� p� � p� x� )]

or

a�a�
1

2
(x� �� p� �� i[x� , p� ])

so that:

H� � a�a�
1

2
(1.D.15)

We now calculate the commutator of the annihilation and creation operators:

[a, a�]�
1

2
[x� � ip� , x� � ip� ]�

1

2
([x� ,�ip� ]� [x� ,�ip� ])�

1

2
[(�i)i� i(�i)]

so that:

[a, a�]� 1 (1.D.16)

Equation (1.D.16) is therefore an expression for the uncertainty principle in terms
of the language of annihilation and creation operators. We then introduce the
operatorN:

N� a�a (1.D.17)

N is referred to as the number operator. The Hamiltonian for the harmonic
oscillator and the number operator are related by:

H� ��
��N�

1

2� (1.D.18)

We will now show that the eigenvalues ofN are either positive integer numbers or
equal to zero. To do so, however, we will require the proof of three separate
theorems. Let ��
 be an eigenvector of N with eigenvalue � or:

N��
� ���
 (1.D.19)

Theorem 1: The eigenvalues of the N operator are either positive or null.
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Rewriting (1.D.19) as:

a�a��
� ���


we may project this equation on ��
, to yield:

���a�a��
� �����
� �

This may also be written:

���a�a��
� (a��
)�(a��
)� �(a��
)��

so that:

�� �(a��
)��

From which we deduce that � is non-negative and that:

�� 0, if and only if a��
� 0 (1.D.20)

Theorem 2: If ��
 is an eigenvector of N with eigenvalue �, then a��
 is also an
eigenvector of N with eigenvalue �� 1.
Indeed,

Na��
� (a�a)a ��


Since the anticommutation relation stipulates that aa�� a�a� 1, this last rela-
tionship may be written:

Na��
� (aa�� 1)a��
� a(a�a� 1)��
� a(N� 1)��
� (�� 1)a��


which is what we wished to show.

Theorem 3: If ��
 is an eigenvector of N with eigenvalue �, then a���
 is also an
eigenvector of N with eigenvalue �� 1.
In the same fashion then:

Na���
� (a�a)a���
� a�(aa�)��

� a�(1� a�a)��
� a�(1�N)��

� (�� 1)a���


We are now in a position to find the eigenvalues of N. Let us suppose that �, the
eigenvalue of N, is non-integer and not equal to zero, with n� Int(�), where ‘Int’
means ‘integer part of’. Then a��
 is an eigenvector of N with eigenvalue �� 1;
a���
 is an eigenvector with eigenvalue �� 2, . . .; a���
 is an eigenvector with
eigenvalue �� n� �� Int(�), which must lie between 0 and 1 (see Fig. 1.D.2). As �
is non-integer, �� nmust be different from 0, and by extension a�����
 would have
an eigenvalue of �� n� 1, which must be negative. This, however, is not possible
given theorem 1. The value of � must be such that the vector a�����
 cannot exist,
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Fig. 1.D.2. Each application of the annihilation operator a destroys a single excitation
quantum.

i.e. a���
� 0. Therefore, the eigenvalues � ofN are either positive integers or equal
to zero. As we may generate from any eigenvector �m
 any other eigenvector �n
 by
the application of m� n lowering or raising operators a or a�, N allows as
eigenvalues the total ensemble of positive integers, i.e:

N�n
� n�n
, n� 0, 1, 2, . . . (1.D.21)

From (1.D.18), we see that the energies for the stationary states of the harmonic
oscillator are quantized and given by:

E
�
��n�

1

2� ��
�

, n� 0, 1, 2, . . . (1.D.22)

Energy levels for the one-dimensional harmonic oscillator

and its stationary states are the eigenstates �n
 of the number operator. The energy
spectrum of the harmonic oscillator is then composed of a series of equidistant
levels separated in energy by ��

�
(see Fig. 1.D.1).

We now wish to uncover how the operators a and a� act. We know, from
theorem 2, that a�n
 is an eigenvector of N with an eigenvalue of n� 1. As we see
that the energy levels of the one-dimensional oscillator are non-degenerate (which
can easily be proven), this implies that a�n
 is proportional to �n� 1
. Therefore:

a�n
� c�n� 1
, n� 1, 2, . . .

But the norm of a�n
 is given by:

�(a�n
)��� (a�n
)�(a�n
)��n�a�a�n
� �n�N�n
� n

so that c�� n, from which we obtain:

a�n
��n�n� 1
, n� 1, 2, . . . (1.D.23)

In a rigorously identical fashion, we find for a�:
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a��n
��n� 1�n� 1
, n� 0, 1, . . . (1.D.24)

We are now in a better position to understand the treatment of the problem in
terms of Dirac’s operator algebra. To begin with, each individual quantized state
contains greater energy with increasing n. Equation (1.D.23) shows that the effect
of the a operator is to initiate a transition between a state with quantum number n
to n� 1. The a operator therefore removes a quantum of excitation corresponding
to ��

�
from the system. In opposing fashion, a� adds a quantum of excitation

equal to ��
�

. It is important to remember that the operators a and a� are not
Hermitian and do not possess real number eigenvalues. Equation (1.D.24) can be
used as a recurrence relation to generate all the stationary states �n
 of H:

�n
�
(a�)�

�n!
�0
 (1.D.25)

We now turn our attention to the �0
 state. This is the ground state of the system
and it possesses a lowest possible energy of:

E
�
�

1

2
��
�

(1.D.26)

In contrast to a classical oscillator, where a minimum energy state of zero (or
resting state) is allowed, the minimum energy state of a quantum harmonic
oscillator is non-zero. This astonishing observation results from the anticommuta-
tion relation (1.D.16) which constitutes a reformulation of Heisenberg’s first
uncertainty relation. We might therefore expect to be able to derive this result
directly from an application of the uncertainty principle, which states that the
uncertainties for x and p are related by:

�x�p� � (1.D.27)

In classical terms, the total energy of the ground state of the particle is given by:

E�
�p�
2m

�
1

2
m��

�
�x� (1.D.28)

Substituting (1.D.27) into (1.D.28), we obtain for energy E:

E�
��

2m�x�
�

1

2
m��

�
�x� (1.D.29)

The variation of E as a function of �x is given in Fig. 1.D.3. This curve exhibits a
minimum value at:

�x�	
�
m�

�
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Fig. 1.D.3. Variation of the reduced energy of a harmonic oscillator as a function of the
reduced position uncertainty in (1.D.29).

corresponding to minimum energy of E� ��
�

. Not too bad for a heuristic
approach!

We have yet to obtain the eigenstates for the oscillator in position representa-
tion, i.e. to find the wavefunctions for its stationary states. To do so, we shall start
with the ground state and apply the annihilation operator (1.D.20):

a�0
� 0

or

(x� � ip� )�0
� 0

Returning to the definition (1.D.7), this gives in r representation:

�	
m�

�
�
x� �

1

�m��
�

d

dx��
�

(x)� 0

or again

m�
�

�
x�
�

(x)�
d

dx
�
�

(x)� 0 (1.D.30)

The solution to this classic differential equation is easily found to be a Gaussian
given by:

�
�
(x)��

m�
�

�� �
���

e��������	���� (1.D.31)

The higher index wavefunctions are then obtained by recurrence. We can now
make predictions on the measurement of quantum observables. For instance, the
average value of the position of the particle in state �n
 is given by:

48 Complement to Chapter 1



x� � �x
� �n�x�n
�	
�
m�

�

�n�(a� a�)�n


Given that a��n
��n�n� 1
 and since �n
 and �n� 1
 are orthogonal eigenvec-
tors of N possessing different eigenvalues, the average value of x is therefore null
(not surprising given the symmetry of the system). To calculate the mean square of
the position, we rewrite the operator x� in terms of a and a�:

x��
�

2m�
�

(a�� a��� aa�� a�a)

(1.D.32)

�
�

2m�
�

(a�� a��� 1� 2a�a)

The mean value of the square of the position observable for a given state �n
 is
then:

x�� �n�x��n
�
�

2m�
�

�n�(a�� a��� 1� 2a�a)�n


Since a� and (a�)� send �n
 into states which are orthogonal to �n�, the contribu-
tion of these operators is null, leading to:

x�
�
�

�
m�

�
�n�

1

2� (1.D.33)

Therefore, the greater the energy of the quantum oscillator mode, the greater the
degree of uncertainty associated with the position of the particle.

We may well find ourselves shocked to discover that the expectation value for
the position of the particle in the individual eigenstates of the oscillator does not
oscillate in real space. We shall see that the creation of states with time-varying
expectation values that lie in step with our classical physical intuition, will require
the construction of carefully selected linear combinations (Glauber states) of these
more fundamental stationary states.

Classical example
We consider a 1 gram sphere coupled to a spring and having a natural oscillation
frequency of 1 kHz. The quantum uncertainty on the position in the ground state is
given by (1.D.33) with n� 0, giving �x� 10���m! Clearly, the quantum behav-
iour of such a system is negligible.

Quantum example: Einstein’s phonons
We now consider a periodic chain of interacting atoms forming a crystalline solid.
The potential wells which bind each of the atoms to the next have an energy
minimum at a relative distance r

�
from each atom. In proximity to this equilibrium
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position, the Hamiltonian for any pair of neighbouring atoms may be approxi-
mated as:

H�
p�
�

2m
�

1

2
U�x�

�
(1.D.34)

where x
�

and p
�

correspond to the respective distances and momenta between each
atom, andU� is the second derivative of the potential at the minimum. Each pair of
neighbouring atoms then form a harmonic oscillator possessing a resonant fre-
quency of:

�
�
�	

U�
m

(1.D.35)

We may approximate the crystalline potential by a periodic field, possessing a
typical modulation amplitude of 5 eV, every 5 Å. The potential may then be
written:

U(x)� 5 eV sin�
2�x

�
0.5 nm�

and the second derivativeU� equals 5 eV� 4��/(0.5 nm)� or 126 kg s��. For atoms
consisting of roughly 50 nucleons (i.e. having a mass of 8.35� 10���kg), the
natural oscillation frequency of the atoms is given by (1.D.35) and is equal to
�(126 kg s��/8.35� 10��� kg)/2� or 6� 10�� s��. These lattice vibrations (referred
to as longitudinal phonons or as Einstein’s phonons) are commensurate with the
infrared spectrum, possessing interaction energies of the order of 25 meV.

FURTHER READING

C. Cohen-Tannoudji, B. Diu, and F. Laloë, QuantumMechanics, Wiley, New York (1992).

1.E Transition probabilities and Rabi oscillations

We saw in Section 1.6 that in a two-level system, a sinusoidal perturbation with an
oscillation frequency of � induces transitions between the two levels with prob-
abilities being:
∑ proportional to t�, if the transition is monochromatic and resonant (i.e. if the

excitation quantum �� is equal to the energy difference between the two levels
E
�
�E

�
);

∑ proportional to t if the excitation is polychromatic, or if the final state belongs to
a continuum.
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These results are absurd to the extent that they diverge in the large t limit. This
behaviour is clearly not admissible, as a probability value cannot exceed unity. We
will show that the density matrix allows for yet another system behaviour that can
reconcile these difficulties.

We will suppose, in a first approach, that the relaxation times of the population
and the phase (T

�
and T

�
, respectively) are infinite, i.e. the systems are not subject

to random fluctuations or damping. Equation (1.100) is then written:

d

dt
����2i�

��
(�
��
��

��
)cos�t (1.E.1a)

d

dt
�
��
��i�

��
�
��
� i�

��
�� cos�t (1.E.1b)

d

dt
�
��
� i�

��
�
��
� i�

��
�� cos�t (1.E.1c)

where �� is the population difference �
��
� �

��
, and the frequency �

��
is given by:

m
��
� ��

��
(1.E.2)

Expecting a resonant oscillatory behaviour near �
��

, we introduce a detuning
frequency ��:

������
��

(1.E.3)

and the following new variables:

�
��
� �

��
e����� (1.E.4a)

�
��
� �

��
e������ (1.E.4b)

Substituting these new variables into (1.E.1) and keeping only those terms in ��
(quasi-resonance approximation):

d

dt
����i�

��
(�
��

e������
��

e�����) (1.E.5a)

d

dt
�
��
��i

�
��
2

�� e����� (1.E.5b)

d

dt
�
��
� i

�
��
2

�� e����� (1.E.5c)

The optical Bloch equations

Equations (1.E.5a) to (1.E.5c) are called the optical Bloch equations. These may be
solved by introducing the trial functions:

51 1.E Transition probabilities and Rabi oscillations



������e�� (1.E.6a)

�
��
���

��
e�����e�� (1.E.6b)

�
��
���

��
e�����e�� (1.E.6c)

Substituting (1.E.6a) to (1.E.6c), into (1.E.5a) to (1.E.5c), the system of equations
easily takes on the following matrix form:

�
� i�

��
�i�

��

i�
��

2
�� i�� 0

�i�
��

2
0 �� i����

���

��
��

��
��

���
0

0

0� (1.E.7)

In order to obtain non-trivial solutions, the determinant of Eq. (1.E.7) must be
zero. Therefore, � can only take on three possible values:

�� 0 �� i� ���i�

where � is the Rabi frequency, given by:

���(���
��

)����
��

(1.E.8)

We may therefore find the behaviour of the elements in the density matrix as a
function of time. We will return in Chapter 3, to the significance of the off-diagonal
elements, �

��
and �

��
, which provide a basis for the description of absorption

phenomena. For the time being, we will interest ourselves in the transition prob-
abilities, i.e. the diagonal elements �

��
and �

��
.

We suppose that at time t� 0, the system is in its ground state �1
, i.e.:

��
��
� 1; ��

��
� 0

(1.E.9)
��
��
���

��
� 0

The probability that the system occupies the first excited state �2
 as a function of
time is given by:

�
��

(t)�
��
��

(���
��

)����
��

sin��
1

2
�t� (1.E.10)

Figure 1.E.1 shows this probability for different ratios of ��/�
��

.
We see that this probability oscillates with a frequency of � and that the

oscillation amplitude is at a maximum and equal to 1 when ��� 0 (i.e. when the
excitation is resonant with the energy separation between the two levels). In this
case, (1.E.10) gives:

52 Complement to Chapter 1



�
��

(t)� sin��
1

2
�
��
t� (1.E.11)

For short times (�
��
t� 1), the occupation probability takes the form:

�
��

(t)�
1

4
��
��
t� (1.E.12)

which is nothing else but Eq. (1.79) obtained using time-dependent perturbation
theory. As may be seen in Fig. 1.E.1, the sine function has a reasonably parabolic
shape for short times. Consequently, the density matrix formalisms reflect this
parabolic behaviour for small t, fix the limit of applicability for time-dependent
perturbation theory, and predict an oscillatory behaviour over extended periods of
time. This long-term oscillatory nature of occupation probability has been ob-
served in atoms and is referred to as Rabi oscillations.

We now seek to describe the system evolving under the influences of relaxation
mechanisms. Equation (1.101) may then be written:

d

dt
����2i�

��
(�
��
��

��
)cos�t�

�����	�

T
�

(1.E.13a)

d

dt
�
��
��i�

��
�
��
� i�

��
�� cos�t�

�
��

T
�

(1.E.13b)

d

dt
�
��
� i�

��
�
��
� i�

��
�� cos�t�

�
��

T
�

(1.E.13c)

where �� is the population difference �
��
��

��
and ��	� is the population

difference at thermodynamic equilibrium. The approach is strictly identical to that
employed in equation (1.E.1), with the exception that the equations become
significantly more complicated. Limiting ourselves to the particular case of reson-
ance by setting ��� 0 and T

�
�T

�
/2� ���, however, will keep the expressions

more manageable. Taking as initial conditions those contained in (1.E.9), we
obtain:

�
��

(t)�

1

2
��
��

��
��
� 2���1��cos �t�

3�
2�

sin �t� e������ (1.E.14)

where this time � is given by:

��	��
��
�

1

4
�� (1.E.15)

This behaviour is represented in Fig. 1.E.2. We notice that after a transition period
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the system dampens (i.e. coherence is lost between states �1
 and �2
) and main-
tains a stationary probability of finding itself in the excited state given by:

�����
��
�

1

2
��
��

��
��
� 2��

(1.E.16)

Figure 1.E.3 shows the evolution of the populations �����
��

and �����
��

as a function of
the coupling strength �

��
. We notice that the populations tend to equilibrate to

1/2, when the coupling strength increases. This mechanism, referred to as optical

54 Complement to Chapter 1



1.0

0.8

0.6

0.4

0.2

0.0
43210

11

22

sa
t

12 /

Fig. 1.E.3. Variation of the stationary populations for the two levels as a function of the
ratio of the Rabi frequency to the damping rate.

saturation, will be interpreted later in terms of Einstein’s corpuscular theory of
light when discussing induced and simulated emission.

We appreciate therefore the versatility and power of the density matrix formal-
ism in describing the non-stationary behaviour of coherent optical transitions, as
well as in dealing with transition mechanisms in corpuscular terms.

FURTHER READING

R. Loudon, The Quantum Theory of Light, Clarendon Press, Oxford (1973).
P. Meystre and M. Sargent III, Elements of Quantum Optics, Springer-Verlag, Berlin (1989).
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2 Quantum mechanics of the photon

2.1 Introduction

The photoelectric cell, one of the first optoelectronic devices, led Albert Einstein in
1905 to quantize optical emission into what later became known as photons. It is
therefore natural to encounter the theory of energy quantization on our present
path of investigation. The goal of this chapter is to summarize the principles of the
quantization of the electromagnetic field. These concepts are necessary to explain
the spectral content of blackbody radiation, the phenomena of stimulated and
spontaneous emission, and many other elementary topics required in acquiring a
fundamental understanding of the operation of optoelectronic components.

2.2 Maxwell’s equations in reciprocal space

We know that in a vacuum, the electric field E(r, t) and the magnetic field B(r, t), are
generated by oscillating charge densities �(r, t) and current densities j(r, t) (‘There is
not a single granule of light which is not the fruit of an oscillating charge’
(Lorentz)). These fields are coupled by equations derived from various areas of
electrostatics and magnetism unified within the framework of electromagnetic
theory. These are Maxwell’s equations:

� ·E(r, t)�
1

�
�

�(r, t) (2.1a)

� ·B(r, t)� 0 (2.1b)

��E(r, t)��
�
�t

B(r, t) (2.1c)

��B(r, t)�
1

c�

�
�t

E(r, t)�
1

�
�
c�

j(r, t) (2.1d)

Maxwell’s equations

The first equation is referred to as the Gauss—Poisson law, the third as Lenz’s law,
and the fourth as the Faraday—Ampere law, to which Maxwell added a term
corresponding to the displacement current �(�

�
E)/�t. The second equation repre-
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sents the absence of a magnetic monopole. Starting from these equations we may
derive the existence of travelling plane waves of the type:

E(r, t)�E
�

(e���k�r����� c.c.) (2.2)

with wavevector k, and a radial frequency � being linked by the vacuum disper-
sion relation:

�� c�k� (2.3)

We know that Eq. (2.1a) and (2.1c) lead to the existence of vector and scalar
potentials A(r, t) and U(r, t), defined by:

B(r, t)���A(r, t) (2.4a)

E(r, t)��
�
�t

A(r, t)��U(r, t) (2.4b)

and that these potentials are not uniquely determined, but rather admit an
arbitrary choice of potential F(r, t) as in the following gauge transformation equa-
tions:

A�(r, t)�A(r, t)��F(r, t) (2.5a)

U�(r, t)�U(r, t)�
�
�t
F(r, t) (2.5b)

all of which are indiscernible by Maxwell’s equations.
Thus the electric and magnetic fields are strictly determined once the distribu-

tions of charges and electrical currents are known:

�(r, t)��
�

q
�
�(r� r

�
) (2.6a)

j(r, t)��
�

q
�
v
�
�(r� r

�
) (2.6b)

where r
�
is the position of the charge and v

�
its velocity at time t. These fields in turn

influence these distributions by means of Lorentz forces:

m
�

d

dt
v
�
� q

�
[E(r

�
, t)� v

�
�B(r

�
, t)] (2.7)

The ensemble of Eqs. (2.1a) to (2.1d) and (2.6a) to (2.7) represent the Maxwell—
Lorentz equations and afford a description of the behaviour of any optical
medium. The structure of these equations is, however, extremely complex, as they
are not spatially localized.
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In fact, the linear form of these differential Maxwell—Lorentz equations makes
them readily accessible to Fourier transformations. We will show how, when
expressed in Fourier space (also referred to as reciprocal space), these equations
become greatly simplified and local in nature. We briefly review the definition and
properties of the Fourier transformation.

2.3 Properties of the Fourier transform

Let F(r) be a square integrable vector function of r defined in three-dimensional
space. This function may also vary with time — this will be indicated whenever
necessary. In order to eliminate problems relating to the convergence of certain
integrals, we will introduce a fictitious box with volume V�L� in which the waves
will be confined. As in the method utilized in Complement 1.A, L will be allowed to
be arbitrarily large. The Fourier transform of this function is then the function
F(k) defined by:

F(k)�
1

(2�)������
�

F(r)e��k�rd�r (2.8)

As the wave amplitudes must be zero at the inner surfaces of the box, we have:

k
�	
� n

	

�
L

; k
�

� n




�
L

; k
��
� n

�

�
L

(2.9)

where n
	
, n


, and n

�
are positive integers. The variables (k

�	
, k
�


, k
��

) form the
components of a vector k

�
in reciprocal space, having therefore dimensions of

inverse length. The numerical factor appearing in front of (2.8) varies from one
author to another. We employ a scaling factor of 1/(2�)��� as it allows for more
symmetric notation between real and reciprocal space. Expression (2.8) may
evidently be applied as easily to a vector function F(r, t) as a scalar function F(r, t).
We recall now the important properties of this transformation:

Inverse Fourier transform

F
�
�F(k

�
)�

1

(2�)������
�

F(r)e��k��r d�r (2.10)

F(r)�
1

V(2�)���
�
�

F
�

e�k��r (2.11)
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Effect on differential operators

If F is scalar, �F� ik
�
F

�
(2.12)

If F is vectorial, � ·F� ik
�

· F
�

(2.13)

��F� ik
�
�F

�
(2.14)

Plancherel—Parseval identity

���
�

F(r, t)*G(r, t)d�r�
1

L�
�
�

F*
�

(t)G
�
(t) (2.15)

Properties of the Fourier transform

In Eq. (2.15), the particular case of F�G may be interpreted as a statement of
energy conservation:

���
�

�F(r, t)��d�r�
1

L�
�
�

�F
�
(t)�� (2.16)

The spatial distribution of energy is therefore redistributed in the spectral distribu-
tion.

We consequently note that differential operators have been transformed into
algebraic vector operators. This is the fundamental reason for introducing the
Fourier transform. Maxwell’s equations in reciprocal space now become:

ik
�

· E
�
�

1

�
�

�
�

(2.17a)

k
�

· B
�
� 0 (2.17b)

ik
�
�E

�
��

�
�t

B
�

(2.17c)

ik
�
�B

�
�

1

c�

�
�t

E
�
�

1

�
�
c�

j
�

(2.17d)

Maxwell’s equations in reciprocal space

where evidently �
�

and j
�

are the transforms of the charge and current densities,
respectively. Equation (2.17b) shows how, in reciprocal space, B

�
is orthogonal to

the vector k
�

(i.e. the magnetic field has only one component normal to its
wavevector k

�
). It is therefore natural to decompose the electric field in reciprocal

space into two components, a normal component E
��

:

E
��
�E

�
�

E
�

·k
�

�k
�
��

k
�

(2.18a)
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and a parallel component:

E
��
�E

�
�E

��
(2.18b)

It can be shown that the parallel component E
�

(r, t) of the electric field is the field
created instantaneously at point r by the charges. Therefore, the parallel field
created at r by the charge located at r

�
at time t is given by:

E
�

(r, t)�
q

4��
�

r� r
�

(t)

�r� r
�

(t)��
(2.19)

Expression (2.19) is in fact the usual expression for the electric field (Coulomb’s
law) without the retardation term t� �r� r

�
�/c. Everything proceeds as though

the information on the position of the charge at r
�

arrives instantaneously at every
point r of space. This, however, cannot be in conflict with relativity theory. It can
be shown that the field measured at r, which is the sum of the parallel and normal
components, is retarded by �r� r

�
�/c as predicted in theory (i.e. the normal field

introduces a term which cancels out the instantaneous contribution in (2.19)).
We are therefore actually interested in the normal component of the electric field

which is coupled to the magnetic field by:

�
�
�t

B
�
� ik

�
�E

��
(2.20a)

�
�t

E
��
� ic�k

�
�B

�
�

1

�
�

j
��

(2.20b)

with j
��

being the normal component of the electric current density. We note that
the introduction of these normal components actually save us from carrying two
additional equations. The integration of these equations leads quite easily to an
expression for the retarded potential and allows us to find the radiation field for an
oscillating dipole. We work through this development in Complement 2.A.

Finally, we introduce the Fourier transform for the vector potential in recipro-
cal space. Equation (2.4a) gives us its relationship to the magnetic field:

B
�
� ik

�
�A

�
(2.21)

or by introducing the same decomposition used in (2.18b)

B
�
� ik

�
�A

��
(2.22)

Equation (2.17c) shows E
��

and A
��

to be related by:

E
��
��

�
�t

A
��

(2.23)
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We may also show quite easily that A
��

is gauge invariant, making it at least as
physically significant a quantity as the electric and magnetic fields.

2.4 Quantization of electromagnetic waves

We now turn our attention to expressing the electromagnetic energy enclosed in a
cavity with volume V. The classical Hamiltonian for the electromagnetic field is:

H
	�
�

�
�
2 ���

�

[�E(r, t)��� �cB(r, t)��]d�r (2.24)

Classical Hamiltonian of an electromagnetic

field in real space

or by using the Plancherel—Parseval identity:

H
	�
�

�
�

2L�
�
�

[�E
�
��� �cB

�
��] (2.25)

The classical Hamiltonian may then also be broken down into parallel and normal
components:

H
	�
�H

�	�
�H

�	�
(2.26)

notably with:

H
�	�

�
�
�

2L�
�
�

[�E
��
��� �cB

��
��] (2.27)

while the parallel component does not interest us. Taking into account Eq. (2.23)
and the dispersion relation�

�
� c�k

�
�, the normal part of the classical Hamiltonian

is then:

H
�	�

�
�
�

2L�
�
�

[�E
��
�����

�
�A

��
��] (2.28)

E
��
��

�
�t

A
��

(2.29)

Classical Hamiltonian for the electromagnetic

field in reciprocal space

Equations (2.28) and (2.29) form the basis for quantization of the electromagnetic
field. We notice that (2.28) is in fact equivalent to that for the harmonic oscillator
(Complement 1.D), with the following correspondences:
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Frequency, �
�

Mass, m�
�
�

L�
(2.30)

Position, x̂� Â
��

Momentum, p̂��
�
�

L�
Ê

��

Nonetheless, we note a difference between the Hamiltonian for the harmonic
oscillator, which comprises only real observables, and the Hamiltonian for the
electromagnetic field, which may comprise imaginary terms such as e��k�r. This may
cause certain difficulties which we will not examine here. We introduce the
creation a�

�
and annihilation a

�
operators given by:

a�
�
�	

�
�

2��
�
L�

(�
�
Â

��
� iÊ

��
) (2.31a)

a
�
�	

�
�

2��
�
L�

(�
�
Â

��
� iÊ

��
) (2.31b)

Relationship between the field operators and the

creation and annihilation operators

These operators then act on the n electromagnetic modes. In analogy with the
results for the harmonic oscillator, we postulate that these operators fulfil the
anticommutation relations associated with (2.29):

[a
�
, a�
�

]� �
��

(2.32)

As shown in Complement 1.D, the Hamiltonian for the electromagnetic field then
takes the form:

H0
��
��

�

��
��a�� a��

1

2� (2.33)

Quantum Hamiltonian for the electromagnetic field

Thus, the Hamiltonian for the electromagnetic field in a cavity may be written as a
sum of independent harmonic oscillator Hamiltonians, with each oscillator then
corresponding to the classical mode of an electromagnetic wave in a cavity with
oscillation frequency �

�
. This is the fundamental finding of this chapter.

It is important to remark at this point that time does not appear explicitly in the
expression for the Hamiltonian. The Hamiltonian for the electromagnetic mode is
stationary, even if it is destined to be used to describe an oscillating field. This is a
paradox that will be resolved with the introduction of the coherent state in Section
2.5. The inverse form of (2.31a) and (2.31b) will allow us to calculate the various
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operators of the electromagnetic field as a function of creation and annihilation
operators. Nonetheless, as we have already stated, we have in the expression of a
classical Hamiltonian for the electromagnetic field, only the norms of these oper-
ators and not their phases. We may show, however, that the operators for the
electric and magnetic fields, and the vector potential, are related to the mode n
creation and annihilation operators by�:

E0
�
� i�

�

F
�
(a
�
e�k��r� a�

�
e��k��r)�

�
(2.34a)

A0
�
� i�

�

F
�

�
�

(a
�
e�k��r� a�

�
e��k��r)�

�
(2.34b)

B0
�
� i�

�

F
�

k� �
�

�
�

(a
�
e�k��r� a�

�
e��k��r)�

�
(2.34c)

Field operators as a function of the creation

and annihilation operators

where �
�

is the polarization vector of the electric field and F
�

represents the
vacuum fluctuation field given by:

F
�
�	

��
�

2�
�
L�

(2.35)

Vacuum fluctuation field

We will return to the significance of this field later on. We note that the electric
field operator may be broken down into the sum of two observables (which we can
show to correspond to positive and negative frequencies):

E
�

(r)�E���
�

(r)�E���
�

(r) (2.36)

with, for example, the positive frequency electric field being:

E���
�

(r)� i
�
�
���

�
�
F
�
a
�
e�k��r (2.37)

These last two equations will allow us to move from a classical description of an
electromagnetic wave to a quantum mechanical one.

2.5 The photon

We consider an optical cavity with only one electromagnetic mode n. The Hamil-
tonian for this mode n may then be written:

� Beware! In (2.34a) to (2.34c), the symbol r which appears in e�k�r is a real space variable and not an
operator!
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H0
��
� ��

��a�� a��
1

2� (2.38)

The ith eigenstates, or stationary states of the electromagnetic mode n of frequency
�
�
, are given by:

�i
�

�

(a�
�

)��

�i
�
!
�0
�

 (2.39)

where the state �0
�

 is the empty state of the mode n. The energy of these stationary

states is:

E
���
� ��

��i��
1

2� (2.40)

Finally, the creation and destruction operators a�
�

and a
�

allow transitions to occur
between the �i

�

 state and �i

�
� 1
 or �i

�
� 1
 states:

a
�
�i
�

��i

�
�i
�
� 1
, if i

�
� 0 (2.41a)

a
�
�0
�

� 0 (2.41b)

a�
�
�i
�

��i

�
� 1�i

�
� 1
 (2.41c)

Equations (2.41a) to (2.41c), may be interpreted in corpuscular terms. The elec-
tromagnetic mode is then considered to be formed by an ensemble of elementary
excitations, called photons, so that:

�i
�

� �there are i

�
photons of the nth electromagnetic mode in the cavity
 (2.42)

where each photon of the mode n carries an energy E
�
:

E
�
� ��

�
(2.43)

Assuming i
�

photons of the nth mode to be in the cavity, the total energy is given
by:

E
���
� i

�
��

�
�

1

2
��

�
� i

�
E
�
�

1

2
��

�
(2.44)

We note that, even if the cavity is unoccupied by photons, the energy of the nth
mode is not zero, but given by E

�����
, corresponding to the vacuum energy of the

nth mode (i.e. of the �0
�

 state):

E
�����

�
1

2
��

�
(2.45)
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This ground state energy may again be seen as resulting from the first of Heisen-
berg’s uncertainty principles (given in Complement 1.D for the harmonic oscil-
lator). The creation and annihilation operators create or destroy photons possess-
ing momenta of p

�
� �k

�
, which are eigenstates of the observable:

p̂
�
� �k

�
a�
�
a
�

(2.46)

Let us now return to the optical cavity of arbitrary volume V�L� and populated
by an arbitrarily large number of n electromagnetic modes. The Hamiltonian for
the normal electromagnetic modes in the cavity is then written as:

H0
�	�

��
�

H0
��

(2.47)

The eigenstates for this Hamiltonian then result from the concatenation of the
independent modes of each Hamiltonian (referred to as a tensor product space):

�i
�
, i
�
, . . ., i

�
, . . .
�

(a�
�

)��(a�
�

)�� . . . (a�
�

)�� . . .

�i
�

!i
�
! · · · i

�
! · · ·

�0
 (2.48)

where the state �0
 refers to the empty cavity state �0
�

, 0
�

, . . .
 being devoid of
photons. Each mode n may be populated by an arbitrary number of photons.
These particles are therefore bosons as they are not subject to exclusion principles.
The electromagnetic energy of the cavity is a sum of two terms. The first corre-
sponds to the sum of the energies of the i

�
photons, for each mode n:

E
������

��
�

i
�
��

�
(2.49)

and the second results from the vacuum energy E
���

associated with each mode:

E
���
��

�

1

2
��

�
(2.50)

Clearly, the latter term will diverge as the number of modes in the cavity is infinite.
This observation therefore places before us a physical absurdity. This problem was
solved by Feynman, Schwinger, and Tomonoga’s tremendously beautiful and
elegant renormalization theory. Unfortunately, it will not receive any further
consideration from us.

We are now in a position, using the results in Complement 1.D, to calculate the
expectation values and variances of the observables for the electric E0

�
(r), magnetic

B0
�

(r), and vector potential A0
�

(r) fields for the i
�

photon state of mode n. Equations
(1.D.32) and (1.D.33) show that:
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�i
�
�E0

�
�i
�

� i�

�

F
�
(�i

�
�â
�
�i
�

e�k��r��i

�
�â�
�
�i
�

e��k��r)�

�
(2.51a)

so that:

�i
�
�E0

�
(r)�i

�

� �i

�
�B0

�
(r)�i

�

��i

�
�A0

�
(r)�i

�

� 0 (2.51b)

In (2.51a), we left the terms e�k�r outside of the brackets when evaluating �i
�
�â
�
�i
�

 as

we recall that r is a variable here, and not an observable in this theory. Therefore, if
the number i

�
of photons in the nth mode is known exactly, the average value of the

electromagnetic field will be zero in every location in the cavity at all times. This
may seem strange given our conception of an ‘electromagnetic wave’, however, we
will see in the following paragraph that this paradox is resolved by introducing the
notion of a coherent state.

The variance of the observable of the electric field in the state �i
�

 is found by

following the same line of reasoning as that put forward in Complement 1.D:

(E0
��

)���F�
�

(â�
�

e��k��r� â��
�

e���k��r� â
�
â�
�
� â�

�
â
�
) (2.52)

or by taking into account (1.D.32) to (1.D.33):

(E0
��

)���i
�
�(E0

��
)��i

�

�F�

�
(2i

�
� 1) (2.53)

or again

(E0
��

)��
��

�
2�
�
L�

(2i
�
� 1) (2.54)

The same type of result is obtained for both the vector potential and the magnetic
field. Equation (2.54) brings with it a certain number of insights. First, even when
the cavity is devoid of all photons, the electric field has a variance different from
zero, and found to be:

(E0
��

)�
���
�F�

�
�

��
�

2�
�
L�

(2.55)

We now understand the significance of F
�
, introduced as a normalization factor in

the definitions for the creation and annihilation operators, as a vacuum fluctuation
field. Following (2.40), Eq. (2.54) may be written as:

(E0
�
)��

E
���

�
�
L�

(2.56)

which is the classical relationship between the electrical field and the energy
contained by an electromagnetic mode in a cavity.

To summarize this somewhat complex section, we might say that photons
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represent eigenstates of the Hamiltonian for an electromagnetic field in a cavity.
These eigenstates then, also present a certain number of paradoxes: (1) the average
values for the electric, magnetic, and vector potential fields are zero everywhere
inside the cavity and do not oscillate with time; (2) even with no photons inside the
cavity, there is a non-zero fluctuation in the variance of the electric field given by
Eq. (2.55). The first paradox is resolved in Section 2.6. We will have to live with the
second paradox, however, which has been confirmed by experiment (in, for in-
stance, the Lamb shift) and which offers a means of understanding the phenom-
enon of spontaneous emission.

Example
The root mean square of the electromagnetic vacuum fluctuations for ‘green light’
photons (��

�
� 2 eV) in a cavity with a volume of 1 cm� (L� 1 cm) is:

F
�
� (1.6� 10��C� 2 eV/(2� 8.85 10���Fd m��

� 10��m�))���� 0.13 V m��

Although this value is very weak in terms of field strength, its effect may be
observed, for instance, in the minute displacements produced in atomic transition
energies.

2.6 The coherent state

Glauber was the first to present a physical state that allowed reconciliation
between oscillatory and corpuscular views of photonic states. We will not discuss
Glauber’s hypothesis in detail here, even though our following explanation may
appear a little arbitrary. We consider a cavity possessing a single one-dimensional
mode, with frequency � (the generalization to three dimensions and multimodal
excitations is immediate, but rather heavy in indices). The Glauber, or coherent
state, ��
 is defined as:

��
��
�

e���������
��

�m!
�m
 (2.57)

Glauber’s coherent state

The probabilistic interpretation of quantum mechanics allows us to understand
the significance of this state in the following way: ��
 is the state in the cavity in
which there is a probability p

�
:

p
�
� e�����

�����
m!

(2.58)

of finding m photons in the cavity. We recognize in (2.58) Poisson’s law from
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probability theory. This classical law gives the probability of findingm photons in
the cavity during a random sampling, knowing that there are on average ����
photons in the cavity.

Clearly, ��
 is a normalized physical state as:

�
�

p
�
� e������

�

�����
m!

� 1 (2.59)

We seek to evaluate the evolution of such a state over time. We will assume the
cavity to be in the state given by (2.57) at time t� 0 (i.e. the state in (2.57)
corresponds to ��(0)
). Following Eq. (1.29), Glauber’s state ��(t)
 evolves into:

��(t)
��
�

e���������
��

�m!
e�������m
��

�

e���������
��

�m!
e����������m
 (2.60)

which immediately takes the form:

��(t)
� e�������
�

e�����	����������
(�e����)�
�m!

�m
 (2.61)

As every physical prediction concerning the state ��(t)
 is insensitive to the phase
e����, we see that the time evolution for the Glauber state ��(t)
 may be written as:

��(t)
� ��e����
 (2.62)

We now show a relationship that forms the basis of the quantum properties of the
Glauber state:

a��
� ���
 (2.63a)

or in its dual form:

���a�� �*��� (2.63b)

Indeed:

a��
��
�

e���������
��

�m!
a�m
��

�

e���������
��

�m!
�m�m� 1
 (2.64)

In this last sum, we change the summation index from m� 1 to n, so that:

a��
� �
���

e���������
����

�n!
�n
� � �

���

e���������
��

�n!
�n
� ���
 (2.65)

which is what we sought to demonstrate.
On the other hand, it is worth noting that a���
 does not yield anything of use.
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Equation (2.63) will easily allow us to evaluate the expectation values of the
observables. Let us first seek the average number of photonsN� in a Glauber state
��
:

N �� ���a�a��
� �*�� ���� (2.66)

Also, the average value of the square of the number of photons in this state is:

N��� ���a�aa�a��
� �������aa���

(2.67)

� �������a�a� 1��
� ����(����� 1)

so that the standard deviation �N� of the photon number is:

�N���N���N��� �����N� (2.68)

These equations are characteristic of Poisson’s distribution and could have been
obtained directly by application of probability theory. In addition, we see that the
average number and its associated standard deviation are time independent.
Lastly, the state respects the law of large numbers, whereby:

�N�
N�

�
1

�N�
(2.69)

This last equation may also be written:

S/N�
(average)�

variance
�

N��
�N��

�N� (2.70)

where S/N refers to the signal-to-noise ratio associated with the Poissonian
fluctuation in the photon number. This last relation forms the basis of detection
theory, which will be given in Chapter 11.

Figure 2.1 shows the Poisson distribution for three values of average photon
number N�. We notice that the distribution narrows as the average number of
photons is increased.

We now seek the average value of the observable E
��� for the electric field in the

Glauber state ��
. Following Eqs. (2.34a) and (2.35):

E�
�������E0

�
��
� iF���ae�k�r� a�e��k�r��
�

�
(2.71)

where F is the vacuum fluctuation field given by (2.35), so that given (2.63a) and
(2.63b):

E�
���� iF(�e�k�r� �*e��k�r)�

�
(2.72)

Similarly, the variance �E
��� of the observable for the electric field is given by:

���(E0
�

)���
��F����(a�e��k�r� a��e���k�r� a�a� a�a)��
 (2.73)
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Fig. 2.1. Probability of finding m photons in a cavity measured for three coherent states
having average numbers of 10, 50, and 100 photons.

or

�E
����F�[(�e�k�r� �*e��k�r)�� 1] (2.74)

Reintroducing relation (2.62), which describes the temporal evolution, and further
supposing, without loss of generality, that � is a real number equal to �

�
, we finally

obtain for the time dependence of the mean electric field:
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E�
���(t)� 2F�

�
sin(k · r��t)�

�
(2.75)

which corresponds to the classical electric field:

E
�
������


(t)�E
�

sin(k · r��t)�
�

(2.76)

Using (2.35) and (2.66), the amplitude of the classical electric field E
�

of an
electromagnetic wave of frequency � and the average numberN of photons in the
cavity of energy equal to �� are then related by:

E
�
�	

2��
�
�
L�
N (2.77)

Amplitude of the electric field in terms of the

average number of photons with energy ��

This last equation may also be interpreted in terms of the corpuscular model. The
average number of photonsN in the cavity is given by the ratio of the electromag-
netic energy stored in the cavity �

�
VE�

�
/2 divided by the energy carried by each

photon ��. We may also define a photon flux per unit area � either entering or
exiting the cavity per unit time in terms of optical power per unit area P:

P� ��� (2.78)

Example
The flux of incident ‘green’ photons (��� 2 eV) in a 1 mW cm�� beam
(P� 10��W cm��) is:

�� 10��W cm��/(1.6� 10��C� 2 eV)� 3� 10��photons cm�� s��

The density of incident ‘green’ photons ��� 2 eV corresponding to an electric
field strength of 1 V cm�� (E

�
� 100 V m��) is:

N/L�� 10� (V m��)�� 8.85� 10���Fd��m/(2� 1.6� 10��C� 2 V)
� 1.4� 10��m��

Therefore, even for modest optical power levels and electric field strengths, the
large number of photons involved make the corpuscular nature of these particles
difficult to observe. Nonetheless, we will soon encounter devices capable of detect-
ing single photons. Amazingly, the human eye, if given the opportunity to accom-
modate to the dark over the span of a few minutes, can detect a photon flux
consisting of a few photons per second!

2.7 Blackbody radiation

It is by investigating the spectral distribution of the light emitted by heated objects
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that Planck introduced the notion of a discrete energy quantum, and from which
Einstein further elaborated the concept of the photon. We may define a blackbody
as corresponding to a cavity in which the electromagnetic modes are in ther-
modynamic equilibrium with the walls at temperature T. In this case, all radiation
is absorbed and re-emitted within the cavity without exchange with the outside.
Without the introduction of the photon (i.e. without the postulate of minimum
energy quanta), Rayleigh and Jeans found that energy contained within such a
cavity tended towards infinity. This notable impasse in classical physics is referred
to as the ‘ultraviolet catastrophe’. We will not repeat this calculation here, but do
point out that its implications are of historical significance to the early develop-
ment of quantum mechanics.

Let us consider a cavity of volume L� and seek out the optical mode density for
each frequency � (i.e. the number of modes dN contained in an interval of
frequency d�):

dN� �
�

(�)d� (2.79)

Inside the cavity, the waves consist of linear combinations of the modes described
by (e�k�r� e��k�r). Requiring as boundary conditions that the electromagnetic fields
be null at the cavity walls forces the wavevectors k� (k

	
, k


, k
�
) to be equal to:

k
	
�

�
L
n
	
; k


�

�
L
n


; k
�
�

�
L
n
�

(2.80)

where n
	
, n



, and n

�
are positive integers. Therefore, we may associate with each

mode (k
	
, k


, k
�
) a volume element dk

	
dk



dk

�
� (�/L)� in reciprocal space (see Fig.

2.2). The number of modes contained between k and k� dk is then one-eighth (n
	
,

n


, and n

�
being positive!) of the volume of a spherical shell of volume 4�k�dk,

multiplied by two to account for the two possible polarizations of each wavevec-
tor. There are therefore:

dN�
L�k�
��

dk (2.81)

electromagnetic modes. Using the dispersion relation for radiation propagating in
vacuum,

��
c

2�
k (2.82)

we deduce a blackbody mode density �
�

per unit frequency and volume of:

�
�

(�)�
8���
c�

(2.83)

The above equation yields the density of electromagnetic (em) modes available
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Fig. 2.2. The allowed electromagnetic modes in the cavity form a grid defined by k
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�
� n

�
�/L. The number of allowed modes with frequency less than � in a

cavity of volume L� is given by the number of points contained in one-eighth of the volume of
a sphere of radius k� 2��/c.

between � and �� d�. Now, what is the probability of having this frequency range
(�, �� d�) actually filled with oscillator modes at thermal equilibrium?

The probability of finding the em oscillator in the energy state E
�

is given by the
Boltzmann law:

p
�
	 e������ (2.84)

where k is the Boltzmann constant (k� 1.38� 10��� J K�� or 8.62� 10�� eV K��)
and 	 in (2.84) is a symbol indicating proportionality. SinceE

�
� h�(n� 1/2), this

probability is then:

p
�
��(e��������)� (2.85)

where � is a proportionality constant given by the normalization condition:

�
�
���

p
�
� �

�
�
���

(e��������)�� �
1

1� e��������
� 1 (2.86a)

so that

p
�
� (1� e��������)(e��������)� (2.86b)

It is now interesting to determine the average number n� � of photons of frequency
h� in a cavity at temperature T:

n� ��
�
�
���

np
�
� (1� e��������)

�
�
���

n(e��������)��
1

e������ 1
(2.87)
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Fig. 2.3. Comparison between the Poisson and Bose—Einstein distributions for an average of
ten photons in a cavity.

Substituting Eq. (2.87) into condition (2.86b), one obtains for the Bose—Einstein
distribution:

p
�
�

1

1� n� ��
n� �

1� n� ��
�

(2.88)

A similar calculation (left as an exercise) allows one to find the variance �
�

for the
number of photons:

�
�
� n� �� n� �� (2.89)

Comparing the above expression with (2.70), obtained in the Glauber state ap-
proach, it is clear that the Bose—Einstein distribution is much larger than the
Poisson distribution. Figure 2.3 shows this distribution for ten average photons in
a cavity (n� �� 10). The fluctuation in the number of photons in a blackbody is
much greater than in a coherent state, which is not surprising. We are now ready to
find the spectral distribution of the light emitted by a blackbody at temperature T.

The average energy distributed in a mode of frequency � is given by the average
number of photons in this mode multiplied by the energy of the photons:

E ��
h�

e������ 1
(2.90)

As a result, the energy density �
�
(�) per unit frequency per unit volume in the cavity

(in units of J s m��) is given by the product of (2.83) and (2.90):
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�
�
(�)�

8�h��
c�

1

e������ 1
(2.91)

Planck’s law (blackbody spectrum)

This formula for the blackbody emission spectrum was discovered by Planck in
1900. In Complement 2.B, we will examine in more detail the peculiarities asso-
ciated with thermal radiative emission and the use of the blackbody spectra in
thermography and infrared imaging.
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Complement to Chapter 2

2.A Radiation field for an oscillating charge: the Lorentz gauge

We will now show how the Maxwell—Lorentz equations allow the calculation of
electromagnetic power radiated by an oscillating charge. This calculation is im-
portant for several reasons. First, from a historical perspective, this theory failed to
explain the stability of the hydrogen atom and provided yet another path which
led to the development of quantum mechanics. It also demonstrated an inherent
link between the motion of charged particles and light, which helped to place
Lorentz, Poincaré, and Einstein on the trail leading to relativity theory. Finally,
the dependence of radiated power as a function of emission wavelength has
technological implications wherever diffusion occurs, e.g. for optical fibres, atmos-
pheric properties, etc.

We consider a charged particle situated at the origin O and subject to a small
displacement r

�
(t) about O (see Fig. 2.A.1). We recall Maxwell’s and Lorentz’s

equations:

� ·E(r, t)�
1

�
�

�(r, t) (2.A.1a)

� ·B(r, t)� 0 (2.A.1b)

��E(r, t)��
�
�t

B(r, t) (2.A.1c)

��B(r, t)�
1

c�

�
�t

E(r, t)�
1

�
�
c�

j(r, t) (2.A.1d)

with, in the case of an oscillating charge, the charge densities and currents given by:

�(r, t)� q�[r� r
�
(t)] (2.A.2a)

j(r, t)� qr 
�
�[r� r

�
(t)] (2.A.2b)

We have seen that (2.A.1b) and (2.A.1c) allow the introduction of the vector and
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Fig. 2.A.1. Calculation of the vector potential due to a point charge.

scalar potentials A(r, t) and U(r, t) defined to within a gauge transformation by:

B(r, t)���A(r, t) (2.A.3a)

E(r, t)��
�
�t

A(r, t)��U(r, t) (2.A.3b)

Instead of going the route of the Fourier transform, which is really best suited for
plane waves, we will seek the differential equations which the scalar and vector
potentials must satisfy. To do so, we substitute (2.A.3b) into Poisson’s equation
(2.A.1a), which gives:

��U�
�
�t

(� ·A)��
�
�
�

(2.A.4)

Similarly, introducing (2.A.3a) and (2.A.3b) into the Faraday—Ampère equation
(2.A.1d), we obtain:

�� (��A)�
1

c���
��
�t�

A��
�
�t
U��

1

�
�
c�

j (2.A.5)

We now apply the classic vector identity to A and �:

a� (b� c)� (a · c)b� (a · b)c (2.A.6)

which allows (2.A.5) to be put into the form:

���A�
1

c�

��
�t�

A����A�
1

c�

�
�t
U��

1

�
�
c�

j (2.A.7)

Since the vector potential is defined to within a potential gradient, it can be shown
that we can profit from this degree of freedom to introduce a gauge (called the
Lorentz gauge) in which the vector and scalar potentials, A

�
andU

�
, are related by:

� ·A
�
�

1

c�

�
�t
U
�
� 0 (2.A.8)

Lorentz gauge
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This gauge is particularly useful for radiation problems. In fact, (2.A.7) simplifies
greatly as it directly relates the single vector potential A to the motion of the
charge that created it, becoming:

���A
�
�

1

c�

��
�t�

A
�
�

1

�
�
c�

j (2.A.9)

The solutions to this differential equation are familiar and correspond to the
retarded potential, or explicitly:

A
�

(r, t)�
1

4��
�
c��

�

j[r�, t� (�r� r��/c)]
�r� r��

d�r� (2.A.10)

We now make the following simplifying assumptions:
∑ the displacement r

�
(t) of the particle is small relative to the observation distance.

Therefore, the integration volume may be considered to be point-like relative to
the distance r used to evaluate the vector potential A(r, t).

∑ the displacement of the source is small relative to the wavelength of the emitted
light, which is a restatement of the condition that the particle’s motion be
non-relativistic.

Equation (2.A.10) then simplifies immediately to:

A
�

(r, t)�
1

4��
�
c�r�

�

j�r�, t�
r

c�d�r� (2.A.11a)

where r is the magnitude of vector r and, given the definition of the current density
due to the point source (2.A.2b), becomes:

A
�

(r, t)�
1

4��
�
c�

D! (t� r/c)

r
(2.A.11b)

Vector potential generated by a moving charge

where D(t) is the vector dipole D(t)� qr
�
(t). To determine the entire electromag-

netic field, we must calculate the scalar potential given by the Lorentz condition
(2.A.8):

�
�t
U
�
��c�� ·A

�

We must now calculate the divergence of D! (t� r/c)/r. Simply, we have:
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1
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1
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�
�y�

1

r���
y

r�

�
�z�

1

r���
z

r�
� ��

r

r�
(2.A.12)

as r�� x�� y�� z�. Similarly:

� · [D! (t� r/c)]��D1 (t� r/c)��
r

c���D1 (t� r/c)
r

rc

We are now ready to calculate the divergence of the vector potential for (2.A.11b):

�
�t
U
�
�

1

4��
�
�D! (t� r/c)

r

r�
�D1 (t� r/c)

r

r�c� (2.A.13)

The ratio of the first term in the parenthesis of (2.A.13) to the second is of the order
of r

�
/r and is therefore negligible. Equation (2.A.13) may then be easily integrated

and equals (to within a constant):

U
�
(r, t)�

r

4��
�
r�c

D! (t� r/c) (2.A.14)

From the expressions for the vector and scalar potential in the Lorentz gauge, we
are now in a position to calculate the electric and magnetic fields.

The magnetic field is given by the curl of the vector potential:

B���A
�
�

1

4��
�
c�

���
D! (t� r/c)

r �
�

1

4��
�
c����

1

r��D! (t� r/c)�
1

r
��D! (t� r/c)� (2.A.15)

�
1

4��
�
c���

r

r�
�D! (t� r/c)�

r

cr�
�D1 (t� r/c)�

where again, the first term is negligible relative to the second, thus allowing us to
write:

B(r, t)��
1

4��
�
c�r�

r�D1 (t� r/c) (2.A.16)

Magnetic field radiated by a moving charge

Calculation of the electric field proceeds in the same fashion, but requires a little
more effort:
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Fig. 2.A.2. Electromagnetic field radiated by a moving point charge.

E(r, t)��
�
�t

A(r, t)��U(r, t)

��
1

4��
�
c�

D1 (t� r/c)

r
�

1

4��
�
c
��

r · D! (t� r/c)

r� �
(2.A.17)

��
1

4��
�
c�

D1 (t� r/c)

r
�

1

4��
�
c�

r · D! (t� r/c)

r�
�

r

cr�
D1 (t� r/c) · r�

��
1

4��
�
c�

D1 (t� r/c)

r
�

r

4��
�
c

1

cr�
D1 (t� r/c) · r

which finally yields:

E(r, t)��
1

4��
�
c�

r� [r�D1 (t� r/c)]

r�
(2.A.18a)

or as written by Rayleigh:

E(r, t)��
1

4��
�
c�

D1
�

(t� r/c)

r
(2.A.18b)

Electric field radiated by a moving point charge

where D
�

is the component of the dipole vector perpendicular to the direction of
the point source (Fig. 2.A.2). We note that the strength of the radiated electric field
falls as 1/r and not as 1/r� as in the case of the static field measured from a point
charge. For this reason, radio waves have a much greater range than an electro-
static field — a result which fascinated Hertz and led to radio communication. We
will return to the implications of this later. The electric and magnetic fields are
both noted to be perpendicular to the propagation vector r and to each other.
More precisely, they are related by:
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B(r, t)�
1

c

r�E(r, t)

r
(2.A.19)

The flux of energy radiated per unit surface per unit time by the point charge is
then given by the Poynting vector S:

S(r, t)�
1

�
�

E�B�
1

�
�
rc

E� (r�E)�
1

�
�
rc

[E�r� (E · r)E] (2.A.20)

Since E and r are perpendicular, expression (2.A.20) may be written in the form:

S(r, t)�
[D1 (t� r/c)]�

4��
�
c�

u
�

4�r�
(2.A.21)

Energy per unit surface and unit time

radiated by a moving point charge

where u
�

is the unit vector in the direction of the point source. Expression (2.A.21)
contains a wealth of information. The flux of radiated energy may be imagined as
fleeing from the source at the speed of light, while preserving a constant integrated
value over the surface of a sphere (of radius r) centred on the source.

We will now apply this general result to the particular case of a charge q, moving
sinusoidally along the Oz axis. The dipole vector is given by:

D
�

(r, t)� qa cos(�t)e
�

(2.A.22)

and the Poynting vector becomes:

S(r, t)�
q�a��� cos��t sin� "

4��
�
c�

u
�

4�r�
(2.A.23)

The flux of the radiated energy averaged over several cycles is given by:

S(r)�
q�a���

32���
�
c�

sin� "
r�

(2.A.24)

The ensembles of these constant energy points (such that sin "/r remains a con-
stant) are located along circles tangent to the oscillating dipole (see Fig. 2.A.3).
Dipole emission is thus rather directional. It is a direct result of this directionality
that the field strength drops as 1/r and not as 1/r�.

The power radiated across a sphere centred on the oscillating charge is obtained
by evaluating the surface integral of (2.A.24) over such a sphere giving:

P�
q�a���

32���
�
c� �

����������

sin� "
r�

r� sin "d"d� (2.A.25)
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Fig. 2.A.3. Constant energy surfaces for a radiating dipole.

or after integration:

P�
q�a���
12��

�
c�

(2.A.26)

Total power radiated by an oscillating dipole

This expression is rich in information. It indicates, for example, that the power
emitted by an oscillating dipole is proportional to the fourth power of the fre-
quency. Therefore, blue light (�� 0.4 �m) is scattered about a factor of 6 times
more than red light (�� 0.65 �m) by particles in the atmosphere. This explains
why the sky is blue, why sunset appears red, and why blue neon signs cast a bright
halo on foggy nights. In more prosaic terms, it gives us a method of calculating the
lifetime of electrons in atomic levels.

What (2.A.26) tells us is that as electrons lose their energy by electromagnetic
radiation, their motions should eventually peter out. The origin of this effect is the
work done by the moving charged particle on the electromagnetic field that it
creates itself! To describe this we introduce in the expression for the dipole, a
friction term �

!
(equal to 1/#

!
, where #

!
is the radiative lifetime) corresponding to

the radiation loss:

mz̈�m�
!
z" �m��z� 0 (2.A.27)

We know that if #
!

 1/�, the solutions for the motion take the form z�

a cos�t e�����! and the particle’s energy decreases as Ee����!. The lifetime #
!

is then
given by:

dE

dt
�P��

E

#
!

(2.A.28)

where P is given by (2.A.26) and the energy of the particle is obtained from:

E�
1

2
mz" ��

1

2
m��z��

1

2
m��a� (2.A.29)
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We thereby obtain the radiative lifetime of an oscillating electron surrounding an
atom:

#
!
�

6��
�
c�m

q���
(2.A.30)

Radiative lifetime of an electron oscillating with frequency �

which in terms of wavelength becomes:

#
!
�

3

2�
�
�
cm��
q�

� 4.5� 10�	 ����
(2.A.31)

Radiative lifetime of an electron emitting an electromagnetic wave of wavelength �

Expression (2.A.31) allows us to understand the despair of physicists at the end of
the nineteenth century. As electrons were thought of as typically orbiting atomic
nuclei at frequencies of the order of 10��Hz, (2.A.31) indicates that they all should
screech to a halt and collapse onto the nuclei after a few nanoseconds. Quantum
mechanics, as we shall see in Chapter 3, allows us to resolve this historical
paradox. Equation (2.A.31) nonetheless holds reasonably true in predicting the
lifetimes of radiative atomic transitions in lasers. Below are two typical examples:

�� 1 �m, #� 45 ns
�� 10 nm, #� 4.5 ps

It is therefore much easier to accumulate electrons in excited states subject to
infrared transitions, than to populate transitions leading to X-ray emission. As a
result, we shall see that the implementation of infrared lasers is much less difficult
than is the case for X-ray lasers.

Example
Equation (2.A.26) is a very valuable tool for calculating the optical power emitted
by a point source, i.e. when no propagation effect is taken into account. As an
application, we shall determine the total power scattered at 2� by a non-linear
material illuminated by photons of pulsation �.

Let � be the atomic density of non-linear scattering centres (m��), d the non-
linear susceptibility (in m V��), and p� the incident light intensity (W m��). The
non-linear dipole moment qa is related to coefficient d (see Chapter 12) through:

qa�� �
�
dE��� 2Z

�
�
�
dp� (2.A.32)

The total powerP
�� radiated at 2� in all directions by the �V scattering centres

(V is the focus volume) is given by (2.A.26), i.e:

P
��� �V

(d/�)���
3��

�
c�
p�� (2.A.33)
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so that

P
��
V
�

d���
3��

�
c��

p�� (2.A.34)

For lithium niobate, d� 17 pm V��, �� 10�� cm��, and a pumping wavelength of
1.06 �m and power of 100 MW cm��, one finds a total power of 1.4 �W emitted at
532 nm in all directions of space.
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2.B Thermography

Equation (2.91) gives the explicit spectral distribution of the energy trapped inside
a blackbody at temperature T. We still need to find the incident optical power per
unit area per unit wavelength called the spectral emittance (i.e. a measurable
quantity which allows thermography or thermal imaging).

Let us consider a surface area element dS of the cavity within the blackbody (see
Fig. 2.B.1) In the solid angle d� subtended by this surface element, the optical
power dR incident upon dS in the spectral interval d� during time dt is the product
of the mode density �(�) with the volume occupied by the modes (c/2 dt)(dS
cos ")d�/2� or:

d�R�
c

2
dt�(�)d�

dS cos "d�
2�

(2.B.1)

In this last equation, the factor of two in c/2 derives from the fact that Eq. (2.91)
counts standing waves (comprising both incident and reflected waves) whereas
only those waves incident upon dS are relevant to the present tally. The factor
d�/2� presupposes that the emission is isotropic and the factor cos " takes into
account the projection of the incident flux upon the surface element dS. Recalling
that the solid angle element is given by d�� 2� sin "d", Eq. (2.B.1) may be
integrated to find:

d�R�
c

2
�(�) d�dS

���

�
�

2�
cos " sin "

2�
d"�

c

4
�(�) d� dS (2.B.2)
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Fig. 2.B.1. Thermal electromagnetic flux on a blackbody surface.

The spectral emittance for the blackbody is obtained by substituting (2.91) into
(2.B.2) to give:

dR(�, T )�
2�h
c�

��d�
e������ 1

(2.B.3)

The spectral emittance is most often represented in the wavelength rather than in
the frequency space. We thus replace � in (2.B.3) by c/� giving:

d

d�
R(�, T )�

2�hc�
��

1

e������ 1
(2.B.4)

Spectral emittance from a blackbody in Wm−1m−2

Different emittance spectra are represented in Fig. 2.B.2.
Considering the relative energy associated with a photon of wavelength � (hc/�)
and the thermal energy kT of a source, two limiting cases of physical interest are
worth distinguishing:
1. Short wavelength photons with energies greatly in excess of the source tempera-

ture hc/�
 kT.
In this case, Eq. (2.B.4) becomes:

d

d�
R(�, T ) �

2�hc�
��

e�������� (2.B.5)

which is valid for �T� 5000 �m K. This is a regime dominated by quantization
of the photon energy attested by the presence of h�/kT in the equation.

2. Long wavelength photons carrying negligible energy relative to the thermal
source energy hc/�� kT.

A first-order expansion of Eq. (2.B.4) immediately yields:

d

d�
R(�, T ) � 2�ckT��� (2.B.6)
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Fig. 2.B.2. Spectral emittance in W m���m�� for a blackbody at several different
temperatures (ambient, 300 K; ‘red hot’, 1200 K; surface of the Sun, 8000 K).

in which we notice the disappearance of Planck’s constant h from the expres-
sion for the emittance. In this regime, called the Rayleigh—Jeans regime, the
quantized aspect of the photons is masked by the thermal agitation of the
system. This expression could have been obtained directly (as done by Rayleigh
and Jeans) starting from the classical expression (2.24) for electromagnetic
energy in a cavity. We note as well, that (2.B.6) diverges as �� 0, which at the
beginning of the twentieth century was referred to as the ultraviolet catastrophe.
It is this failure of classical physics which led ultimately to the development of
the theory of quanta.
Taking the integral of (2.B.4) over all wavelength space, leads to an expression

for the total emittance of a blackbody:

R(�, T )� 2�hc�
�

�
�

1

��
1

e������ 1
d� (2.B.7)

Making use of Bernoulli’s integral,

�

�
�

u�/(e�� 1)du� ��/15, Eq. (2.B.7) immedi-

ately gives:

R(�, T )��T� (2.B.8a)
Stephan–Boltzmann law for total blackbody emittance

where � is Stephan’s constant:
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��
2��k�
15c�h�

� 5.67� 10�	W m��K�� (2.B.8b)

Example
Let us calculate the total power P emitted by a human body having a surface
S� 2 m� and a temperature of 300 K.

P�R�S� 5.67� 10�	W m��K��� (300 K)�� 0.5 kW

where this quantity gives the expected loss for an unprotected body exposed to an
ambient of 0 K — not a common occurrence!

As may be seen in Fig. 2.B.2, the emittance of a blackbody peaks at a maximum �
for a given temperature. This maximum may be obtained by differentiation of Eq.
(2.B.4) with respect to �, which gives the following implicit equation:

e������
5

5� (hc/�kT)
(2.B.9)

and admits as a solution:

�
���

�
2898

T
, in �m (2.B.10)

Wien’s law

Thus, the emissivity maximum for a body at ambient temperature is located at a
wavelength of roughly 2898/290 or 10 �m. Therefore, the imaging of objects at
room temperature may be achieved by using detectors which are sensitive to
wavelengths in the vicinity of 10 �m.

This range is also interesting by virtue of the fact that the atmosphere is
effectively transparent at these wavelengths. Figure 2.B.3 shows a graph of atmos-
pheric transparency as a function of wavelength. We notice in particular two wide
bands situated between 3 and 5 �m (band II) and 8 and 12 �m (band III) where the
atmosphere is particularly transparent.

These two detection windows each have their particular subscribers. A number
of considerations will help determine which of the two bands are best exploited in a
given context:
∑ Climatic conditions: moist air masses maintain better transparency in the range

of band II, while scattering clouds, present less of an obstacle in band III.
∑ Thermal contrast: clearly, a greater portion of radiation will be emitted by

objects at 300 K in the 8—12 �m range (12.2 mW cm�� — see the example below),
than in the 3—5 �m range (0.6 mW cm��). Nonetheless, sometimes we are inter-
ested in being able to detect a thermal source having a temperature T

#
against a

background of temperature T
$
. The thermal contrast is therefore the more
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Fig. 2.B.3. Spectral dependence of the atmospheric transmission under typical conditions
(2 km, sea level, 20 °C, 40% humidity).

physically pertinent quantity and corresponds to the normalized difference
between the power emitted by the source and the background in a spectral range
of �� or:

C(��)�

�
��

dR(�, T
#
)

d�
d�� �

��

dR(�, T
$
)

d�
d�

�
��

dR(�, T
#
)

d�
d�� �

��

dR(�, T
$
)

d�
d�

(2.B.11)

Figure 2.B.4 compares the thermal contrast in bands II and III relative to a
background of 280 K. The best contrast is seen to lie in the 3—5 �m range, an
important consideration depending on the application.

Another important concept is the differential contrast C
�

(in W cm��K��). By
definition, C

�
�T is the thermal emittance per degree K in a �� band given by:

C
�
(��)�

d

dT �
��

dR(�, T
#
)

d�
d� (2.B.12)

This last notion is extremely useful for predicting the performance of infrared
detectors. If the response of a detector with surface S is given by R (in A W��), then
the detected current I (in A) due to a variation in the source temperature �T is
given by:

I� SRC
�
(��)�T (2.B.13)
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Fig. 2.B.4. Thermal contrast in the 3—5 �m (band II) and 8—12 �m (band III) bands. We note
that although the photon count is lower in band II, the thermal contrast (or the ability in this
case to discern a target with temperature T against a background at 280 K) is twice as large.

Example
The MATHEMATICA program below allows calculation of the emissivity of a
perfect blackbody in the spectral range �

�
—�
�

as well as the differential contrast.

(* this program calculates the blackbody emission as a function of the temperature ‘‘temp’’ between two
wavelengths, lambda1 and lambda2*)

(*universal constants*)
c=2.988 10 ˆ 8 (* m/s*);
k=1.38 10 ˆ -23 (*J/K*);
h=6.625 10 ˆ -34 (*J.s*);
hb=h/(2*3.1416);
m0=0.91 10 ˆ -30 (*kg*);

(* Wavelength range in �m *)
lambda1= 8;lambda2= 12;

(* Blackbody as a function of temperature*)
temp=.; lambda=.;
emm:= 2*3.1416*h*c ˆ 2*(lambda*10 ˆ -6) ˆ -5/(Exp[h*c/((lambda*10 ˆ -6)*k*temp)]-1)
emm = emm * 10 ˆ -6 (* W/m ˆ2/�m*);
contr=D[emm,temp];(*contrast used for the calculation of NETD*)
temp=300 (*temperature of the blackbody*);
Plot[emm,�lambda,.1,20�, Frame-�True, RotateLabel-�False, FrameLabel-�
�‘‘micron’’,‘‘W/mˆ2’’� ]
Plot[contr,�lambda,.1,20�, Frame-�True, RotateLabel-�False, FrameLabel-�
�‘‘micron’’,‘‘W/mˆ2/K’’� ]

(* Blackbody power radiated over the spectral range*)
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NIntegrate[emm,�lambda,lambda1,lambda2�] (*W/m ˆ2*);
pp=% * 10 ˆ -4 (* W/cm ˆ2*)

(* differential contrast for the spectral range *)
NIntegrate[contr,�lambda,lambda1,lambda2�] (*W/m ˆ2/K*);
cc=%*10 ˆ -4 (* W/cm ˆ2/K*)

This program then gives for a source at 300 K, an emitted power density of
12.2 mW cm�� between 8 and 12 �m and 0.6 mW cm�� between 3 and 5 �m. The
detector response will therefore be much larger in band III then in band II. We also
find a differential contrast of 2.1� 10��W cm��K�� between 3 and 5 �m and of
1.98� 10��W cm��K�� between 8 and 12 �m. For a detector with a surface of
10�� cm� and a sensitivity of 1 A W�� in each of the two spectral bands, a variation
of 10 mK in the source temperature will lead to a detector current of 20 pA from
the 3—5 �m band and 200 pA from the 8—12 �m band. Values such as these are
readily measurable and are suggestive of the great usefulness of infrared detectors.
We will return to these important devices again in Chapter 11.

Lastly, it is worth pointing out that most ordinary objects are not in fact
blackbodies. They only absorb a portion �

�	
(�) called the spectral emissivity, with

the remaining amount of radiation either being reflected and/or transmitted. The
spectral emittance dR/d� is therefore related to the perfect blackbody emittance
dR
��

/d� by:

d

d�
R(�, T )� �

�	
(�)

d

d�
R
��

(�, T ) (2.B.14)

Typical emittances range from about 0.03 for polished aluminium (considered to
be a good reflector) to 0.95 for black soot (a good absorber).

FURTHER READING

G. Gaussorgues and S. Chomet, Infrared Thermography, Kluwer, Boston (1993).
R. J. Keyes, ed., Optical and Infrared Detectors, Topics In Applied Physics Vol. 19, Springer-

Verlag, Berlin (1980).
R. Loudon, The Quantum Theory of Light, Clarendon Press, Oxford (1973).
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3 Quantum mechanics of electron–photon
interaction

3.1 Introduction

We begin this chapter by describing the interaction between a quantum system
and an electromagnetic wave in a cavity. During this interaction, the electromag-
netic field may be considered to be classical, taking on arbitrary values within the
cavity or, alternately, to be quantized in the form of photons. The first case allows
us to describe the phenomena of absorption and stimulated emission in a quantum
system. The second case will afford a description of spontaneous emission from an
excited state — an occurrence which may not be easily addressed in classical terms
(see Complement 2.A). We then discuss the Einstein rate equations for a system
subject to an ensemble of these processes, which form the basis for a description of
laser operation.

3.2 Dipolar interaction Hamiltonian for electrons and photons

We will consider a particle of charge q and massm subject to a static potential V(r)
resulting from an atom, a quantum well, etc. In the classical approach, the
particle’s Hamiltonian is given by:

H�
p�

2m
�V(r) (3.1)

In the presence of a classical electromagnetic field, it is not very difficult (although
perhaps somewhat tedious) to show that the classical Hamiltonian for the particle
is:

H�
[p� qA(r, t)]�

2m
�V(r)� qU(r, t) (3.2)

where A(r, t) and U(r, t) are the vector and scalar potentials, respectively, for the
electromagnetic wave (see Section 2.2). The correspondence principle applied to a
single particle furnishes us with an expression for the quantum Hamiltonian:

H0 �
[p̂� qA(r̂, t)]�

2m
�V(r̂)� qU(r̂, t) (3.3)
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We notice in this first approach that A is not an operator itself, but a vector
function of the operator r̂. Before going any further, it is useful to decide upon
which gauge to use (refer to Section 2.2). Here we will employ the Coulomb gauge
as it leads to particularly simple expressions for the interaction Hamiltonian with
a monochromatic plane wave.

Coulomb gauge
In the Coulomb gauge, the vector potential is assumed to have a null divergence:

� ·A
���
���

(r, t)� 0 (3.4)

Referring to relation (2.13) in reciprocal space, this signifies that the vector
potential has no parallel component and is determined uniquely by its normal
component A

�
. Let us take, for example, a monochromatic electromagnetic plane

wave having an electric field given by:

E�E
�

cos(k · r��t) (3.5a)

B�
k�E

�
�

cos(k · r��t) (3.5b)

E
�

· k� 0 (3.5c)

The vector potential is given by (2.23) or:

A
�
�

E
�
�

sin(k · r��t) (3.6)

Applying (2.4b) and (2.12), we find that the scalar potential is null (U(r, t)� 0), in
which case the interaction Hamiltonian (3.3) takes the simple form:

H0 �
[p̂� qA

�
(r̂, t)]�

2m
�V(r̂) (3.7)

Hamiltonian for a single particle subjected

to an electromagnetic field

and may be expanded as:

H0 �
p̂�

2m
�V(r̂)�

q

2m
[p̂ · A

�
(r̂, t)�A

�
(r̂, t) · p̂]�

q�

2m
· A�

�
(r̂, t) (3.8)

Two important observations allow simplification of this last expression. The
second-order term in A�

�
may be neglected as it can be shown to be small in

comparison with the linear term. Second, the operators p̂ and A
�

(r̂) commute. By
evaluating the effect of the del operator �on the product A

�
(r̂, t)	(r, t) we immedi-

ately find:
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[i��,A
�

(r̂, t)]� i�� ·A
�

(r̂, t) (3.9)

and given the definition of the normal component A
�

(see relation (2.13)), this last
term is null. Finally, thanks to the use of the Coulomb gauge, the Hamiltonian for
the system takes the following simple form:

H0 �H0
�
�W0 (t) (3.10)

whereH0
�

is the Hamiltonian of the unperturbed system and W0 (t) is the perturbing
Hamiltonian:

W0 (t)��
q

m
A

�
(r̂, t) · p̂ (3.11)

A · p interaction Hamiltonian for an electron

in an electromagnetic field

This last Hamiltonian carries the name A · p. We end this paragraph by noting two
important points. The first is that, generally, the mean particle displacement
amplitude is much smaller than the wavelength of the electromagnetic excitation.
The typical quantum systems studied in this book have physical dimensions
between 0.1 and 10 nm, which are effectively very small in comparison with their
resonant optical transition wavelengths (200 nm to 10 �m). As a result, the spatial
variation of the vector potential will be neglected, so that if the system is centred at
r
�

, the perturbing Hamiltonian is then:

W0 (t)��
q

m
A

�
(r
�

, t) · p̂ (3.12)

The second point is that there is an equivalent derivation to (3.12) which is also
commonly used (called the Göppert—Mayer gauge):

W0 (t)��qr̂ ·E(r
�

, t)��D0 · E(r
�

, t) (3.13)

D0 is the dipole operator, and this Hamiltonian is referred to as the electric dipole
Hamiltonian or the D · E Hamiltonian. The equivalence between these two Hamil-
tonians is investigated in Complement 3.D.

3.3 Linear optical susceptibility obtained by the density matrix

We now interest ourselves in the interaction between a two-level quantum system
and a plane monochromatic electromagnetic wave. This two-level system is de-
scribed by a HamiltonianH

�
having stationary states �1
 and �2
 and energies E

�
and E

�
(i.e. H

�
�i
�E

�
�i
). No longer having to worry about confusing operators

with classically measurable quantities, we will (temporarily) allow ourselves to
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drop the ‘ ˆ ’ symbol to designate operators. In the stationary state basis, the
HamiltonianH

�
may be written:

H
�
��

E
�

0

0 E
�
� (3.14)

At t� 0, this system is subjected to a perturbation W(t)��er · E
�

cos�t (the
electric dipole Hamiltonian). With respect to the basis formed by �1
 and �2
, the
matrix representation for W is then:

W��E
��

0 D
��

D
��

0 � cos�t (3.15)

where the D
��

terms are elements of the dipole matrix:

D
��
� q�i�� · r̂�j
 (3.16)

from which we recall that � is the polarization vector of the wave. We have
assumed the system to be symmetric with respect to the centre and, as a result, the
elementsD

��
andD

��
are null. Also, to streamline the notation, we have supposed

the terms D
��

and D
��

to be real and therefore equal. We saw in Section 1.9 that a
system may be described by its density matrix, in which case Schrödinger’s
equation (see (1.101)) may be written:

d�
��

dt
� i

D
��
�
E
�

(�
��
� �

��
)cos�t��

�
(�
��
� �	�

��
)

d�
��

dt
��i

D
��
�
E
�
(�
��
��

��
)cos�t��

�
(�
��
��	�

��
) (3.17)

d�
��

dt
��i(�

��
� i�

�
)�
��
� i

D
��
�
E
�

(�
��
��

��
)cos�t

where �
�

(�1/T
�

) is the inelastic population relaxation rate between levels, and �
�

(�1/T
�

) is the phase relaxation rate. As described in Complement 1.E, we know
that after a transitory period lasting a few T

�
s, �

��
will oscillate as cos�t, whereas

the terms �
��

and �
��

will tend towards their respective stationary state values. It
is therefore useful to introduce the change of variables:

�
��
��

��
e����

(3.18)
�
��
��

��
e���

which, once introduced into (3.17), and after neglecting the non-resonant terms in
���

��
, leads to the coupled equations:
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d

dt
�
��
� i�(�

��
��)� i

1

T
�
����� i

D
��

2�
E
�
��

(3.19)
d

dt
���

�����	�

T
�

� i
D
��
�
E
�

(�
��
��

��
)

Once in a stationary state, the populations �
��

, �
��

and, therefore, ��� �
��
��

��
are constant, as well as the amplitudes �

��
and �

��
. Equations (3.19) then become:

�
��
�

�
��
2

1

(�
��
��)� i

1

T
�

��

(3.20)
�����	�

T
�

��2�
��

Im(�
��

)

where we recall that �
��
� qE

�
��1�r · ��2
/��E

�
D
��

/� is the Rabi frequency (see
Complement 1.E). This system may be immediately solved to yield:

���
1� (�

��
��)�T�

�
1� (�

��
��)�T�

�
���

��
T
�
T
�

��	� (3.21a)

Im�
��
�

�
��

T
�

2

1

1� (�
��
��)�T�

�
���

��
T
�
T
�

��	� (3.21b)

Re�
��
�

�
��

T�
�

2

�
��
��

1� (�
��
��)�T�

�
���

��
T
�
T
�

��	� (3.21c)

To make the bridge to macroscopic scales, we must recall on one hand that the
number of particles in the states �1
 and �2
 is given by N

�
�N�

��
and

N
�
�N�

��
, whereN is the total number of particles. On the other hand, equation

(1.92) gives us the average displacement of the particle in the two-level quantum
system:

�r̂
�Tr(�r̂)� r
��

(�
��
� �

��
) (3.22)

Given (3.16) and (3.18), the polarization of the medium in the direction of the
polarization vector � is given by:

P�N�D0 · �
�ND
��

(�
��

e�����
��

e����) (3.23a)

or again:

P� 2ND
��

(Re�
��

cos�t� Im �
��

sin�t) (3.23b)

We therefore introduce the linear optical susceptibility $(�) defined as:
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P(t)�Re[�
�
$(�)E

�
e���]� �

�
E
�

($
�	

cos�t� i$
��

sin�t) (3.24)

Optical polarization and linear susceptibility

where

$(�)� $
�	

(�)� i$
��

(�) (3.25)

In atomic physics, the quantity �
�
$(�) is the polarizability of the quantum system.

The term $
�	

, which is in phase with the wave E
�

cos�t, describes the instan-
taneous response of the medium and gives rise to the index of refraction. On the
other hand, the term $

��
is 90° behind the phase of the exciting wave and, as we

shall show in the next paragraph, describes the absorption (or the dissipation
occurring in the medium). Proceeding from a term by term identification, we may
find the three macroscopic values which describe the interaction of a two-level
system with an electromagnetic wave (i.e. the population differences, and the real
and imaginary portions of the linear optical susceptibility):

N
�
�N

�
�

1� (�
��
��)�T�

�
1� (�

��
��)�T�

�
���

��
T
�
T
�

(N	�
�
�N	�

�
) (3.26a)

$
�	
�
D�
��

T�
�

�
�
�

�
��
��

1� (�
��
��)�T�

�
���

��
T
�
T
�

(N	�
�
�N	�

�
) (3.26b)

$
��
��

D�
��

T�
�

�
�
�

1

1� (�
��
��)�T�

�
���

��
T
�
T
�

(N	�
�
�N	�

�
) (3.26c)

equations at times written more concisely as:

�N�
1� ���T�

�
1� ���T�

�
���

��
T
�
T
�

�N	� (3.27a)

$
�	
�
D�
��

T�
�

�
�
�

��
1� ���T�

�

�N (3.27b)

$
��
��

D�
��

T�
�

�
�
�

1

1� ���T�
�

�N (3.27c)

We will now describe the connection between these quantities and macroscopic
optical properties such as the absorption and the gain of a quantum system.

3.4 Linear optical susceptibility: absorption and optical gain

Matter is made of negative particles (electrons) which shield the positively charged
nucleus background. When an electromagnetic (em) field is applied to matter, the
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motion of the electrons (light) relative to the nuclei (heavy) induces an oscillating
dipole which radiates in tune with the em field. This is the atomic polarization. The
radiated field interferes with the original applied field, leading to an apparent
decrease of the speed of light. This effect can be taken into account by using a
microscopic approach based on the oscillating dipole expression (Eq. (2.A.18)).
The reader is encouraged to deepen this instructive aspect of refraction in Chapter
23 of the mythical Feynman Lectures.

However, though less illuminating, Maxwell’s equations provide a far more
powerful tool for taking into account this effect without resorting to complex
expressions. For that purpose, the displacement current due to the motion of the
bound charges is introduced in the �E/�t term of Faraday—Ampère’s equation.
This leads to Maxwell’s equations for an uncharged, non-magnetic, and polariz-
able medium:

��E(r, t)��
�
�t

B(r, t) (3.28)

��B(r, t)�
1

�
�
c�

�
�t

D(r, t) (3.29)

where D is the displacement vector given by:

D(r, t)� �
�
E�P�P

�	�
(3.30)

and P
�	�

is the polarization vector of the system near resonance. P is the polariz-
ation vector corresponding to all other off-resonant contributions (i.e. resulting
from the host material in which the two level system is contained). The term
�
�
E�P is, by definition of the dielectric constant �, replaced by �E. Similarly,

following the definition of linear optical susceptibility (3.24), (3.30) may be rewrit-
ten as:

D� ��1�
�
�
�
$(�)�E (3.31)

Maxwell’s equations (3.28) and (3.29) admit as solutions travelling waves of the
form:

E(r, t)�E
�

Re[e���k�r����] (3.32)

where this time, the wavevector k and the radial frequency � are related by:

k� �k��
n
��
�
c � 1�

�
�
�
$ �
���

(3.33)
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n
��

is the optical index of refraction equal to ��/�
�

. As the susceptibility may not be
large compared with unity:

k�
n
��
�
c �1�

1

2

�
�
�
$
��� i

�
c

$
��

2n
��

(3.34)

The real part of the latter expression seems to indicate that the speed of light is
reduced by a factor n

��
in the medium. Once again, the reader is encouraged to

deepen this aspect in the Feynman Lectures. Substituting (3.34) into (3.32), we see
that the amplitude of the electromagnetic wave dampens exponentially as a
function of distance:

E(r, t)�E
�

e�����Re[e���k��
r����] (3.35)

where k
�

is given by the real portion of (3.34) and the coefficient � is the absorption
coefficient given by:

�(�)�
�
cn

��

$
��

(3.36)

Absorption coefficient and linear susceptibility

or:

�(�)�
D�
��

cn
��
�
�
�

�T
�

1� (�
��
��)�T�

�
���

��
T
�
T
�

(N	�
�
�N	�

�
) (3.37)

Absorption coefficient for a two-level system

The electromagnetic wave loses intensity as I(z)� I
�

e��� as a function of propaga-
tion distance and over which the absorbed electromagnetic energy is converted
into heat. It is a fundamental observation to note that it is the 90° phase lag of the
$
��

term with respect to the propagating electromagnetic wave that is at the origin
of the thermal dissipation of the energy (and the irreversibility of the process). This
is a general result applicable to all linear processes.

Figure 3.1 shows the variation of the form of the normalized absorption as a
function of frequency� for different values of the product ��

��
T
�
T
�

. The numerical
constants in (3.37) have been chosen so that �(�

��
)� 1 for �

��
� 0. We notice that

the absorption decreases as the intensity of the electromagnetic wave increases and
that the peak width increases as:

��(E
�

)�
1

�T
�
	1�

D�
��
E�
�
T
�
T
�

��
(3.38)

This phenomenon is referred to as absorption saturation, and we will return to it
later in Chapter 4. For low wave intensities, N

�
�N

�
�N

�
, and Eq. (3.37) takes

on the form of a Lorentzian, which may be derived from classical theory for the
elastically bound electron:
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T
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�(�) �N
�

q��
2�
�
mcn

��

f
��
L(���

��
)� f

��
�
�
��

(�) (3.39a)

where L(�) is a Lorentzian of width 1/T
�

centred at 0:

L(�)�
1/�T

�
��� (1/T

�
)�

(3.39b)

L(�)�
��/2�

��� (��/2)�
Lorentzian lineshape

where �� is the full width at half maximum (FWHM) of the Lorentzian (��� 2/
T
�
� 2�

�
). �

�
��
is the result from Lorentz’s classical theory and f

��
is a dimension-

less physical quantity called the oscillator strength, which describes the strength of
the quantum coupling between the two levels �1
 and �2
:

f
��
�

2m

��
E
��
��1�r · ��2
�� (3.40a)

Oscillator strength for a transition from �1
� �2


In a system with several levels, we may show the Thomas—Reiche—Kuhn sum rule
(Complement 3.D):

�
���

f
��
� 1 (3.40b)

This rule stipulates that although quantum mechanics may distribute the oscil-
lator strengths among several levels, the sum of these absorptions must equal the
classically derived quantity. The absorption in a system resulting from optical
transitions between the fundamental level �1
 and an arbitrary number of levels �j
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results from a generalization of (3.39)�:

�(�) �N
�

�
�
���

q��
2�
�
mcn

��

f
��
L(���

��
) (3.41)

3.5 The rate equations

3.5.1 Adiabatic approximation and corpuscular interpretation

We may now give a corpuscular account of the absorption equations. To begin, we
shall make the adiabatic approximation which assumes that the phase relaxation
time T

�
is very short in comparison with the relaxation time for population T

�
.

This hypothesis is supported by the fact that the elastic mechanisms that dominate
T
�

are much more numerous than the inelastic processes (also included in T
�

) that
control T

�
. Consequently, we shall take for �

��
the expression obtained in (3.20),

which relates the instantaneous value of �
��

to that of ��. We introduce this
expression into the second differential equation of (3.19), by supposing that for a
few moments the lifetime of the population T

�
is very long and effectively infinite

(�
�
� 0). We may then write the variation of the population in level �1
 as:

N%
�
�R

��
N
�
�R

��
N
�

(3.42)

where the terms R
��

and R
��

are the optical transition rates (in s��) given by:

R
��
�R

��
�
D�
��
E�
�

2��
1/T

�
(�
��
��)�� (1/T

�
)�

(3.43)

We find, to within a Lorentzian, the result obtained by time-dependent perturba-
tion theory (Eq. (1.85)). Exposed to a flux of photons, electrons in a starting level
have a transition rate towards a second level given by (3.43). The equality
R
��
�R

��
is a demonstration of the principle of microreversibility. We may

rewrite (3.43) more recognizably as:

R
��
� �

��
� (3.44)

Transition rate and optical cross-section

where � is the photon flux (in photons s��m��) related to the electric field strength
E
�

by:

� In the context of this section, absorption cannot be negative. The only way for the oscillator strength ( f
��

)
to be negative is if �1
 is not the fundamental level (i.e.E

�
�E

�
), in which case Eq. (3.41) must keep track of

the populations,N
�

.
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��
1

2

n
��
c�
�
E�
�

��
(3.45)

Photon flux and electromagnetic field strength

and �
��

is the optical cross-section (expressed generally in cm�) given by:

�
��
�

D�
��
�

�
�
�cn

��

1/T
�

(�
��
��)�� (1/T

�
)�

(3.46)

Optical cross-section for a two-level system

3.5.2 Stimulated emission

Equation (3.42) may be rewritten as:

N%
�
� �

��
�N

�
��

��
�N

�
(3.47)

We may also write this last equation in terms of the number of photons. The
number of photons n in a cavity of volume V, traversed by a flux � of photons
travelling at the speed of light in that material c�� c/n

��
is then trivially:

n�
�
c/n

��

V�
�
c�

V (3.48)

and (3.42) becomes:

N%
�
��N%

�
�
c��

��
V

nN
�
�
c��

��
V

nN
�

(3.49)

Each term may be easily interpreted. The electrons leave level �1
 at a rate
proportional to the flux or the photon density, which corresponds well with our
understanding of absorption. Alternately, the electrons in level �2
 relax to level
�1
 accompanied by photon emission with a rate proportional to the photon flux —
this case corresponds to the phenomenon of stimulated emission by photons in a
cavity. We may thus conclude that the number of photons in the cavity decreases
by 1 with each absorption event, but that each of these photons is eventually
re-emitted as a clone during subsequent stimulated emission by a cavity photon.
Working from (3.49), we may also find the equation describing the variation in the
number of photons in the cavity. For each transition from level �2
 to level �1
, an
additional photon is released into the cavity. Conversely, each electron transition
from �1
 to �2
 leads to the removal of one photon from the cavity. Consequently,
dn/dt��dN

�
/dt��dN

�
/dt, or:

n" ��
c��

��
V

n(N
�
�N

�
) (3.50)
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Another expression for the variation in the number of photons in the cavity, useful
in quantum optics, is obtained starting from (3.19):

d

dt
���

�����	�

T
�

� i
D
��
�
E
�
(�
��
� �

��
) (3.51)

We note that the term in 1/T
�

is non-radiative (i.e. it neither creates nor absorbs
photons). Consequently, the difference between the variation rates of the two
populations (N

�
�N

�
) (and which lies at the origin of the disappearance of the

photons from the cavity) is due only to differences between �
��

and �
��

and may be
expressed as:

n" ��2�
��

Im(�
��

) (3.52)
Absorption and off-diagonal elements of the density matrix

Utilizing expression (3.21b) for �
��

, we effectively obtain (3.50) again.
Let us now study the behaviour of a two-level system at resonance. At reson-

ance, the optical cross-section is at a maximum and may be written in the form:

�
��
�
r�
��
n
��

(�T
�

)�
q�

�c�
�
�� 9.2� 10��(�T

�
)
r�
��
n
��

(3.53)

As �T
�

lies generally in the range 10��—10� and the displacement dipole r
��

is of
the order of Ångströms, we expect typical optical cross-sections to lie between
10��� and 10��� cm�.

Example
Calculate the typical optical cross-section at resonance for a quantum well where:

T
�
� 0.1 ps

�� 10�� s��
D
��
� q� 1 C nm

n
��
� 3

We obtain a typical value of �
��
� 3� 10��� cm�.

3.5.3 Absorption saturation

Let us return to expressions (3.26) which yield the population difference between
the two levels as a function of the Rabi frequency �

��
, which in turn relates to the

electric field strength E
�

by �
��
�E

�
D
��

/�. Recalling that the number of particles
in the system is constant, we have the following system of two equations:
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N
�
�N

�
�N

(3.54)

N
�
�N

�
�

1

1���
��

T
�
T
�

(N	�
�
�N	�

�
)

where N is the total number of electrons in the system. We therefore see that the
populations in each of the two levels tend to become equal as the photon flux
increases (�

��
��). This may be understood intuitively as follows: as the photon

flux increases, the absorption tends to populate the excited level up to the point
when the rate of stimulated emission exactly cancels out the absorption rate.

More precisely, if we consider the two levels to be sufficiently separated in
energy, so that at thermodynamic equilibrium, all the electrons are in level �1

(�N	��N), then the number of particles in level �2
 becomes:

N
�
�
N

2 �1�
1

1��/�
���
� (3.55)

where�
���

is the saturation flux for the two-level system given by the condition that

�
���
� 1/�T

�
T
�

in (3.54) and by taking into account (3.45):

�
���
�

�c�
�
n
��

2�D�
��

T
�
T
�

(3.56a)

Saturation flux of a two-level system

Once the photon flux attains this value, the absorption is reduced by a factor of 2,
and tends towards zero at sufficiently high power. Note that the inequality,
N
�
�N

�
, holds regardless of the excitation intensity level.

If this was not the case, the immediate consequence of N
�
�N

�
would be that

the system would exhibit negative absorption and, therefore, optical gain. The
condition wherebyN

�
�N

�
is referred to as population inversion and we have just

demonstrated that this condition cannot be attained in a two-level system.

Example
Starting from the saturation power level P

���
, Eq. (3.56a) allows one to determine

the lifetime of the excited state T
�

experimentally once time T
�

has been obtained
(from the width of the absorption peak) using:

P
���
�

c�
�
n
��

2(D
��

/�)�T
�
T
�

(3.56b)

For quantum wells having dipolar matrix elements r
��

of 1 nm and absorption line
widths of 10 meV (i.e. T

�
� 0.1 ps), a saturation power density of 2 MW cm�� is

obtained. Figure 3.2 shows the absorption saturation for a two-level quantum
well. The value measured for P

���
is actually much higher than that predicted here

and is a consequence of selection rules which will be dealt with later in Chapter 8.
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Fig. 3.2. Absorption saturation for a transition between two levels in a quantum well. The
saturation threshold refers to the value at which the absorption drops by a factor of 2
corresponding here to an optical power density of 50 MW cm� (after J. Y. Duboz et al., J. Appl.
Phys. 77, 6492 (1995)).

3.6 Spontaneous emission and radiative lifetime

3.6.1 Spontaneous emission

When the second level is occupied, it tends to relax under the effect of a photon
flux, as indicated by the term ��

��
c�nN

�
/V in (3.49). Therefore, if the number of

photons in the cavity is zero (i.e. if there is no light in the cavity) the rate of
stimulated emission is equally null. As a result, in the absence of inelastic collisions
(�
�
� 0), the particle should remain in the excited state indefinitely. This, however,

runs counter to experience. For instance, when atoms are excited by an electric
discharge in a rarefied atmosphere to keep atomic collisions to a minimum (as is
intentionally the case in a neon lamp) the excited atoms relax in a few micro-
seconds. How then can we reconcile this paradox between the impeccable theory
presented so far and this most mundane observation from the realm of day-to-day
experience?

The answer is that we have only done half the task. While we have allowed for
quantization of the behaviour of the particle, we have not done so for the light. To
complete our work, we must introduce in our expression for the interaction
Hamiltonian (3.12) or (3.13) the quantized form of the electric field corresponding
to the lth mode given by equation (2.34a):

W0 � iqF
�
(a
�
e�k��r� a�

�
e��k��r)�

�
· r̂ (3.57)

where a
�

and a�
�

are the creation and annihilation operators for the photons in the
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lth mode and F
�

is the field strength associated with the quantum vacuum
fluctuations for the same mode (Eq. (2.35)). The Hamiltonian W0 now acts in the
two Hilbert spaces (or more exactly on their tensor product) corresponding to that
of the photons and the charged particles, respectively. We should therefore speak
of states labelled as �i, n

�

, where i refers to the state of the charged particle (i� 1, 2

for a two-level system) and n
�

designates the number of photons in mode l (see Fig.
3.3). The generalization of this problem to an arbitrary number of modes is
straightforward, but heavy in terms of the required notation (e.g. �i, n

�
, . . ., n

�
, . . .
).

We will therefore set aside the mode indices for the time-being.
Optical transitions may occur between the states �1, n
 and �2, n�
 and vice versa.

We will interest ourselves for the present in the absorption mechanism. The initial
level is then �1, n
 and the final level is �2, n�1
 (see Fig. 3.3) as a photon is lost
during the absorption process. From (1.85b), the absorption probability is:

P
���
�

2�
�
��1, n�W�2, n� 1
���(E

 ���

�E

������

) (3.58)

where E
������


�E
�
� ��(n� 1/2) and E

 ���

�E

�
� ��((n� 1)� 1/2). The energy

conservation condition therefore corresponds to ���E
�
�E

�
, which is in accord

with the theory of Chapter 1 (Eq. (1.80)). Equation (3.58) may then be written:

P
���
�

2�
�
q�F�

�
��1, n�(a

�
e�k��r� a�

�
e��k��r)�

�
· r̂�2, n� 1
���(���E

�
�E

�
) (3.59)

As the state of the particle and that of the photon are independent of one another,
this expression may be separated as:

P
���
�

2�
�
q�F�

�
��n� 1�(a

�
e�k��r� a�

�
e��k��r)�n
����2��

�
· r̂�1
���(���E

�
�E

�
) (3.60)

Following the properties of the creation and annihilation operators ((1.D.23) and
(1.D.24)), the only non-null photon related term is:

�n� 1�a
�
�n
��n (3.61)

and the absorption probability per unit time becomes:

P
���
�

�
�

��
�
n

�
�
L�

��1�q�
�
· r�2
���(���E

�
�E

�
) (3.62)

or again, using expression (2.77) for the electric field of a coherent state:

P
���
�

�
2�
E�
�
��1�q�

�
· r̂�2
���(���E

�
�E

�
) (3.63)
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Fig. 3.3. Interaction between a two-level system and a quantized electromagnetic field in the
form of a harmonic oscillator. The figure shows different mechanisms for the following optical
transitions: (a) absorption, (b) stimulated or induced emission, and (c) spontaneous emission.

We thereby exactly recover expression (1.85b) for a classical electric field (comfort-
ing and suggestive of the overall coherence of these theories).

We now consider the cavity containing a population of n photons in the lth
mode, but this time with the particle lying initially in the �2
 state. Emission then
corresponds to a transition from the �2, n
 state, to the �1, n� 1
 state (Fig. 3.3).
The probability for this transition is:

P
���
�

2�
�
q�F�

�
��n� 1�(a

�
e�k��r� a�

�
e��k��r)�n
����1��

�
· r̂�2
���(���E

�
�E

�
) (3.64)

The only non-zero photon related term is this time:

�n� 1�a��n
��n� 1 (3.65)

and the emission probability per unit time then becomes:

P
	�
�

��
�

�
�
L�

(n� 1)��1�q�
�
· r̂�2
���(���E

�
�E

�
) (3.66)

This last expression shows that two distinct physical effects are involved in
emission:
1. An emission mechanism whereby the transition rate P

����
is proportional to the

number of photons already present in the cavity — this is the phenomenon of
stimulated emission described earlier.

2. A new emission mechanism, which is present even when the cavity is devoid of
photons — this mechanism is referred to as spontaneous emission. The sponta-

106 Quantum mechanics of electron–photon interaction



neous emission rate P�
����

in the lth mode is given by:

P�
����

�
��

�
�
�
L�

��1�q�
�
· r�2
���(���E

�
�E

�
) (3.67)

We may also interpret this term as corresponding to the emission rate stimulated
by the vacuum fluctuationsF

�
. Under the influence of the vacuum fluctuations, the

particle may relax by releasing a photon in the lth mode. Clearly, the particle may
emit this photon into any one of the possible cavity modes. The total spontaneous
emission rate is obtained by summing the rates (3.67) for each of the different
modes in the cavity with frequency �

��
:

�
����

����P�����d�k
�

(3.68)

The calculation of the integral makes use of expression (2.83) for the density of
electromagnetic cavity modes and presents no particular challenge, as we may
draw upon the integral over all space evaluated in (2.A.25). In this manner, we
obtain the spontaneous emission rate over all spatial directions for a quantum
transition with energy ��

�
in an optical medium with index of refraction n

��
:

�
����

�
q�r�
��
��n

��
3�c���

�

�
1

t
����

(3.69a)

Spontaneous emission rate and

radiative lifetime for a two-level system

where

r�
��
� �x

��
��� �y

��
��� �z

��
�� (3.69b)

We recall, however, that this expression only holds if the photons are emitted
isotropically.

Several points are worth noting:
1. If a particle is in its fundamental level �1
, the spontaneous transition rate is

null, i.e. the lifetime of an electron in its fundamental level is infinite. We thereby
resolve one of the greatest worries of theoreticians at the beginning of the
century — the reason as to why all the electrons in all the atomic orbitals in the
universe do not simply collapse onto their respective nuclei in a matter of
nanoseconds by emitting photons.

2. The �� behaviour of the spontaneous emission rate is as predicted in the
classical theory of Rayleigh. Assuming a constant dipolar element, the sponta-
neous lifetime becomes shorter as the transition energy increases. This is one of
the reasons why X-ray lasers are intrinsically more difficult to fabricate than
infrared lasers. Of course, the dipolar matrix element will also depend on the
transition energy as shown in the example below.
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3. The absence of Planck’s constant � in Eq. (3.67) shows why the classical
approach employed in Complement 2.A could be successfully applied in certain
situations.

Example: radiative lifetime in an infinite quantum well
We consider a GaAs quantum well of width a, with infinite barriers in which:

m*� 0.067m
�

n
��
� 3.3

We saw in Chapter 1 that the energy level separation ��
��

, and the dipolar
element z

��
are given by:

��
��
�E

�
�E

�
�

3

2

����
m*a�

(3.70)

z
��
�

2�

3�

a

��

We thereby obtain an expression for the radiative lifetime as a function of the
transition energy:

t
����

�
3���

2�

m*c����
�

q�n
��

1

E�
(3.71a)

The variation of the lifetime as a function of transition energy in the simple model
is presented in Fig. 3.4. For typical transition energies (lying between 50 and
250 meV), the corresponding lifetimes lie between 10 ns and 1 �s. We see that the
radiative lifetime in this case is proportional to ��� and not ��� (as indicated
above) as a result of the dependence of the dipolar matrix element r

��
on the

transition energy.
The above example illustrates the possibility of a classical approach to descri-

bing the spontaneous emission. For this, we introduce the ratio between the
classical radiation lifetime t

�
��
(given by (2.A.30)) and the quantum lifetime t

����
:

t
�
��
t
����

�
2mr�

��
�

�
(3.71b)

Now, all the quantum structures (ions, atoms, semiconductor quantum wells, . . .)
may be crudely described by a model infinite quantum well of width a with
transition energies �� and dipole r

��
given by:

���E
�
�E

�
�N

����
2m
�
a�

and
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Fig. 3.4. Radiative lifetime as a function of transition energy between two levels in a GaAs
quantum well with infinite barriers.

r
��
� �a

where N is an integer number in the 1—10 range and � a real number in the 10��
range. The ratio t

�
��
/t

����
may thus be written as:

t
�
��
t
����

� ��N��� 1

The classical expression for radiative lifetime is therefore reasonable, but fails to
describe effects such as the stability of the ground state of quantum structures,
symmetry forbidden transitions, etc.

3.6.2 The rate equations including spontaneous emission

We shall now include spontaneous emission into the rate equations in (3.49) and
(3.50). To simplify the required notation temporarily, we will suppose until other-
wise indicated that only one photon mode exists in the cavity. The spontaneous
emission and the level lifetimes T

�
are taken care of by introducing the terms in

�N
�
/t

����
,�N

�
/T
�
, and�N

�
/T
�

into the rate equations for the electrons in (3.49).
Regarding (3.50), only a fraction  of the spontaneously emitted photons will be
released into the cavity mode. Correspondingly, we add a term in N

�
/t

����
into

the rate equation of the photons in (3.50), yielding:

N%
�
�
c��

��
V

nN
�
�
c��

��
V

nN
�
�

(N
�
�N	�

�
)

T
�
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��
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nN
�
�

(N
�
�N	�

�
)

#
(3.72a)

n" ��
c��

��
V

n(N
�
�N

�
)�

N
�

t
����

Rate equations for the cavity

where # is the lifetime in �2
 and takes into account spontaneous emission:

1

#
�

1

T
�

�
1

t
����

(3.72b)

 is referred to as the spontaneous emission factor. The introduction of the terms
N	� in (3.72a) guarantees that the system returns to thermodynamic equilibrium
once the optical excitation ceases.

We have now only to relate the expression for the radiative lifetime to the
optical cross-section and absorption, as this will be of use to us in several
upcoming occasions. Supposing the spontaneous emission is isotropic
(x
��
� y

��
� z

��
), (3.46) and (3.69) lead to the following well known equations:

�
��
�

��
4n�

��
t
����

L(���
��

)�
��

8�n�
��
t
����

L(�� �
��

) (3.73)

Optical cross-section and radiative lifetime

and

�(�)�
��

8�n�
��
t
����

L(�� �
��

)(N
�
�N

�
) (3.74)

Absorption coefficient and radiative lifetime

where � is the vacuum wavelength and we recall that L is the Lorentzian function.

3.7 Polychromatic transitions and Einstein’s equations

Equation (3.63) gives the absorption probability for an electromagnetic wave in a
two-level system. This equation may be as readily obtained within the framework
of time-dependent perturbation theory, as well as that of electromagnetic field
quantization. Replacing the Dirac function by a Lorentzian brings us back to
(3.37), obtained using density matrix formalism. Another use for (3.63) is when the
transition results from an arbitrary distribution of electromagnetic energy �

�
(�).

This situation is of particular concern in solids where the optical transitions occur
between energy bands.

We therefore consider a volume V, in which a spectral energy distribution �
�
(�) is
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defined (the width of the distribution being assumed to be larger than that
resulting from isolated atomic transitions). Between � and ��d� there are
�
�
(�)Vd�/h� photons (where �

�
is in units of energy per unit frequency per unit

volume). Each photon has a probability �
��
c/Vn

��
(see (3.49)) of inducing a

transition (i.e. either by absorption or by stimulated emission). The total absorp-
tion and stimulated emission rates are then:

P
���
�P

����
�

�

�
�

�
�
(�)V
h�

c

n
��

V
�

��
(�)d� (3.75)

Using (3.73), this equation may be immediately integrated to find:

P
���
�P

����
�B

��
�
�
(�
��

) (3.76)

where the Einstein coefficient B
��

is given by:

B
��
�

��
8�hn�

��
t
����

(3.77a)

Einstein coefficient for absorption and stimulated emission

The other coefficient introduced by Einstein is the spontaneous emission rate:

A
��
�

1

t
����

(3.77b)

Einstein coefficient for spontaneous emission

the rate equations (3.49) may then be generalized to deal with polychromatic
transitions between bands of width d�:

dN%
�
��dN%

�
�A

��
dN

�
� (dN

�
�dN

�
)B
��
�
�
(�) (3.78)

Einstein rate equation

where dN
�

and dN
�

are now the differential quantities dN
�
��

�
(�)d� and

dN
�
��

�
(�)d�, and where the �

�
s correspond to the population densities per unit

transition frequency (in s cm��). Einstein did not have at his disposal the concept of
a quantized electromagnetic field from which to establish Eq. (3.78). He rather
proceeded heuristically starting from the rate equations (3.49), which allowed him
to obtain Planck’s distribution for �

�
(�) at thermal equilibrium. This line of

reasoning is investigated in more detail in Complement 3.C.

3.8 Rate equations revisited

As may be easily concluded from our work so far, the physics of electron—photon
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interaction is as rich in concepts as in definitions. It is therefore worthwhile in this
section to summarize some of the principal concepts we have introduced while
giving some indication of their inter-relatedness. All these concepts emerge from
an amalgam of the density matrix approach, time-dependent perturbation theory,
and quantization of the electromagnetic field.

We consider a cavity of volume V filled by an ensemble of two-level (�1
 and �2
)
systems with a density of N per cm�, having a transition energy of ��

��
, a dipole

momentD
��

, a non-radiative lifetime T
�

, and a linewidth of 1/�T
�

. The interaction
of this system with electromagnetic waves is described below.

3.8.1 Monochromatic single-mode waves

We will suppose that the electromagnetic wave is monochromatic (i.e. possessing
only one frequency �). The rate of change of the number of particles in levels �1

and �2
 is given by:

N%
�
��

��
�N

�
��

��
�N

�
�

(N
�
�N	�

�
)

T
� (3.79)

N%
�
���

��
�N

�
��

��
�N

�
�

(N
�
�N	�

�
)

#

where � is the photon flux in the lth mode (in cm�� s��). The lifetime # results from
inelastic non-radiative recombination (1/T

�
) and radiative recombination (1/t

����
):

1

#
�

1

T
�

�
1

t
����

(3.80)

These different transition mechanisms are represented schematically in Fig. 3.5.
The optical cross-section �

��
is given by:

�
��
�

D�
��
�

�
�
�cn

��

1/T
�

(�
��
��)�� (1/T

�
)�

(3.81a)

or again as:

�
��
�

��
4n�

��
t
����

L(���
��

)�
��

8�n�
��
t
����

L(�� �
��

) (3.81b)

where t
����

is the radiative lifetime. This lifetime is the probability per unit time of
spontaneously emitting a photon in any mode and is given by:

�
����

�
q�r�
��
��n

��
3�c���

�

�
1

t
����

(3.82)
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This gives rise to an absorption (cm��):

�(�)��
��

(�)(N
�
�N

�
) (3.83)

The rate equations may also be written in the form:
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(3.84a)
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�
)� 

N
�

t
����

where n is the number of photons in the lth cavity mode and c� is the speed of light
in the medium (c�� c/n

��
).  is the portion of spontaneously emitted photons

released into the lth mode. These coupled differential equations in N
�
, N
�

, and n,
are highly non-linear and lead to the multifaceted behaviour of laser emission
examined in the next chapter.

3.8.2 Multimode monochromatic waves

This case is a simple generalization of (3.84a) to all the l allowed modes in a cavity:
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(3.84b)
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where we have indicated that naturally the cross-sections and spontaneous
emission factors depend on mode l.

3.8.3 Polychromatic waves

If the electromagnetic wave has a spectral energy density which is much wider than
the spectral width of the interlevel transition, then the probability density for
stimulated emission or absorption is:

P
���
�P

����
�B

��
�
�
(�
��

) (3.85)

where B
��

is the Einstein coefficient:

B
��
�

��
8�hn�

��
t
����

(3.86)

The rate equation may then be written for each band d� of frequencies:

dN%
�
��dN%

�
�A

��
dN

�
� (dN

�
� dN

�
)B
��
�
�
(�) (3.87)

(see Fig. 3.6) where dN
�

and dN
�

are the infinitesimal populations involved in the
optical transitions by the modes �

�
(�)d�.
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Complement to Chapter 3

3.A Homogeneous and inhomogeneous broadening: coherence of light

We saw in several places that two approaches may be used in describing the
optical transitions in a two-level quantum system. One approach is founded upon
time-dependent perturbation theory (Section 1.6), while the other utilizes the
density matrix to keep track of the finite lifetimes (Eq. (3.43)). We will fill the gap
between the two descriptions by widening the Dirac function used in the first
approach into a Lorentzian function L(�):

Time-dependent perturbation:

P
��

(�)�
�

2��
�W
��
���(���

��
)

(3.A.1)
Density matrix:

P
��

(�)�
�

2��
�W
��
��L(���

��
)

Within the framework of the D · E perturbation Hamiltonian, �W
��
�� qE

�
r
��

. In
fact, to rewrite (3.A.1) in a more general fashion:

P
��

(�)�
�

2��
�W
��
��g(���

��
) (3.A.2a)

where g is a lineshape function describing the broadening of the transition and
which must satisfy the normalization condition:

��

�
��

g(�)d�� 1 (3.A.2b)

This broadening may have several origins, which we will explore below. These
mechanisms may be grouped into two very distinct categories — homogeneous and
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inhomogeneous broadening. In both cases, we must no longer consider a single
two-level system, but rather an ensemble of such systems.

3.A.1 Homogeneous broadening

In this case, each of the quantum systems forming the medium are identical. They
each share the same Bohr oscillator frequency and are subject to the same
broadening mechanisms. This broadening may have two origins.

1a Broadening due to finite lifetime (inelastic collisions)
A particularly elegant method to take into account the finite lifetime of the
population in each of the levels �1
 and �2
 is to consider each of the eigenenergies
E
�

(n� 1, 2) to possess imaginary parts:

E
�
� ��

�
�

i�
2#
�

(3.A.3a)

Then, the probability of finding a particle in level �n
 becomes:

�e��������� e����� (3.A.3b)

The form of the transition lineshape is proportional to the amplitude of the
Fourier transform of the wavefunction describing the state of the particle in �n
.
The form of the lineshape in this case is easily found to be:

g(�)�
��/2�

(�� �
��

)�� (��/2)�
(3.A.4)

where the full width at half maximum is:

���
1

2��
1

#
�

�
1

#
�
� (3.A.5)

1b Broadening due to elastic collisions: temporal coherence
In this case, we consider each quantum system within the ensemble to be subjected
to random jolts, which cause it to lose its phase. Therefore the electromagnetic
field due to the system m is:

E
�

(t)�E cos[�
��
t��

�
(t)] (3.A.6)

where �
�

(t) is the product of stochastic processes. Figure 3.A.1 represents such a
process. The resulting electric field from the contributions of each of these identical
systems having no particular phase relation between them is then:

E(t)��
�

E
�

(t)�E�
�

cos[�
��
t��

�
(t)] (3.A.7)
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From the theory of stochastic processes, we know that the frequency spectrum
obtained for such a process by evaluating the Fourier transform of the electric
field:

E(�)�
1

�2�

��

�
��

E(t)e����dt (3.A.8)

is of no significance. This notion must be replaced by the concept of the autocor-
relation spectrum:

G(�)�
1

2��
��

�
��

E*(t)E(t�)e��������dtdt�

(3.A.9)

�
1

2��
��

�
��

E*(t)E(t� #)e���dtd#

where we have allowed for the possibility of the electric field having a complex
component. We therefore introduce the first-order autocorrelation function of the
electric field G

�
(#) given by:
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G
�

(#)�
1

T

���

�
����

E*(t)E(t� #)dt�E*(t)E(t� #) (3.A.10a)

First-order correlation function

This formula only applies for sufficiently large values of T which enable the
statistical sum to converge. The existence of this limit (which we will not demon-
strate) is one of the major issues of the study of stochastic processes and is referred
to as the ergodic principle. This principle states that there is an equivalence
between temporal and statistical averaging. The ‘bar’ sign then signifies the
statistical average of a random process.

The autocorrelation spectrum G(�) and the autocorrelation function G
�

(#) are
related by:

G(�)�
T
2�

��

�
��

G
�

(#)e���d# (3.A.10b)

The autocorrelation spectrum therefore has a form close to that of the Fourier
transform of the autocorrelation function. To allow for the normalization of
(3.A.10b) we note that for #� 0, Eq. (3.A.10a) gives:

G
�

(0)�
1

T

���

�
����

E*(t)E(t)dt� �E(t)�� (3.A.11)

which is the average intensity. Additionally, by integrating (3.A.10b), we find:

1

T

��

�
��

G(�)d��
1

2�

��

�
��

d#G
�

(#)�
��

�
��

e���d��
(3.A.12)

�

��

�
��

d#G
�

(#)�(#)�G
�
(0)

We introduce the lineshape g(�) as the normalized version of (3.A.10b) (i.e. with no
explicit reference to averaging time T):

g(�)�
G(�)

��

�
��

G(�)d�
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which may be written, given (3.A.12) and (3.A.11):

g(�)�
1

2�

��

�
��

g
�

(#)e���d# (3.A.13a)

Lineshape and first-order coherence

where g
�

(#) is the first-order temporal coherence of light:

g
�
(#)�

����

�
����

E*(t)E(t� #)dt

����

�
����

E*(t)E(t)dt

�
G
�
(#)

G
�

(0)
(3.A.13b)

Equation (3.A.13a) is a major result of the statistical theory of light. The lineshape,
or spectral distribution of light, is the Fourier transform of the first-order coher-
ence of the electric field.� This is known as the Wiener—Kintchine theorem.

We still have to specify the process describing the jolts of the particles having an
average time between impulses of #

��


. This most common process is a Poisson

process with probability p(#)d# that an atom does not experience a collision during
a time # given by:

p(#)d#�
1

#
��



e������

d# (3.A.14)

The autocorrelation function of the field emitted by m is:

G
�

(#)�E�
�

e������e�����������
����� (3.A.15)

In this last equation, the only non-zero contribution results from atoms which
have a period between collisions longer than # for which �

�
(t� #)��

�
(t), the

other terms have a null average when evaluated in the summation overm, so that:

G
�

(#)�E�
�

e������
1

#
��



��

�
�

e������

dt�E�
�

e������������

 (3.A.16)

The lineshape function, shown in Fig. 3.A.2, is then given by the Fourier transform
(3.A.13a) of the above field’s autocorrelation function:

� There are about as many different ways of normalizing the Fourier transform as there are authors. Some
use 1/�2�, while others use 1/2� for the transformation from � to t. Others use these same factors when
transforming from t to �!
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(3.A.17)

Returning to the expression obtained using the density matrix, we see the coher-
ence between density matrix formalism and the statistical theory of light (compare
Eqs. (3.43) and (3.A.17)).

Taking into account finite lifetime broadening (3.A.5) and elastic collisions
(3.A.17), homogeneous broadening �� is then given by:

���
1

2��
1

#
�

�
1

#
�

�
2

#
��


� (3.A.18)

3.A.2 Inhomogeneous broadening

In this case, the medium results from an inhomogeneous ensemble of m distinct
systems possessing different Bohr oscillation frequencies, ��

��
. The overall

lineshape is then an average of all the individual lineshapes (see Fig. 3.A.3):

g� (�)� �
��

g
�

(�)�(�
�

)d�
�

(3.A.19)

where �(�
�

)d�
�

is the number of states in the system having a Bohr frequency
within the range �

�
�d�

�
/2 to �

�
� d�

�
/2. In atomic systems, there are many

possible causes for inhomogeneous line broadening, such as the Doppler effect. In
optoelectronic materials, inhomogeneous broadening typically results from fluc-
tuations in the growth parameters of a given sample.
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Fig. 3.A.3. Inhomogeneous line broadening due to the cumulative contributions of several
distinct and independent systems. Each of these systems is responsible for optical transitions at
different characteristic photon energies.

Example: inhomogeneous broadening of an infinite quantum well
We consider an infinite quantum well where the width is taken to vary across the
sample. Supposing the occurrence of these fluctuations to be described by a
Gaussian distribution:

�(a)�
1

�2��a�
e��������������� (3.A.20)

where �a is the standard deviation of the distribution of well widths. This distribu-
tion of well widths may be expected to lead to a similar Gaussian distribution of
associated Bohr frequencies, written as:

�(�
�

)�
1

�2����
e���������������� (3.A.21)

Equation (1.49) allows us to calculate the resulting width of the distribution of
Bohr frequencies:

��
�
��

��
2�a
a
�

(3.A.22)

Assuming a 6-nm wide quantum well and a width fluctuation of 0.5 nm, the
transition energy E

��
is 300 meV and the induced energy fluctuation is �E

��
�

300 meV/6 or 50 meV. This value is smaller in a finite quantum well, but the
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Fig. 3.A.4. Illumination of an inhomogeneous quantum system by an intense
monochromatic beam of light which saturates the absorption in the subsystem having a
transition energy equal to the photon energy of the pump beam. This opens a hole in the
absorption spectrum of the inhomogeneous system as measured by a secondary probe beam
of lesser intensity. This experiment is referred to as spectral hole burning and allows the
differentiation between inhomogeneously and homogeneously broadened systems.

fluctuations in the well width must nonetheless be kept down to the scale of a
single monolayer of atoms if the inhomogeneous broadening is not to exceed the
homogeneous line broadening (typically a value of 10 meV).

A simple way to discriminate between homogeneous and inhomogeneous
broadening in a system is to employ the technique known as spectral hole burning.
In this case, a high power monochromatic source (referred to as a pump beam) of
frequency �

�
lying within the absorption peak of the sample is mixed in with a low

power broadband, or tuneable source (the probe beam), and directed onto the
sample (see Fig. 3.A.4). If the broadening is inhomogeneous, the only element
which will be optically saturated by the pump beam will be the mth element in the
ensemble such that �

�
� ��

��
. As a result, the absorption spectrum of the probe

beam will show a discrete dip at a frequency of �
�

. If, however, the broadening is
purely homogeneous, then all the elements in the system will be saturated by the
pump beam and the entire absorption peak will drop in amplitude.

FURTHER READING

M. Born and E. Wolf, Principles of Optics, 6th Edn, Pergamon Press, New York (1980).

122 Complement to Chapter 3



R. Loudon, The Quantum Theory of Light, Clarendon Press, Oxford (1973).
A. Papoulis, Probability, Random Variables and Stochastic Processes, 4th Edn, Mc-Graw Hill,

New York (1984).

3.B Second-order time-dependent perturbations

In Chapter 1, we saw how a time-dependent Hamiltonian may induce transitions
between different states in a quantum system. In doing so, we wrote the time-
dependent Schrödinger equation in the basis formed by the eigenstates of the
system and proceeded to identify term by term, each of the elements in the
differential equation (Eq. (1.70)). We now present an alternate and more powerful
approach, which allows graphical interpretation of the time evolution of a quan-
tum system under the influence of external perturbations. This will enable us to
generalize the study of higher-order quantum transitions, such as two-photon
absorption or optical absorption by free carriers.

We begin with Schrödinger’s time-dependent equation which describes the
evolution of the state �%(t)
 of a system under the influence of a time-dependent
HamiltonianH(t):

H(t)�%(t)
� i�
d

dt
�%(t)
 (3.B.1)

As this last equation is linear, the state of a system at time t
$

is related to that of the
system at time t

�
by a linear operator u(t

$
, t
�
) defined by:

�%(t
$
)
� u(t

$
, t
�
)�%(t

�
)
 (3.B.2)

This propagation operator must then satisfy:

H(t
$
)u(t

$
, t
�
)� i�

d

dt
$

u(t
$
, t
�
) (3.B.3)

If the HamiltonianH is time independent (H(t)�H
�

), then this last equation may
be easily integrated giving:

u(t
$
, t
�
)� e���&�����$���� (3.B.4)

(in this last equation, the exponential operator e& corresponds to �H�/n!).
We introduce the basis formed by the eigenstates �m
 of H

�
as defined by

H
�
�m
�E

�
�m
. Making use of the closure relation:

I��
�

�m
�m� (3.B.5)

where I is the identity operator, the operator u may be written as:
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u(t
$
, t
�
)� Iu(t

$
, t
�
)��

�

�m
�m�e������$���� (3.B.6)

with �
�

corresponding to the Bohr frequency E
�

/�.
We now suppose that the system’s Hamiltonian H

�
is perturbed by a time-

dependent interaction V(t) such that H�H
�
�V(t). The propagation operator is

then the solution to the differential equation:

[H
�
�V(t

$
)]u(t

$
, t
�
)� i�

d

dt
$

u(t
$
, t
�
) (3.B.7)

Taking as inspiration the change of variables performed earlier in (1.67), we
introduce the operatorU given by:

u(t
$
, t
�
)� e���&�����$����U(t

$
, t
�
) (3.B.8)

This change of variables is at times referred to as the interaction picture. Substitu-
ting (3.B.8) into (3.B.7) then leads to:

i�U% (t
$
, t
�
)� e���&�����$����V(t

$
)u(t

$
, t
�
) (3.B.9)

This equation may then be formally integrated to obtain:

U(t
$
, t
�
)� I�

i

�

�$

�
��

e��&���������V(t)u(t, t
�
)dt (3.B.10)

or alternately:

u(t
$
, t
�
)� u���(t

$
, t
�
)�

i

�

�$

�
��

u���(t
$
, t)V(t)u(t, t

�
)dt (3.B.11)

Schrödinger equation for the propagation operator

where u��� is the propagation operator of the unperturbed system given by (3.B.6).
Equation (3.B.11) is of no practical use in the sense that it is little more than an
integral form of Schrödinger’s differential equation. It does, however, readily loan
itself to graphical interpretation and allows a basis for iterative calculations which
we will now describe.

Equation (3.B.11) may be interpreted as a limited expansion in perturbations of
increasing order, with u��� corresponding to the first term in the series. The
propagation operator may then be written as:

u(t
$
, t
�
)� u���(t

$
, t
�
)� u���(t

$
, t
�
)� u���(t

$
, t
�
)� · · · (3.B.12)

where:
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u���(t
$
, t
�
)� e���&�����$���� (3.B.13a)

u���(t
$
, t
�
)��

i

�

�$

�
��

u���(t
$
, t
�
)V(t

�
)u���(t

�
, t
�
)dt
�

(3.B.13b)

u���(t
$
, t
�
)���

i

��
�
�$

�
��

��

�
��

u���(t
$
, t
�
)V(t

�
)u���(t

�
, t
�

)V(t
�
)u���(t

�
, t
�
)dt
�
dt
�

(3.B.13c)

We are now in a position to interpret these equations graphically:
(a) To first order u���: the system evolves from t

�
to t

�
without interaction

(u���(t
�

, t
�
) term), interacts with the perturbation at t� t

�
(V(t

�
) term) and

continues to evolve without interaction until its final destination at t
$

(u���(t
$
, t
�

) term). Figure 3.B.1 shows a graphical representation of this evol-
ution, known as aFeynman diagram. The first-order correction to the propaga-
tion operator is then the integral of these elementary contributions over all
intermediate times t

�
. For a detailed and enlightening discussion on this topic,

we refer the reader to Richard Feynman’s masterpiece QED: The Strange
Theory of Light and Matter (1985).

Starting from expression (3.B.13b), we may calculate the first-order correc-
tion to the state of the system:

�%���(t)
� u���(t, t
�
)�%���(t

�
)


where �i
� �%���(t� 0)
 is the initial state of the system, and calculate the
transition rate between the states �i
 and � f 
. We would then return to the
earlier results of Section 1.6 (this will be left as an exercise to the reader). We
now turn our attention to the second-order expansion. The second-order
interaction plays a fundamental role when the first-order interaction yields a
null transition rate (as in the case of a forbidden transition).

(b) To second order: the integral (3.B.13c) may be read as follows. The system
evolves from t

�
to t

�
, interacts at t

�
, evolves again between t

�
and t

�
, interacts

again at t� t
�

, and continues on its course without interaction until t
$

(Fig.
3.B.2).

In (3.B.13c), we replace the expression for the unperturbed operator u��� by its
explicit definition in (3.B.6) giving:

u���(t, 0)�
1

��

����

�
����

�����

�
����

�
�

� f
� f �e����������V(t
�

)

(3.B.14)

��
�

�n
�n�e�����������V(t
�
)�
�

�m
�m�e������dt
�

dt
�

125 3.B Second-order time-dependent perturbations



u      (t  , t  )(0)   
1b

u      (t  , t  )(0)   
a1

1

Time

tb

V (t  )

at

Fig. 3.B.1. Feynman diagram for a first-order perturbation.
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Fig. 3.B.2. Feynman diagram for a second-order perturbation.

The second-order correction to the initial state �i
� �%���(t� 0)
 is therefore
�%���(t)
� u���(t, 0)�i
 or:

�%���(t)
�
1

��

����

�
����

�����

�
����

�
�

� f 
� f �e����������V(t
�

)

(3.B.15)

��
�

�n
�n�e�����������V(t
�
)e�������i
dt

�
dt
�

which after regrouping term by term may be written as:
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�%���(t)
�
1

��
�
�

� f
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(3.B.16)
����
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�����

�
����

��
�

� f �V(t
�

)�n
e�������n�V(t
�
)�i
e�������dt

�
dt
�

We recognize in this last expression, the decomposition of the state �%���(t)
 into all
of the possible final states � f
, i.e:

�%���(t)
��
�

c
�

(t)� f 
e�����

(3.B.17)

c
�

(t)�
1

��

����

�
����

�����

�
����

��
�

� f �V(t
�

)�n
e�������n�V(t
�

)�i
e�������dt
�

dt
�

It is now high time to specify the interaction V(t). We will suppose that V(t) is due
to the contribution of two oscillating sources:

V(t)�
�
�
���

V
�
e������ c.c. (3.B.18)

Substituting this expression for V(t) into (3.B.17), we notice that c
�
(t) will be the

sum of the different contributions of 2�
�

, 2�
�
, �
�
��

�
, �
�
��

�
.

We will first take interest in the sum of the frequencies �
�
��

�
(corresponding

to a two-photon transition). Expression (3.B.17) then takes the somewhat un-
wieldy form:

c
�

(t)�
1

��
�
�
�

�
�
'

�
�

C
��'��

(3.B.19)

where each element C
��'��

is obtained by integration of (3.B.17) or:

C
��'��

�
� f �V

'
�n
�n�V

�
�i


i(�
��
��

�
) �

e����������'��� 1

i(�
��
��

�
��

'
)
�

e�������'��� 1

i(�
��
��

'
) � (3.B.20)

We will assume that the one-photon transitions are non-resonant (�
��
��

�
and

�
��
��

'
), whereas the two-photon transitions are close to resonance, i.e:

E
�
�E

�
� ��

�
� ��

�
(3.B.21)

In this case, the first term in parentheses dominates the expression (3.B.20). The
final amplitude c

�
(t) takes the form:

c
�

(t)�
1

�
�
�

�
'

�
�

� f �V
'
�n
�n�V

�
�i


E
�
�E

�
�E

�
�

sin(�
��
��

�
��

'
)t/2

(�
��
��

�
��

'
)/2 � (3.B.22)
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Fig. 3.B.3. Terms intervening in the two-photon transition rate. Only the mechanism shown
in (a) is resonant with this process and contributes to two-photon absorption.

We recognize in this expression the issues discussed in Section 1.6. For long times,
the probability �c

�
(t)�� of finding the system (initially in state �i
) in the state � f


tends towards (see (1.77) and (1.78)):

�c
�
(t)���

1

�� ��
�

�
'

�
�

� f �V
'
�n
�n�V

�
�i


E
�
�E

�
�E

�
�
�

2�t�(�
��
��

�
��

'
) (3.B.23)

We find, as in the case of a first-order time-dependent perturbation, that the
second-order perturbation induces a constant transition rateG

��
given in this case

by:

G
��
�

2�
� ��

�

�
'

�
�

� f �V
'
�n
�n�V

�
�i


E
�
�E

�
�E

�
�
�
�(E

��
� ��

�
� ��

'
) (3.B.24)

Fermi’s second golden rule

This last expression is referred to as Fermi’s second golden rule. Each term
appearing in the summation of (3.B.24) is interpreted as follows: under the influ-
ence of the oscillations at �

�
, the system evolves from state �i
 to state �n
 with

probability amplitude proportional to �n�V
�
�i
. As energy is not conserved, the

transition can only occur over a time interval �t, set by Heisenberg’s second
uncertainty relation (�t� �/�E or �/(E

��
�E

�
)), and which appears as a weighting

factor in (3.B.24). Figure 3.B.3a illustrates such a two-photon absorption process.
We will now apply Fermi’s second golden rule to the problem of two-photon

(2�) absorption. We consider a two-level system (�1
 and �2
) having an
eigenenergy separation of ��

��
. This system is subjected to an electromagnetic

wave of frequency �. The perturbation Hamiltonian is then:

V(t)�
qEz

2
e���� c.c. (3.B.25)
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Noting that there is no summation over the I and J indices, the two-photon
transition rate is then given by (3.B.24) to be:

G
��
�

2�
�� ��

�

� f �V�n
�n�V�i

E
�
�E

�
� �� �

�
�(�

��
� 2�) (3.B.26)

As the intermediate state can only be �1
 or �2
, this gives:

G
��
�

2�
�� �

�2�V�2
�2�V�1

E
�
�E

�
� ��

�
�2�V�1
�1�V�1


��� �
�
�(�

��
� 2�) (3.B.27)

and as �
��

� 2�:

G
��
�

2�
�� �

(�2�V�2
� �1�V�1
)�2�V�1

�
��
�� �

�
�(�

��
� 2�) (3.B.28)

and posing:

�2�V�1
�
qEz

��
2

�2�V�2
��1�V�1
�
qE�

��
2

(3.B.29)

�2�z�2
��1�z�1
� �
��

the transition rate between the two states in the system is then:

G
��
�

�
8��

q�E�z�
��
��
��

(�
��
��)�

�(�
��
� 2�) (3.B.30)

Therefore, even if the transition �1
� �2
 is not permitted to first order, the
two-photon transition is allowed as long as the element �

��
is non-zero (i.e. as long

as the system is asymmetric). The oscillating wave with frequency � then experien-
ces a decrease in its intensity I� (��cE�/2n

��
) during propagation equal to:

�
�z
I�� 2��G

��
(N
�
�N

�
) (3.B.31)

whereN
�

andN
�

correspond to the population densities in each of their respective
levels. Substituting (3.B.30) into (3.B.31), we see that the absorption may be written
as:

�
�z
I���I�� (3.B.32)

where  is the two-photon absorption coefficient given by:
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�
�q��(N

�
�N

�
)z�
��
��
��

��c���(�
��
��)�

�(�
��
� 2�) (3.B.33)

Two-photon absorption coefficient

This theory may be generalized without difficulty to treating two-photon transi-
tions in semiconductors. In this case, (3.B.33) must be integrated over the entire
band structure following a procedure outlined in another context in Chapter 5.
Table 3.B.1 shows the two-photon absorption coefficients for different materials.
Two-photon absorption is very important as it limits the optical power density
that may readily propagate in optoelectronic semiconductor components (e.g.
lasers, modulators, . . .). Two-photon absorption may also be utilized for optical
protection from excessive laser fluxes.

Example
(a) We consider a GaAs laser having a guiding layer thickness of 1 �m and a width

of 5 �m. For an internal power of 500 mW, the power density I
�

is 10�W cm��
resulting in a two-photon absorption of I

�
(� 25 cm GW��), or a parasitic

loss of 0.25 cm��. This is not a negligible quantity and it limits the power levels
which may easily propagate in GaAs waveguides.

(b) A d� 1 mm thick slab of InSb is placed before the focal point of a lens
(resulting spot size diameter of 0.5 mm or surface area of 2� 10�� cm�). The
output power at the exit of the slab is then given by the integral of the
differential equation (3.B.32):

1

I
�

1

I
�

� d (3.B.34)

where I
�

is the entrance power. For a power of 2 MW (or power density of
1� 10W cm��), the exit power density is equal to 1/d or 1/(5�
10� cm GW��� 10�� cm), which equals 2� 10��GW cm��. This corresponds
to an attenuation factor I/I

�
of 2� 10��.

Table 3.B.1. Two-photon absorption coefficients for various semiconductor
materials. The uncertainty indicated in the values for � corresponds to the great
experimental difficulties involved in these measurements.

Material Wavelength (�m)  (cm GW��)

ZnSe 0.532 5—6
GaAs 1.064 23—26
CdTe 1.064 15—25
ZnTe 1.064 4—5
InSb 10.6 5000
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FURTHER READING

L. I. Schiff, QuantumMechanics, 2nd Edn, Mc-Graw Hill, New York (1955).
A. Yariv, Quantum Electronics, Wiley, New York (1989).

An illuminating explanation of Feynman diagrams may be found in:
R. P. Feynman, QED: The Strange Theory of Light and Matter, Princeton University

Press, NJ (1985).

3.C Einstein coefficients in two limiting cases: quasi-monochromatic and
broadband optical transitions

We will now present the treatment of induced and spontaneous emission given by
Albert Einstein in 1905. This approach is of significant historical interest, as it
demonstrates the power of well directed heuristic reasoning.

We consider a two-level system in thermodynamic equilibrium with a cavity
forming a blackbody. The energy of the electromagnetic modes in the cavity has a
spectral density distribution �

�
(�) (in J s m��). As the photons within the cavity are

in a state of thermodynamic equilibrium, their energy density is given by the
Planck distribution (2.79). We designate byG

��
d� the transition rate from level �1


to level �2
 due to electromagnetic energy contained in the frequency interval d�
and G

��
d� the inverse transition rate. The transition rate equations (1.85) indicate

that, in an interval d�, there is an available energy �
�
(�)d� which will lead to a

transition rate G
��

d� (we recall that, in G
��

, the term �W�
��
� is proportional to E�,

which is itself proportional to the electromagnetic field energy). By definition, the
Einstein coefficients B

��
and B

��
are therefore the proportionality coefficients

between the transition rates and the energy density �
�
(�);

G
��
�B

��
�
�
(�)

(3.C.1)
G
��
�B

��
�
�
(�)

Actually, Eq. (3.C.1) is incomplete. We must add the term which figures in the
spontaneous emission:

G
��
�B

��
�
�
(�)

(3.C.2)
G
��
�B

��
�
�
(�)�A

��

At thermodynamic equilibrium, the occupation densities in the two levels remain
constant, the transitions from �1
� �2
 must equal those from �2
� �1
 or:

N
�
B
��
�
�
(�)�N

�
(B
��
�
�
(�)�A

��
) (3.C.3)

As already noted, the energy density for the modes in the cavity at thermodynamic
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equilibrium �
�
(�) is given by Planck’s law (2.91), so that the above equation yields:

N
�
B
��

8�n�
��
h��

c�

1

e������1
�N

��B��
8�n�

��
h��

c�

1

e������1
�A

��� (3.C.4)

(where we have introduced the index of refraction n
��

to take into account the
optical dispersion occurring in the cavity medium). Now, at thermodynamic
equilibrium, the ratio of the populations distributed in each of the levels is given
by:

N
�

N
�

�
g
�
g
�

e������ (3.C.5a)

where we have temporarily introduced the possibility that the degree of degener-
acy in the two levels g

�
and g

�
may be different from 1. Substituting (3.C.5a) into

(3.C.4), we obtain the self-consistent condition:

8�n�
��
h��

c�(e������ 1)
�

A
��

(g
�

/g
�
)

B
��

e������B
��

(g
�
/g
�

)
(3.C.5b)

This equation must be obeyed at any given temperature. This is only possible if the
two following relationships hold:

B
��
B
��

�
g
�
g
� (3.C.6)

A
��
B
��

�
8�n�

��
h��

c�

From which we recover Eq. (3.77) obtained within the framework of electromag-
netic field quantization, as well as the expression for spontaneous emission.
Einstein’s unique insight (or genius) allowed him to derive the relationship be-
tween the A and B coefficients by using the conditions imposed by the particular
case of thermodynamic equilibrium of a blackbody while realizing the universal
applicability of these findings outside this state of equilibrium (and constituting a
characteristic of the quantum system itself ). The transition rates (3.C.2) are then
given by:

G
��
�

c�

8�n�
��
h��t

����

�
�
(�) (3.C.7)

Transition rate (per second) between two levels due to an electromagnetic

wave having a large spectral distribution �e(�)

where �
�
(�) is the spectral energy distribution of the incident electromagnetic wave.

The above approach deals with an entirely monochromatic transition, i.e. a
single frequency transition induced by an electromagnetic wave with a broad
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spectral distribution. We may wonder whether this approach would allow us
nonetheless to obtain the results given by (3.73) or (3.74), which describe the
absorption and the optical cross-section due to transitions induced by a quasi-
monochromatic wave between levels and having a Lorentzian lineshape L(�). To
do so, we need only employ the same argument which allowed us to pass from
(3.75) to (3.76), i.e. by introducing the spectral dependence of the transition rate
G�
��

:

G�
��
�

c���
8�n�

��
h��t

����

L(�) (3.C.8)

Spectral dependence of the transition rate (dimensionless!) between two levels due

to a quasi-monochromatic electromagnetic wave having an energy density of ��. The
transition is broadened by the Lorentzian functionL(�)

where �� (joules per cubic metre) is the energy density of the photons at frequency �
given by I�� c��/n�� (watts per square metre). Equation (3.C.7) is obtained by
integrating (3.C.8) over the broadened spectrum, i.e.:

G
��
�

��

�
��

G�
��

(�)d� (3.C.9)

Thus (3.C.7) and (3.C.8) represent both extreme situations which may arise in the
application of the rate equations.

3.D Equivalence of the A · p and D · E Hamiltonians and the
Thomas–Reiche–Kuhn sum rule

A certain number of general conclusions on the different quantities intervening in
the optical properties (oscillator strengths, . . .) may be drawn from the commuta-
tion properties of the p and r observables. In this section, p and r will refer strictly
to operators and as such we will allow ourselves to drop the hat ‘ ˆ ’ used otherwise
to differentiate them from their use as variables. We will begin by showing the
equivalence of the A · p and D·E Hamiltonians.

We recall that two types of Hamiltonians may be used to describe the interac-
tion between a quantum system (described by its HamiltonianH

�
� p�/2m�V(r))

and an electromagnetic wave (see (3.12) and (3.13)):

Hamiltonian A · p W
(�

(t)��
q

m
A

�
(r
�
, t)p

(3.D.1)
Hamiltonian D · E W

)�
(t)��qE(r

�
, t)r
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For a plane wave, the vector potential and the electric field are given by (3.5a) and
(3.6):

E(r
�
, t)�E

�
cos (k · r

�
��t)

(3.D.2)

A
�

(r
�

, t)�
E
�
�

sin(k · r
�
��t)

We recall that r
�

designates the position of the quantum system and may be taken
to be the origin. To lighten the required notation, we may suppose that A

�
and E

are oriented along the Oz axis. Equations (3.D.1) may then be written:

W
(�

(t)�W
(�

cos�t��
q

m

E
�
�
p
�

cos�t

(3.D.3)
W
)�

(t)�W
)�

sin�t��qE
�
z sin�t

We saw that the transition rates which enter into the absorption formulas use
elements of type � f �z�i
 or � f �p

�
�i
. We will therefore seek the relationship between

these two terms. To do so, we will make use of the commutator of z and H
�

:

[z,H
�
]��z,

p�
�

2m��
1

2m
(zp�

�
� p�

�
z)

�
1

m
(zp�

�
� p

�
zp
�
� p

�
zp
�
� p�

�
z)

(3.D.4)

�
1

2m
([z, p

�
]p
�
� p

�
[z, p

�
])

�
i�p

�
m

Projected onto states �i
 and � f 
, Eq. (3.D.4) becomes:

i�
m
� f �p

�
�i
� � f �[z,H

�
]�i
� (E

�
�E

�
)� f �z�i
 (3.D.5)

from which the relationship between the two matrix elements is found to be:

� f �p
�
�i
� im�

��
� f �z�i
 (3.D.6)

Relationship between the matrix elements z and pz

Substituting (3.D.6) into (3.D.3), gives:

� f �W
(�
�i
��

q

m

E
�
�

� f �p
�
�i
��i

�
��
�

� f �W
)�
�i
 (3.D.7)
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which establishes the equivalence between the two Hamiltonians only at reson-
ance. The oscillator strength within the A · p approach is written:

f
��
�

2

m��
��

��1�p · ��2
�� (3.D.8)

Oscillator strength for a transition 1� 2

using the A · p Hamiltonian

The preferential use of matrix elements taken from either the D · E (3.40) or A · p
(3.D.8) Hamiltonians depends above all on the context. We may say in general,
that the A · p Hamiltonian is best used for transitions involving delocalized states
(i.e. momentum eigenstates), as encountered in the description of absorption
between bands in semiconductors. The D · E Hamiltonian, however, is better
suited to describing transitions between localized states (deep defect states, quan-
tum wells, etc.).

We will show yet another consequence of these commutation rules. We will
calculate the sum of the oscillator strengths for the transitions between �i
 and all
possible final states � f 
:

�
���

f
��
�

2m

�� ��
���

E
�
�� f �z�i
��� �

���

E
�
�� f �z�i
��� (3.D.9)

This last equation may be simplified in a very significant manner. On one hand:

�
�

E
�
�� f �z�i
����

�

E
�
�i�z� f 
� f �z�i


(3.D.10)

� �i�z��
�

E
�
� f 
� f �� z�i


We will suppose that the basis of eigenvectors � f 
 is complete, which is to say that
any state in the system �n
 may be decomposed in unique fashion onto this basis.
We then have:

H
�
��

�

E
�
� f
� f � (3.D.11)

Expression for a Hamiltonian in terms

of its eigenenergies and eigenstates

This last equation may be explained by noting that if (3.D.11) holds for all
eigenstates � f 
, it must also hold for any arbitrary state �n
. We then have:

�
�

E
�
�� f �z�i
��� �i�zH

�
z�i
 (3.D.12)

The second right-hand term of (3.D.9) reads:
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�
�

E
�
�� f �z�i
���E

�
�
�

�i�z� f
� f �z�i


(3.D.13)

�E
��i � z��

�

� f
� f �� z � i�
The following closure relation may be easily shown to yield:

�
�

� f 
� f �� 1 (3.D.14)

Closure relation for a complete basis of

eigenvectors of an observable

where 1 is the identity operator. We therefore have:

�
�

E
�
�� f �z�i
���E

�
�i�z��i
� �i�H

�
z��i
 (3.D.15)

Using (3.D.12) and (3.D.15), Eq. (3.D.9) then becomes:

�
���

f
��
�

2m

��
�i�zH

�
z�H

�
z��i
 (3.D.16)

Now, from (3.D.4) one may write:

[[z,H
�

], z]�
i�
m

[p
�
, z]�

��
m

(3.D.17)

but also:

�i�[[z,H
�

], z]�i
��i�(2zH
�
z�H

�
z�� z�H

�
)�i


(3.D.18)
� 2�i�zH

�
z�H

�
z��i


as �i�H
�
z��i
 and �i�z�H

�
�i
 are both equal to E

�
�i�z��i
. Substituting (3.D.17) and

(3.D.18) into (3.D.16), we obtain:

�
���

f
��
� 1 (3.D.19)

Thomas–Reiche–Kuhn sum rule

Coupled to the formula for the absorption of a multi-level system (3.41):

�(�) �N
�

�
�
���

q��
2�
�
mcn

f
��
L(���

��
) (3.D.20)

the sum rule in (3.D.19) may be interpreted as saying that the classical absorption
��N

�
q��/(2�

�
mcn)L(�) which may be obtained within the context of the elasti-
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cally bound electron model remains valid in quantum mechanics. Only, this
absorption is distributed between different oscillators corresponding to transitions
between different quantized levels in the system. This distribution is weighted by
oscillator strengths which gauge the strength of each of these transitions. In spite of
this, the sum of all these oscillator strengths will be found to equal unity. In more
empirical terms, if we consider the complete absorption curve for a quantum
system, the ratio of the integral of the absorption to the population of the
fundamental level N

�
:

�

�
�

�(�)d�

N
�

�
q��

2�
�
mcn

(3.D.21)

is the same for all physical systems. This concept reveals its true strength when one
realizes that oscillator strengths can be negative (refer to the footnote accompany-
ing (3.41)). We shall return to the point later in our study of intersubband
transitions in quantum wells.

Example: oscillator strengths in an infinite quantum well
We will illustrate the concept of oscillator strength for the easily managed case of
the infinite square well. We saw in Section 1.4.2 that the eigenenergies and
eigenfunctions of the stationary states for a well of width a, with infinitely high
potential barriers at 0 and a are given by:

E
�
� n�

����
2m

�
a�

(3.D.22)

�n
�	
2

a
sin n

�
a
z

The matrix elements �i�z�j
 are then given by the integrals:

�i�z�j
�
2

a

�

�
�

z sin i
�
a
z sin j

�
a
zdz

(3.D.23)

�
a

���
1

(j� i)�
�

1

(j� i)�� [cos(i� j)�� 1]

and:

��i�z�j
���
2�a�

��
(ij)�

(j�� i�)�
F(i� j) (3.D.24)

137 3.D A · p and D · E Hamiltonians and the Thomas–Reiche–Kuhn sum rule



where F(i� j) is equal to 0 if i� j is even, and 1 if i� j is odd. The oscillator
strength for the transition i� j is then:

f
��
�

2m

�� �( j�� i�)
����
2ma���

2�a�

��
(ij)�

(j�� i�)�
F(i� j)� (3.D.25)

so that:

f
��
�

2�

��
(ij)�

( j�� i�)�
F(i� j) (3.D.26)

Oscillator strength for a transition i� j

in an infinite quantum well

We may verify the sum rule by utilizing the series expansion for ��. We notice that
the oscillator strength is concentrated in the transitions between the lowest energy
levels. More precisely, the oscillator strengths f

��
starting from the fundamental

level �1
 decrease as 1/j� with the first two values corresponding to:

f
��
�

2	

��3�
� 0.960

(3.D.27)

f
��
�

2��

��15�
� 0.030
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4 Laser oscillations

4.1 Introduction

We were able to show in Chapter 3 that a medium in which we can obtain a
population inversion (i.e. a situation in which the population density in the excited
state is greater than that in the fundamental level) allows for optical gain of an
electromagnetic wave having a frequency near to the resonant frequency of the
system. By introducing feedback of the amplified signal into the medium, the
system can be made to oscillate naturally, resulting in laser oscillations. To obtain
this population inversion, we must introduce at least a third (and perhaps even a
fourth) energy level into the system. (We saw how a two-level system under the
influence of an intense pump beam will saturate with no resulting population
inversion.) The aim then of this chapter is to introduce the concepts necessary to
extend our two-level system into a working model capable of illustrating the
phenomenon of laser oscillation. We will not spend too much time discussing
atomic transition lasers as they do not figure readily in our treatment of quantum
electronic properties of semiconductors. An exception will be made, however; we
brush upon the particular topics of a diode pumped laser in Complement 4.E and a
quantum cascade laser in Complement 13.H.

4.2 Population inversion and optical amplification

4.2.1 Population inversion

We will show how population inversion can be achieved by carrier transfer from
higher lying levels to the upper level of a two-level subsystem of interest. To do so,
we consider a cavity of volume V filled with a density n (in cm��) of identical
quantum systems each possessing an arbitrary number of levels E

�
, i� 0, 1, 2, etc.

We are interested in the absorption and emission effects near resonance �1
� �2

(i.e. for transitions involving photon energies h��E

��
� h�

��
). We will suppose

that the second level is filled by some as yet undefined mechanism described by a
filling rate R

�
(cm�� s��). This filling occurs either by pumping electrons from

inferior levels directly into �2
 or via recombination from superior levels (see Fig.
4.1). Electrons in level �1
 in turn relax to lower levels with a lifetime of #

�
and

electrons in level �2
 relax to �1
 by spontaneous emission (rate� 1/t
����

), by
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Fig. 4.1. Different dynamic mechanisms for a two-level system in interaction with other
levels.

non-radiative recombination (rate� 1/#
��

), and may also relax to other lower
energy levels (rate� 1/#

��
). Let us suppose for a moment that t

����

 #

��
; the rate

equations describing the population densities n
�
�N

�
/V and n

�
�N

�
/V were

given in Eq. (3.84):

dn
�

dt
���

��
�n
�
��

��
�n
�
�
n
�
#
�

�
n
�

#
��

(4.1)dn
�

dt
���

��
�n
�
��

��
�n
�
�
n
�
#
�

�R
�

We note certain changes, however, between (3.84) and (4.1). First, Eq. (3.84) was
obtained within the context of a uniquely two-level system. In that case, n

�
and n

�
could not tend towards any other possible values than those imposed by ther-
modynamic equilibrium between the two levels. No limitations of the sort appear
in (4.1), as the occurrence of other levels relaxes this constraint. We further recall
that �

��
is the optical cross-section (in cm�) given by (3.81a) or (3.81b), related to

the absorption � (cm��) by �� �
��

(n
�
� n

�
) and to the gain � by ���

��
(n
�
� n

�
),

and where � is the photon flux (in cm�� s��), and #
�

is the net lifetime in level �2

given by:

1

#
�

�
1

#
��

�
1

#
��

�
1

t
����

(4.2)

As already indicated, we supposed that levels �1
 and �2
 are sufficiently far apart
in energy from lower lying levels to be able to neglect thermal population of these
levels under unpumped conditions (i.e. n	�

�
� n	�

�
� 0). In the absence of any

photon flux h�
��

(�� 0 whereby we speak of a cold cavity), we obtain the
stationary solution for Eq. (4.1) by setting dn

�
/dt� dn

�
/dt� 0. We then find the

population difference between the upper and lower levels n
��

in the absence of a
photon flux to be:
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n
��
� n

�
� n

�
�R

�
#
��1�

#
�

#
��
� (4.3)

We see that if the lifetime of the lower level #
�

is shorter than the recombination
time #

��
we may achieve population inversion. This term designates that pumping

leads, in this case, to a situation far from that allowed under thermodynamic
equilibrium, where n

�
/n
�
� exp(�E

��
/kT )� 1.

Some authors speak of negative temperature; however, this concept is of little
practical use. We may additionally note, that the shorter #

�
becomes in compari-

son with the recombination time #
��

, the greater the density of inverted carriers
will be. Correspondingly, a greater degree of optical amplification in the system
will be possible and may be attained with greater ease.

4.2.2 Optical amplification and gain saturation

We saw in Eqs. (3.50) and (3.74) that, under circumstances of population inversion,
an optical signal close to resonance is amplified. In this case, its intensity increases
as it travels through the medium and varies as:

I(z)� I
�

e���� (4.4)

where �(�) is the amplification coefficient (in cm��) given by Eq. (3.74):

�(�)� �
��
n
�
�

��
8��

!
t
����

g(�)n
�

(4.5)

Optical gain and population inversion

where n
�
� n

�
� n

�
is now the population difference in the presence of a photon

flux and g(�) is the lineshape described in Complement 3.A. We recall that �
!
� n�

��
is the relative permittivity of the host medium, � is the vacuum wavelength, and
t
����

is the spontaneous lifetime given by (3.82). Equation (4.4) is only valid if the
amplification factor � is independent of position (this is generally not the situation
and is discussed further in Complement 4.B). We obtain the stationary state value
of n

�
with the help of Eq. (4.1), this time by considering that �� 0. The inversion

population is then found to be:

n
�
�

n
��

1� #
���
�

��
�

(4.6)

where #
���

is the optical saturation time constant given by:

#
���
� #

�
� #

��1�
#
�

#
��
� (4.7)

Equation (4.6) may also be written as:
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n
�
�

n
��

1��/�
���

(4.8)

Population inversion and saturation flux

where �
���

is the saturation photon flux given by:

�
���
�

1

�
��

(�)#
���

�
8��

!
��

t
����
#
���

1

g(�)
(4.9)

Saturation flux of a laser medium

This quantity is very similar to the one introduced in (3.56). We therefore immedi-
ately deduce the variation of gain in the medium as a function of photon flux to be:

�(�)�
�
�

(�)

1��/�
���

(�)
(4.10)

Saturation of laser gain

where �
�

is the low flux or cold cavity amplification given by:

�
�

(�)� n
��
�
��

(�)� n
��

��
8��

!
t
����

g(�) (4.11)

Cold cavity gain for a laser medium

Figure 4.2 shows the relative variation �/�
�

of the amplification coefficient in the
medium as a function of the normalized optical flux �/�

���
. We note that the gain

decreases as the photon flux increases. This mechanism is called, for obvious
reasons, optical gain saturation and results from progressive equalization of the
populations between the levels providing the amplification, once the absorption
and stimulated emission processes become dominant over all others.

Example
Table 4.1 gives the characteristics for the principal transitions used in solid state
lasers. The neodymium—YAG laser operates chiefly using an available transition
at 1.064 �m. The measured spontaneous lifetime t

����
� 1.2 ms and the transition

width is 120 GHz. At resonance, the optical cross-section is given by (3.73):

�
��
�

��
8�n�t

����

1

��
� 4� 10�� cm�

If we suppose that the inversion population density at low flux n
��

is of the order of
10�� cm��, we obtain a laser gain amplification �

�
of:

�
�
� n

��
�
��
� 4� 10�� cm��

The corresponding gain along a 20 cm rod appears to be deceivingly small (0.08).
Multiple passes of the amplified beam through the same medium, however, will

142 Laser oscillations



1.0

0.8

0.6

0.4

0.2

0.0

 N
or

m
al

iz
ed

 g
ai

n,
 

 / 
0

543210

Normalized photon flux, / sat

Fig. 4.2. Optical gain saturation for a two-level system as a function of normalized photon
flux �/�

���
.

allow for significant overall levels of amplification to be achieved. Assuming #
�
�

30 ns, #
�
� t

����
, and #

���
� t

����
we obtain a saturation flux using (4.9) of:

�
���
�

8�n�
��

��� 2.1� 10�� cm�� s��

This value corresponds to an optical power density of 390 W cm��. For such a
photon flux (relatively low), the gain is reduced by a factor of 2.

Table 4.1. Emission wavelengths (�
��

), optical cross-sections (�
*�

), spontaneous
lifetimes (t

#�*�
), linewidths (��), and optical indices (n

*�
) for technologically

significant laser media.

Laser medium �
	�

(�m) �
��

(cm�) t
����

�� n
��

Nd�� : YAG 1.064 4� 10�� 1.2 ms 120 GHz 1.82
Er�� : SiO

�
1.55 5� 10��� 10 ms 4 THz 1.45

Ti�� : Al
�

O
�

0.66—1.18 3� 10�� 3 �s 100 THz 1.8
Ar� 0.515 3� 10��� 10 ns 3.5 GHz 1

4.3 Three- and four-level systems

We will now refine our discussion of the pumping mechanisms employed in
Section 4.2 to create the conditions for optical gain between two levels. Explicitly,
we shall consider systems comprising three and four levels altogether. Equation
(4.1) needs to be slightly modified to take into account the different recombination
mechanisms at work in such systems. We seek in these two cases, expressions for
cold cavity inversion populations, i.e. when the density of amplified photons h�

��
is
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Fig. 4.3. Dynamic populations in a four-level (a) and three-level (b) system.

zero in the cavity (�
��
� 0). Expressions (4.7) and (4.10) then remain valid once the

inversion populations n
��

are known.
Figure 4.3a represents, schematically, the effect of pumping and subsequent

carrier absorption and relaxation mechanisms occurring in a four-level system.
Level �3
 is populated by electrons excited from level �0
 and it is the ensuing
relaxation of carriers �3
� �2
 which is responsible for feeding the population
inversion in level �2
. The population in level �3
 is given by:

dn
�

dt
�R

�
�
n
�

#
��

(4.12)

where R
�

results from the optical pumping of carriers from level �0
:

R
�
�W

��
(n
�
� n

�
)� ���

��
�
��

(n
�
� n

�
) (4.13)

�
��

is the photon flux associated with the pump beam. At the stationary state, the
carrier density in level �3
 is:

n
�
�

���
��
�
��
#
��

1� ���
��
�
��
#
��

n
�

(4.14)

As #
��

is very small, we expect absorption saturation only under very high pump
conditions. The stationary-state occupation of states �2
 and �1
 is given by:

�
n
�

#
��

�
n
�

#
��

� 0

(4.15a)
�
n
�
#
�

�
n
�

#
��

� 0

in which we have neglected transitions of the type �3
� �1
 or �2
� �0
. (Contri-
butions from such processes could clearly be taken into account, but only at the
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cost of obscuring our illustration of the more relevant physical concepts.) To these
three equations (i.e. (4.14) and (4.15a)), we add the conservation law for the total
number of particles:

n
�
� n

�
� n

�
� n

�
� n (4.15b)

This leads in simple fashion to an expression for the inversion population:

n
��
�

���
��
�
��
#
��

1� ���
��
�
��

(#
��
� 2#

��
)
n (4.16)

assuming the depopulation mechanism from level �1
 to be very rapid in compari-
son with others (and reflecting the desired situation). We note, as expected, that as
the photon flux of the pump beam increases, the inversion saturates at #

��
/

(#
��
� 2#

��
)n, which is close to the total population n of the system (#

��
� #

��
).

A three-level system is also represented in Fig. 4.3b. In this case, the ground state
of the system also corresponds to the lower transition level associated with the
amplification mechanism. The calculation proceeds as before, allowing us to find:

n
��
�

���
��
�
��

(#
��
� #

��
)� 1

1� ���
��
�
��

(#
��
� 2#

��
)
n�

���
��
�
��
#
��
� 1

1����
��
�
��
#
��

n (4.17)

where �
��

now refers to the pump photon flux. Comparing (4.16) with (4.17), we
note that three-level systems are systematically more difficult to invert than
four-level systems. This is because in a three-level system, level �1
 cannot empty
itself by spontaneous carrier relaxation to a lower energy level, but rather must
rely upon photon absorption from the pump beam. Figure 4.4 shows the achieved
inversion densities n

��
/n in the three- and four-level systems as a function of the

normalized pump photon flux �/�
���

(where �
���

refers to the saturation photon
flux 1/�

��
#
���

for transitions between the base level �0
 or �1
 and the pump level
�3
). Figure 4.4 also shows how, in a four-level system, population inversion is
obtained for all pump photon flux values. In a three-level system, inversion only
results beyond a certain pump photon flux threshold corresponding to the trans-
parency condition.

Example
Of particular importance to telecommunications technologies interested in light
signal propagation at 1.55 �m is the erbium-doped fibre optic laser. In this case, Er
atoms are introduced into a silicon dioxide optical fibre (Er�� : SiO

�
) forming a

three-level laser gain medium. Characteristics for the Er�� : SiO
�

system are pres-
ented in Table 4.1, to which we add the optical cross-section for the relevant pump
transition ���

��
� 2� 10��� cm� and the pump photon wavelength ��

��
� 1.26 eV

(�
����

� 0.98 �m). The transparency condition that must be reached before achiev-
ing optical gain occurs at:
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Fig. 4.4. Comparison of induced population inversion densities as a function of pump
photon flux in three- and four-level systems.

���
���
� 1/(2� 10��� cm�� 10�� s)� 5� 10�� cm� s��

or

P
��������	��!

� 5� 10�� cm� s��� 1.26 eV� 1.6� 10��� 10�W cm��

For a 10-�m diameter optical fibre, this represents a required input power of 8 mW
to obtain population inversion and achieve the transparency condition.

4.4 Optical resonators and laser threshold

A laser material contains an inverted population and as such may act as an
amplifier. Therefore, we need only reinject the amplified optical signal (referred to
as optical feedback) to induce laser oscillation. We now describe the conditions
that must be satisfied to obtain this laser oscillation. We consider a laser medium
of length d, with an entrance surface M

�
, and an exit surface M

#
covered by

reflecting mirror surfaces having transmission and reflection coefficients t
�

and r
�

for the entrance mirror, and t
#

and r
#

for the exit mirror (see Fig. 4.5). We note that

all the reflection coefficients r may be written as �R e�� where R is the reflectance
and � the optical phase shift induced by the mirror. Additionally, we may suppose
that this medium ‘loses’ photons by parasitic absorption, diffusion, diffraction, etc.
These mechanisms are then taken into account by a single parasitic attenuation �

�
(in cm��) which opposes the optical gain. We will now follow the plight of an
electromagnetic wave E�E

�
exp i(�t� kx) leaving the mirror M

�
and heading

towards the exit mirror M
#
. LeavingM

�
, the wave is described by:

E
�
�E

�
t
�
e��� (4.18a)
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Fig. 4.5. Mechanisms leading to laser oscillation in a cavity. The electric field at the entrance
mirror, corresponding to the wave moving towards the right, results from the sum of all the
contributions of the electromagnetic fields depicted in the figure. The phenomenon of laser
oscillation is seen to involve both a dependence on the phase and the amplitude of the waves.

Arriving at M
#
, the power of the signal has been amplified by a factor of

exp(�� �
�
)d, whereas the amplitude has increased by a factor of exp(�� �

�
)d/2

and been multiplied by a phase shift of exp(ikd). A fraction (r
#
) of the wave

amplitude is reflected and retransmitted through the medium, receiving a further
amplification of exp(�� �

�
)d/2 and a phase shift of exp(ikd), with fraction r

�
being

re-reflected by the entrance mirror. The component of the electromagnetic field
after this single round-trip between both mirrors may be written:

E
�
�E

�
t
�
r
�
r
#
e���e������e���� (4.18b)

The signal at the entrance mirror is the superposition of the fields of all the waves
going back and forth. It is then given by the sum of E�E

�
�E

�
�E

�
� · · · or:

E�E
�
t
�
e���[1� r

�
r
#
e������e����� (r

�
r
#
e������e����)�� · · ·] (4.19)

The summation is trivial and leads to:

E�E
�
t
�

e���
1� r

�
r
#
e������e����

(4.20)

The electromagnetic field diverges when the denominator in (4.20) goes to zero.
When achieved, this condition refers to the phenomenon of laser oscillation. This
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condition could also have been obtained by requiring that in the stationary state,
the two expressions for the field at x� 0 (E

�
t
�

and E
�
t
�
r
#
r
�
e���������) be equal.

We see, therefore, that two conditions must be met before laser oscillations may
be established in a cavity.

Gain condition
The gain in the amplification medium must exceed the various cavity losses (e.g.
light transmission by mirrors, diffusion, . . .). This condition is represented by the
following inequality:

�r
�
r
#
�e������� 1

There is thus a corresponding gain threshold above which the medium begins to
oscillate spontaneously. This threshold is given by:

�
���	���
"

� �
�
�

1

d
ln�r

�
r
#
�� �

�
(4.21a)

where �
�

is the total attenuation coefficient. Alternatively, we may write (4.21a) as:

�
���	���
"

� �
�
�

1

2d
lnR

�
R
#

(4.21b)

Optical gain and laser oscillation threshold

where R
�

and R
#

refer to the mirror reflectances. We note that the gain is clamped
to this value, as (4.20) shows that this value cannot be surpassed. Equation (4.21b)
may be restated in terms of a corresponding population inversion density with the
help of (4.11):

n
���	���
"

�
8��

!
t
����

��g(�) ����
1

2d
lnR

�
R
#� (4.22a)

or at the peak of the Lorentzian:

n
���	���
"

�
4���

!
t
����

��
�� ����

1

2d
lnR

�
R
#� (4.22b)

This equation may also be written in a more illustrative fashion by introducing the
concept of photon lifetime. Let us imagine a photon moving to and fro within a
cavity at speed c�� c/n

��
. The exit probability for the photon at any particular

cycle through the cavity is then given by d�
�
� ln(r

�
r
#
). This probability may also

be considered as a ratio between the cavity length d and the mean path �

of the

photon before escaping from the cavity. This mean path is the product of the photon
propagation speed c�� c/n

��
and the photon lifetime in the cavity #


, which is then

given by:
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1

����
1

2d
lnR

�
R
#� c�

(4.23a)

Photon lifetime in a cavity

or again supposing the parasitic absorption �
�

is weak, R
�
� 1 and R

#
� 1�T

#
with the transmittance of the exit mirror T

#
� 1:

#

�

2d

T
#
c�
�

2

T
#

#

�#��

(4.23b)

#

�#��

is the time required for the photon to travel the distance between the two
mirrors. Equation (4.23b) is a very illustrative and useful relation for the laser
engineer. It directly shows how the photon round-trip time in the cavity 2#


�#��
is

enhanced by the low exit mirror transmittance T
#
. Equation (4.22) may then be

written:

n
���	���
"

�
1

c��
��
#


�
4���

!
��

��c�
t
����
#


(4.24)

Inversion population density at

laser oscillation threshold

In the case of optical pumping, the required threshold power for the pump beam is
that necessary to achieve population inversion (Eqs. (4.16) and (4.17)).

Phase condition
The phase condition that leads to a value of zero in the denominator of (4.20) is:

kd��� q�, q� 1, 2, . . . (4.25a)

where � is the average of the phase shifts introduced by the two mirrors. If we
suppose both mirrors to be metallic (���), the amplified modes will be given by
those modes:

�
�
� q

c

2n
��
d

(4.25b)

which fall within the gain spectrum of the amplification medium (see Fig. 4.9). We
shall return to this topic in Section 4.6.

Example
1. In the case of a Nd�� : YAG laser, the emission wavelength is 1.064 �m,

the width of the gain spectrum is 120 GHz, the index of refraction is 1.82, the
spontaneous lifetime is 1.2 ms, and we consider a photon lifetime in the
cavity of 1 ns (Table 4.1). The inversion density at threshold is then given by
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(4.24) and is n
���	���
"

� 1/(4� 10�� cm�� 10� s� 1.65� 10�� cm s��) or
1.5� 10�� cm��.

2. We consider a 10 m section of an erbium-doped silica fibre with mirrors at both
ends. One mirror has zero transmittance, while the other has a 1% transmit-
tance. The photon lifetime in the fibre (neglecting parasitic absorption) is
#

� 2� 10 m/(10��� 3� 10	m s��/1.45) or 9.6 �s. The inversion population

density is then obtained by using the optical cross-section given in Table 4.1
(�

��
� 5� 10��� cm�):

n
���	���
"

� 1/[(3� 10�� cm s��/1.45)� 5� 10��� cm�� 9.6� 10�� s]

or

�1.0� 10�� cm��

4.5 Laser characteristics

4.5.1 Internal laser characteristics and gain clamping

We consider a laser system undergoing optical pumping at a growing rate (i.e.
pumping rate R

�
increasing). In the stationary state (i.e. before the onset of laser

oscillation), the cold cavity inversion population density is given by n
��

, Eqs. (4.16)
or (4.17), depending on whether we are dealing with a three- or four-level system.
The gain in the medium �

�
(�) is that given by (4.11). As long as the system remains

below the oscillation threshold, the inversion density is proportional to the pump-
ing rate R

�
, as indicated by (4.3). Let us now suppose that the system is pumped

beyond laser threshold. The system then begins to oscillate and the amplified
photon flux within the cavity increases, saturating the inversion density and
reducing the gain (see Section 4.1 and Fig. 4.2). Figure 4.6 shows the progression of
this effect. The decrease in gain stops once the gain in the medium �(�) exactly
balances out the cavity losses �

�
resulting from the parasitic losses and the mirrors

(Eq. (4.22)). The stationary state of the cavity is then given by the clamped gain, i.e.
the condition for which �(�)� �

�
. As a result, the inversion density is also clamped

to its threshold value n
���	���
"

. Evolution of the inversion density as a function of
pump rate is shown in Fig. 4.7.

Taking the expression for saturated gain �(�)� �
�

(�)/(1��/�
���

), we obtain as
an expression for laser photon flux in the cavity at the stationary state:

���
0, if �

�
(�)��

�

�
���

(�)�
�
�

(�)

�
�

� 1� , if �
�

(�)��
�

(4.26a)

Note that the flux � refers to photons propagating in both directions along the
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Fig. 4.6. Clamping mechanism for lasers. At the onset of pumping, the number of photons in
the cavity is low and the gain medium is unsaturated. The photon density in the cavity
gradually increases until the gain in the medium reaches the optical saturation level, which
exactly balances out the cavity losses.
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Fig. 4.7. Variation in the inversion and photon densities in a cavity as a function of pump
rate R. We note that once laser threshold is achieved, the inversion population clamps to
N

���	���
"
, while the photon density increases linearly with optical pumping. Above threshold,

all additional pump energy is ideally converted into an amplified optical signal.

cavity. As �
�
� n

��
�
��

, and given the definition of the laser oscillation threshold
�
�
� �

���	���
"
� n

���	���
"
�

��
, (4.26a) may also be written:

���
0, if n

��
� n

���	���
"

�
���

(�)�
n
��

n
���	���
"

� 1� , if n
��
� n

���	���
"

(4.26b)

It is interesting to write this last equation in terms of the photon density and
optical pumping power. To do so, we introduce the quantities:
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(4.27)

which allow us to rewrite (4.26) as:

p�



 0, if R

�
�R

���	���
"

p
����

R
�

R
���	���
"

� 1� , if R
�
�R

���	���
"

(4.28a)

Photon density as a function of pump rate

The variation in photon flux as a function of pump rate is also shown schemati-
cally in Fig. 4.7. This last figure illustrates several of the particularities of laser
emission: the existence of a threshold, clamping of inversion population density,
gain, and linear increase in the photon density above threshold. This approach is
greatly simplified as we have notably neglected spontaneous emission. A more
complete approach will be presented in Complement 4.A.

Finally, let us note that far above threshold, the number of photons in the cavity
is given by:

p� p
���

n
��

n
���	���
"

�
#


#
���

n
��

�
#


#
�

n
��
�R

�
#


(4.28b)

This last equation clearly shows the role played by the cavity. As a result of the
optical resonator, the cavity is able to store electrons on excited states, eventually
yielding for each electron a photon quantity #


/#
�
. These various concepts are

illustrated again in Complement 4.E in discussing the operation of diode pumped
lasers.

4.5.2 Output power

For the moment, we are interested in internal densities and fluxes in the laser
medium. The output flux is the light intensity emitted through the output mirror
M
#

with transmittance T
#
. The smaller the value of T

#
, the greater the reflectance

(R
#
� 1�T

#
) and the lower the laser threshold. On the other hand, if the transmit-

tance is null, no light can emerge from the laser cavity! Therefore, given both these
considerations, there is an optimal value for the reflectance. The output flux from
the laser �

	��
is found simply by taking half the internal flux (4.26) (to take into

account only that flux instantaneously directed towards the output mirror), multi-
plied by the mirror transmittance yielding:

�
	��
�

1

2
�

���
T
#�

2d�
�

2d�
�
� lnR

�
� ln(1�T

#
)
� 1� (4.29a)

Figure 4.8 shows the variation of the output flux �
	��

as a function of T
#
. This plot
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Fig. 4.8. External photon flux as a function of output mirror transmittance for a laser cavity
with a total gain 2�d of 0.5 and a loss 2�d of 0.05. We note the existence of an optimal value for
the output mirror transmittance.

has a maximum value for T
��

given by (ln(1�T ) ��T):

T
#
��2�

�
d�2�

�
d� lnR

�
� (2�

�
d� lnR

�
) (4.29b)

Another useful result is the relationship between the number of photons in the
cavity P, and the external power P in the case where (4.23b) applies (R

�
� 1,

T
#
� 1, �

�
� 0). For this, let us consider a time interval �t. During this time a

portion c��t/d of the total photon populationP in the cavity is incident on the exit
mirror (d is the cavity length). Only half of the photons in the population have the
correct propagation direction. Moreover, only a fraction T

#
of these photons, each

carrying an energy ��, will succeed in leaving the cavity, thus emitting a laser
energy of P�t, so that:

P�t�
1

2

c��t
d
PT

#
�� (4.30a)

or

P�
1

2
T
#
c�
P

d
���P

��
#


(4.30b)

Output power and number of photons in a laser cavity
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Fig. 4.9. The maximum number of modes which may be supported in a cavity is given by the
ratio of the spectral bandwidth to the modal frequency spacing.

Example
1. For a total medium gain 2�d of 0.5, neglecting any transmission from the

entrance mirror (R
�
� 1) and assuming a total parasitic loss 2�d of 0.05 cm��,

using (4.29b) we find an optimal transmittance of 10%.
2. We consider a gas cavity laser 1 m in length, fitted with an output mirror with a

transmittance of 0.5%. The photon lifetime, given by (4.23b), is found to be
#

� 2� 10� cm/(5� 10��� 3� 10�� cm s��)� 1.3 �s. The number of pho-

tons with an energy of 1 eV in this cavity and corresponding to an output power
of 1 W is given by (4.30), or P� 1 W� 1.3� 10�� s/1.6� 10�� J� 8� 10��
photons.

4.5.3 Spectral characteristics

Only those cavity eigenfrequencies satisfying the phase condition (4.25) and which
have a cold cavity gain �

�
(�
�
) greater than the threshold gain (�

�
(�
�
)��

���	���
"
) are

oscillating. Figure 4.9 shows the oscillating modes allowed within the cavity. As
the frequency spacing between each mode is c/2nd, the maximum number of laser
modes is then given by the ratio of the gain bandwidth divided by the mode
spacing (see Fig. 4.9), yielding:

N
��"	

�
B

c/2nd
(4.31)

The actual number of observed modes depends, additionally, on the nature of the
broadening of the absorption transition lineshape in any given medium (see
Complement 3.A).
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Fig. 4.10. Gain spectra and corresponding laser lines resulting from amplification in
homogeneous and inhomogeneous media below threshold (a), at threshold (b), and above
threshold (c).

Homogeneous gain spectrum (see Complement 3.A)
In this case, broadening is due to phase relaxation mechanisms (represented by ��
in the Lorentzian). The lineshape is monolithic, in the sense that the saturation
mechanisms act upon the entire absorption spectrum and may be written from
(4.10) as:

�(�)�
��

8��
!
t
����

1

1��/�
���

(�)

��/2�
(�� �

�
)�� (��/2)�

(4.32)

The spectral response of the laser amplification is depicted in Fig. 4.10. We
suppose that at t� 0, the system is pumped far above laser threshold. All allowed
modes �

�
having a gain greater than the threshold requirement begin to lase. As all

the modes begin to be amplified, saturation effects tend to decrease the gain
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Fig. 4.11. The gain experienced by a stationary mode depends on its position across the
cavity. The overall gain curve is thereby broadened in an inhomogeneous fashion leading to
multimode amplification even if the fundamental quantum transitions are themselves
homogeneous in nature. The periodic minima induced in the gain curve across the cavity
corresponds to the phenomenon of spatial hole burning.

available for each mode; the amplification envelope decreases uniformly in ampli-
tude, while preserving its original spectral distribution. The overall amplitude
continues to drop until only a single mode positioned nearest to the gain maxi-
mum may sustain amplification. Thus, laser oscillations established in a homo-
geneous medium will tend to result in single mode laser operation.

In practice, homogeneous mediums may often exhibit multimode laser amplifi-
cation. Several parasitic phenomena may be responsible for this. Most often, the
reason is that the amplitudes of the stationary waves in the cavity vary from one
location to the next (as cos kz or sin kz). Therefore, even a single mode experiences
different levels of gain across the cavity even if the gain spectrum is homogeneous
in nature (see Fig. 4.11). This situation refers to the phenomenon of spatial hole
burning.

Inhomogeneous gain spectrum (see Complement 3.A)
This situation is relatively easy to understand (Fig. 4.10). In this case, the system is
composed of an assembly of independent subsystems with each subsystem possess-
ing its own set of associated rate equations and saturation characteristics. Each
mode allowed by (4.25) will then correspond to a maximum in the gain spectrum
over that frequency range, leading to independent amplification of each of these
individual modes. Thus, laser oscillation in an inhomogeneous medium is funda-
mentally multimode in nature (see Fig. 4.10).

4.6 Cavity rate equations and the dynamic behaviour of lasers

The rate equations (4.1), introduced at the start of this chapter, are time-dependent
differential equations. Up to this point, we have been chiefly interested in the
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stationary state behaviour of laser emission. We now turn our attention to the
dynamic behaviour of lasers. With this goal in mind, we return to the four-level
system described in Fig. 4.3. We recall that level �2
 is inverted by the optical
pumping of carriers from level �0
 to level �3
. The recombination of electrons from
�3
 to �2
 was assumed to be instantaneous, so that the feed rate of carriers into �2

was taken to be given by the pump rate of level �3
. The dynamic equation
describing the occupation of level �2
 is then:

dn
�

dt
�R�

n
�
#
�

��
��
�(n

�
� n

�
) (4.33)

We suppose the carrier lifetime in level �1 
 is sufficiently short so that the
occupation of level �1
 is effectively empty at all times, i.e. n

�
� n

�
� n

�
� n

�
.

Equation (4.33) may be written in a more illustrative manner by introducing the
cold cavity (�� 0) inversion density given by n

��
�R#

�
. The photon density p

relates to the flux � by p��/c�, and the optical cross-section is given by (4.24), i.e.
�
��
� 1/c�n

���	���
"
#

, so that:

dn
�

dt
�
n
��
� n

�
#
�

�
p

#


n
�

n
���	���
"

(4.34)

The dynamic behaviour of the photon density p results from contributions from
the stimulated emission in the system (�n

�
�

��
�) and the photon losses (diffusion,

residual absorption, loss to mirrors, . . .) described by the photon lifetime (p/#

), so

that taking into account the same change of variables as in (4.34):

dp

dt
��

p

#


�
p

#


n
�

n
���	���
"

(4.35)

Equations (4.34) and (4.35) form a pair of coupled non-linear differential equations
(via the products pn

�
in (4.34) and (4.35)). Although they do not take into account

spontaneous emission (see Complement 4.A), they are of such importance that we
shall rewrite them again side by side:

dn
�

dt
�
n
��
� n

�
#
�

�
p

#


n
�

n
���	���
"

(4.34)

dp

dt
��

p

#


�
p

#


n
�

n
���	���
"

(4.35)

Dynamic coupled equations for a laser cavity

These types of non-linear equations lead to extremely complex and chaotic
behaviour. As such, we will restrict ourselves to examining some of the simpler
situations.

First, stationary solutions of these equations occur for:
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∑ either p� 0 and n
�
� n

��
, corresponding to the situation below threshold;

∑ or p� 0 and n
�
� n

���	���
"
and p� (n

��
� n

���	���
"
)#
�

/#

, which is the situation

above threshold with clamping.

4.6.1 Damped oscillations

We suppose that at time t� 0, the system is in an inverted state with n
��

being in
excess of n

���	���
"
(i.e. before clamping —we shall see in the following section exactly

how this occurs). We rewrite (4.34) and (4.35) and introduce the following dimen-
sionless constants:

X�
n
�

n
���	���
"

, Y�
p

n
���	���
"

, X
�
�

n
��

n
���	���
"

, T�
t

#


, u�
#


#
�

(4.36)

These equations then become:
dY
dT

�Y(X� 1)

dX

dT
� u(X

�
�X)�XY





(4.37)

In order to describe the behaviour of the laser near equilibrium, we define the
variables x and y which describe the excursion of the system from stationary
behaviour:

�
X� 1�x

Y� u(X
�
� 1)� y

(4.38)

Neglecting the terms in xy (being of second order), (4.37) becomes:
dy

dT
� u(X

�
� 1)x

dx

dT
��uX

�
x� y





(4.39)

This system of coupled linear differential equations is easily integrated. The system
then behaves as a damped oscillator with an eigenfrequency �

�
� 2�/T

�
, and a

relaxation time #
�

given by:

#
�
� 2

n
���	���
"
n
��

#
�

(4.40)
T
�
�

2��#
�
#


�(n
��

/n
���	���
"

)� 1
Relaxation time and oscillation period for a laser cavity

Figure 4.12 shows the damped oscillations resulting from a starting carrier density
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Fig. 4.12. Time evolution of the photon density in a cavity assuming a photon lifetime of
3 ps, and a carrier lifetime #

�
in level �2
 of 1 ns. At time t� 0, an inversion density n

��
twice

that of the threshold value n
���	���
"

is assumed.

twice that of the threshold value, i.e. n
��

/n
���	���
"

� 2. These oscillations result
from the alternating energy exchange between the photons in the cavity and the
carriers in the two-level system.

Example
We consider a semiconductor laser with a typical #

�
of 1 ns and a photon lifetime of

3 ps. Assuming an initial inversion density of n
��
� 2n

���	���
"
, we obtain an oscilla-

tion frequency of T
�
� 2��(3� 10���� 1� 10�)/�(2� 1) or 0.34 ns. The relax-

ation time is then #
�
� 2� 10�/2 or 1 ns, as shown in Fig. 4.12.

4.6.2 Laser cavity dumping by loss modulation (Q-switching)

We will now describe a method enabling one to exceed the threshold carrier
density in a laser (allowing n

��

 n

���	���
"
). To do so, during an initial period, the

cavity losses �


are artificially increased to maintain cold cavity conditions. The
density of electrons occupying level �2
 is then given by n

�
(t)�R#

�
(1� e�����). The

length of the period T
�

is made sufficiently large so that the majority of available
states �2
 become occupied (i.e. T

�
� n/R, where n is the total density of emission

centres). To introduce these large losses temporarily, the reflectivity of the exit
mirror can be considerably reduced by means of a Pockels cell (see Chapter 12). As
a result, the quality factor Q of the cavity can be modulated or Q-switched. The
inversion population density n

�
� n (i for initial) in level �2
 at the end of the first

low-Q cycle is very large in comparison to the clamped inversion density n
���	���
"

during laser emission (see Fig. 4.13). The same is true for the energy stored by the
occupied states. The cavity is then switched to a high-Q value (by restoring the
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Fig. 4.13. Principle of laser cavity dumping by loss modulation (Q-switching). Between 0 and
T
�

significant cavity losses are introduced as a means of decreasing the quality factor Q of the
cavity (by using, for example, an acousto-optic modulator). While the Q of the cavity is
artificially maintained at a value Q


�$
, the inversion population is allowed to build up to a

value n
�

exceeding the value of n
���	���
"

for the otherwise high-Q cavity. The Q factor of the
cavity is then restored to its original value of Q

��#�
and the additional energy stored during the

low-Q charging phase is released into a single giant pulse.

high reflectivity of the mirrors, for example). The energy stored in the cavity is then
released as described in (4.37). To simplify the notation, we will assume that the
lifetime of level �2
 remains very large in comparison with the photon lifetime (i.e.
u� 1). Equation (4.37) may then be written as:

dY
dT

�Y(X� 1)

dX

dT
��XY





(4.41)

Dividing one of the equations by the other, we obtain:

dY
dX

�
1

X
� 1 (4.42)

which may be easily integrated and put into the following form, taking into
account earlier definitions:

p� n
���	���
"

ln
n
�
n
�

� (n
�
� n

�
) (4.43)
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Fig. 4.14. In a laser operating in continuous mode (a), the maximum density of electrons in
the excited state is given by the threshold density value determined by photon lifetime in the
cavity #


. In Q-switched mode (b), the maximum electron density is determined by carrier

lifetime in the excited state #
�
, which can be considerably larger than #


.

The photon density p may also take on transitory values greater than those
allowed by the stationary number of photons in the high-Q cavity. The photon
density is at a maximum when dp/dt� 0 in Eq. (4.41), i.e. when n� n

���	���
"
:

p
���

� n
��1�

n
���	���
"
n
�

ln
n
���	���
"
n
�

�
n
���	���
"
n
�
�� n

�
(4.44)

when n
���	���
"

� n
�
, which is often the case. We are now ready to calculate the

increase in maximum power of the laser relative to its stationary operation. With-
out Q-switching, the number of photons available (p

� 
where CW refers to

continuouswave) in the cavity is given by (4.28b), or p
� 
�R#


, where we recall that

R is the pump rate and #


the photon lifetime in the high-Q cavity. The maximum
photon density (p

!"
) achieved by Q-switching is given by (4.44) or p

!"
� n

�
�RT

�
,

where we recall that n
�
� n is the total density of the emission centres. Generally,

the time T
�

is fairly close to the lifetime #
�

. As a result, the ratio of the CW exit
power to the Q-switch power (see Fig. 4.14) is:

P
!"

P
� 

�
n
�

n
���	���
"

�
#
�
#



 1 (4.45)

As lifetimes #
�

and #


are generally of the order of 1 ms and 1 ns, respectively, we see
that the ratio given in (4.45) may become considerable. Following the same
reasoning as for (4.30), we see that the peak output power of the pulse is precisely
given by the product of half the internal photon density (we divide by two as only
those photons moving in the direction of the exit mirror are to be considered) with
the transmittance T

#
of the output mirror and the cross-sectional area A of the

laser cavity:

P
!"
� h�

c

2
T
#
An

�
(4.46)

Peak output power of a Q-switched laser
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above threshold. These curves are solutions to the differential Eq. (4.41).

Finally, the length of the laser pulse may be obtained by numerically integrating
the non-linear differential Eq. (4.41). In the next example, we give a short program
written for MATHEMATICA which allows one to obtain the dynamic behaviour
of a Q-switched laser.

Figure 4.15 gives a few examples from which we conclude that the typical pulse
lengths are of the order of a few #


s (photon lifetimes), i.e. tens of nanoseconds for

laser cavities measuring a few centimetres in length. We note that loss modulation
in the cavity can be achieved passively (i.e. without external application of electri-
cal pulses to an optical shutter, for instance). This can be achieved by placing a
saturable absorber in the laser cavity. This material then absorbs electromagnetic
radiation up to a certain intensity level beyond which the medium becomes
transparent. Thus, the introduction of such a passive element will result in sponta-
neous Q-switching of the cavity. At the beginning of the cycle, the absorbing
characteristics of the material lower the Q factor of the cavity, during which time
electrical energy is stored in the cavity by increasing the electron occupation
density in the excited level. Once the medium saturates, the cavity losses are
reduced and stimulated emission proceeds to liberate the stored energy in the
carriers into the form of a high-power optical pulse.

Example
As (4.41) has a zero photon density as an initial condition (Y(0)� 0), it possesses as
acceptable solutions the time-independent inversion populationX(T ) �X(0) and
zero photon density Y(T )� 0. As indicated by Fig. 4.15, we have had to introduce
artificial initial conditions (Y(0)� 0.1) to simulate the effect of Q-switching. This
underlines the physical necessity of spontaneous emission in triggering laser oscil-
lations. The MATHEMATICA program below allows calculation of the temporal
response of a laser to modulated cavity loss. It is written assuming an initial
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condition of X(0)� 2.
eq1= y�[t]==y[t]*(x[t]-1)
eq2=x�[t]==-x[t]*y[t]
sol=NDSolve[�eq1,eq2,x[0]==2,y[0]==0.1�,�x[t],y[t]�,�t,0,10�]
plot=Plot[Evaluate[y[t] /.sol,�t,0,10�]]

4.6.3 Mode locking

We now consider the particular case of dynamic response of an inhomogeneous
laser medium. We saw how an inhomogeneous medium may be described by an
ensemble of independent oscillators which may lase over the entire range of modes
allowed by the phase constraints given in (4.25). The complex electromagnetic field
set up inside the cavity is then given by the sum of all contributions S� 2N� 1 of
the independent modes q:

E(x, t)�
�+
�

���+

A
�
exp�2�i�

��t�
x

c�� (4.47)

We suppose that the gain spectrum is centred at �
�

and possesses a width
��� (2N� 1)��, where �� is the frequency separation between the modes permit-
ted by the cavity. We saw in (4.25) that ��� c/2nd, so that ��� (2N� 1)/T


� S/

T


(and where T


is the photon round-trip time for the cavity, i.e. T

� 2d/(c/

n)� 2#

�#��

). As we are only interested in time-dependent variations of the elec-
tromagnetic field (4.47) may be written:

E(t)�A(t)exp[2�i�
�
t] (4.48a)

where the amplitude A(t) is given by:

A(t)�
�+
�

���+

A
�
exp�2i�q

t

T

� (4.48b)

The amplitudes A
�

have no a priori phase relations between each other — their
phases �

�
are random. We will see in Complement 4.D that, as a consequence,

intensity and phase fluctuations occurring at the output of multimode lasers can
be significant. Furthermore, if all the amplitudes are identical (A

�
�A), then the

average power of the laser is (2N� 1)A�� SA�.
In this section we are interested in what happens to the behaviour of a laser

when the amplitudes of the various modes have a specific phase relation imposed
upon them, e.g. �

�
� 0. In this case, we speak of mode locking. We will see further

on, how this may be achieved in practice. We note that the envelope of the time
dependence for the electromagnetic field given by (4.48b) is a well defined periodic
function with period T


. More precisely, if we assume that the gain curve is

constant over the interval ��, (i.e. thatA
�
�A) then the wave intensity is given by:
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The light output from a mode-locked laser consists of a train of pulses of intensity
2(N� 1)�A�, separated in time by a period T


, with pulse widths T

��
�	
given by:

T
��
�	

�
T


2N� 1
�

1

��
(4.50)

(see Fig. 4.16). Therefore, the wider the laser gain spectrum, the greater the number
of supported modes and the shorter the resulting pulse width. To obtain ultra-
short pulses, titanium-doped sapphire crystals having gain bandwidths of 500 meV
allow the generation of pulses 10 fs in duration. We will see that semiconductors
with gain curves of several hundred meV are also good candidates for the imple-
mentation of mode synchronized lasers. Table 4.2 summarizes the key characteris-
tics of light output from mode-locked lasers.

Practically (see Fig. 4.17), mode synchronization can be accomplished by intro-
ducing a fast response electro-optic shutter between the two cavity mirrors. In this
way, light transmission between the two mirrors is possible only during short
periods of time as determined by an externally applied electrical signal. The only
portion of the overall wave train that will be able to propagate in the cavity (and
experience amplification by the laser medium) will be that comprised of modes
which are in phase with the modulated transmittance of the electro-optic shutter.
This situation refers to a form of survival of the fittest, with those modes which do
not satisfy the requisite phase conditions being eliminated from amplification. A
succinct description of this mechanism, using electromagnetic laser equations is
given in Complement 4.C. We note in closing, that mode synchronization may also
be achieved using a saturable absorber. This latter method is employed to achieve
mode locking in semiconductor lasers.

164 Laser oscillations



d

2d

tO
pt

ic
al

 c
om

m
ut

at
or

 
tr

an
sp

ar
en

cy

2d/c'

Electro-optical 
cell

Fig. 4.17. In mode locking, only pulses that are synchronous with the opening of the
electro-optic shutter every 2d/c� will be able to experience amplification by the laser medium.
This is equivalent to a form of natural selection being imposed upon all possible modes in the
cavity, with those modes not satisfying the requisite phase restrictions being eliminated from
amplification.

Table 4.2. Key characteristics of light output from mode-locked lasers

Period
T

�

2d

c�

Pulse width
T

��
�	
�

T

S
�

1

��

Average intensity I �SA�

Peak intensity I
�	��

�S�A��SI 

Example
We consider a 1 m long Nd�� : YAG glass laser. The index of refraction of glass n

��
is 1.5, and the transition width ��� 3� 10��Hz. The period T


between the

pulses is 2 m/2� 10	m s�� or 10 ns, the width of the mode-locked pulses is

165 4.6 Cavity rate equations and the dynamic behaviour of lasers



T
��
�	

� 0.33 ps, and the number of synchronized modes is S� 10�	 s/
3.3� 10��� s or 30 000 modes. If the average laser output power is 1 W, the peak
power of a single pulse is 30 kW.
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Complement to Chapter 4

4.A The effect of spontaneous emission and photon condensation

As mentioned previously, in Chapter 4 we have neglected the influence of sponta-
neous emission on laser effect. One of the consequences of this omission, which we
flagged in Section 4.6, is that stimulated emission cannot commence if the initial
number of photons in the cavity is zero. In other words, a number of photons p� 0
in mode l with an inversion density n� n

�
� constant constitutes an acceptable

solution to (4.34) and (4.35). We will now show how spontaneous emission may be
included in laser equations and discuss the resulting effects on laser characteristics.
To begin, we return to the two coupled equations (4.34) and (4.35) that describe the
dynamic relationship between the number of photons p in a given mode l and the
inversion density n

�
� n

�
� n

�
for a four-level system in a cavity:

dn
�

dt
�R�

n
�

#
�

�
p

#


n
�

n
���	���
"

(4.A.1)

dp

dt
��

p

#


�
p

#


n
�

n
���	���
"

(4.A.2)

We recall that R is the pumping rate of level �2
, #


is the photon lifetime in the
cavity, and n

���	���
"
� 1/c�#


�

��
is the inversion density required to reach laser

threshold. We also suppose that the lifetime #
�

in level �1
 is short enough to allow
us to neglect the population density n

�
(where n

�
� n

�
), so consequently #

���
� #

�
(Eq. (4.6)). Spontaneous emission is introduced into (4.A.1) by means of including
the rate 1/t

����
in the calculation of 1/#

�
, as may be seen in Eq. (4.2). On the other

hand, in (4.A.2), we must incorporate the fact that, even in the absence of any
photons in the cavity (p� 0), photons may be released through spontaneous
emission. We saw in Chapter 3 that the emission rate for a two-level system may be
written in the form W(P� 1) where this time P is the number of photons (not the
photon density), WP is the stimulated emission, and W is the spontaneous
emission (Eq. (3.66)). To include the effects of spontaneous emission, it is therefore
sufficient to write (4.A.1) and (4.A.2) in terms of the number and not the density (by

167



multiplying by the cavity volume V), and by replacing P by P� 1 in (4.A.2), from
which we obtain for the coupled system:

�
dN

�
dt

�RV�
N
�

#
�

�
P

#


N
�

N
���	���
"

dP

dt
��

P

#


�
P� 1

#


N
�

N
���	���
"

(4.A.3)

Dynamic equations for a laser cavity including spontaneous emission

In (4.A.3),N
�
� n

�
V andP� pV. Furthermore, these equations suppose that there

is a single mode in the cavity into which all spontaneously emitted photons are
released (i.e. the spontaneous emission factor  introduced in (3.72) is equal to 1).
We now introduce the following dimensionless variable:

r�
R

R
���	���
"

(4.A.4)

and recall that:

R
���	���
"

�
n
���	���
"
#
�

; n
���	���
"

�
1

c��
��
#


; P
���
�

V
c��

��
#
�

; X�
n
�

n
���	���
"

(4.A.5)

With all the changes of variables, for a stationary state (4.A.3) may be written as:

� r�X�1�
P

P
���
�

X(P� 1)�P
(4.A.6)

By solving the resulting second-degree equation, the stationary number of photo-
ns P is trivially found to be:

P��(r� 1)�	(r� 1)�� 4
r

P
���
�
P

���
2

(4.A.7)

Number of photons in the cavity as a function of pump rate (dimensionless)

This seemingly innocent equation actually implies the existence of a rather surpris-
ing physical effect, which we shall now examine. Let us begin by noting that P

���
is

a very large number, typically ,10��, which gives the equation a rather distinct
behaviour.

For a pump rate slightly above threshold (r� 1� �), the term 4r/P
���

under the
square root immediately becomes negligible in comparison to �, leading to
P�P

���
(r� 1), which is the behaviour given by (4.28). In the case of a pump rate

slightly below threshold (r� 1� �), (4.A.7) becomes:
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Fig. 4.A.1. Number of photons in a cavity as a function of pump rate (for a cavity with a
saturation flux P
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of 10	 photons).

P����� �	1� 4
1� �
��

1

P
���
�
P

���
2

(4.A.8)

or

P����� ��1� 2
1� �
��

1

P
���
��
P

���
2
�

1� �
�

(4.A.9)

In other words, even if the system is ever so slightly below threshold, the number of
photons is well approximated by:

P�
r

1� r
(4.A.10)

Therefore, by passing from a pump value 1% below to 1% above threshold, the
number of photons in the cavity changes from 10� to P

���
� 10��, 10	. This

corresponds to a veritable phase condensation which results from the Boson
nature of light being taken into account by the P� 1 term in (4.A.3). Figure 4.A.1
shows the behaviour of the number of photons in a cavity as a function of reduced
pump rate r for P

���
� 10	 photons.

We now underline an important consequence of spontaneous emission on laser
cavity dynamics which will be of use to us in Complement 4.D. The second
dynamic equation in (4.A.3) may be rewritten as:

dP

dt
�
P

#


� (P� 1)
N
�

#

N

���	���
"

(4.A.11)

or again, taking into account the definitions in (4.A.5),
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dP

dt
�
P

#


� (P� 1)
G

#

�#��

(4.A.12)

whereG is the optical gain resulting from a single pass of light across the length of
the cavity (G� gd), g is the optical gain per unit length (in cm��) given by
g� n

�
�

��
, and #


�#��
� d/c� is the light transit time between the two cavity mirrors.

Equation (4.A.12) may be easily integrated to yield:

P�
e�-��
�#��������� 1

1� (#

�#��

/#

G)

(4.A.13)

Thus, even if there are no photons in the cavity at t� 0, laser oscillations will be
triggered by the spontaneous emission of a single photon into the mode as long as
the condition G�#


�#��
/#

� 2T (gain�mirror loss) is satisfied.

Equation (4.A.13) shows, moreover, that the photon population builds up from
noise with a characteristic build-up time #

$
, which may be easily calculated

assuming that G
�

/#

�#��


 1/#


(G
�

is the unsaturated initial gain), i.e when the
mirror transmission T is small. Indeed, in that case (4.A.13) reads:

P� e���$ (4.A.14)

with the characterictic laser build-up time #
$

given by:

#
$
�

#

�#��
G
�

�
L/c�
�
�
L
�

1

�
�
c�

(4.A.15)

Characteristic laser build-up time

Let us recall that �
�

is the unsaturated laser medium gain.
With many authors, a different (and somewhat more arbitrary) notion is intro-

duced, which we will call the laser build-up time. It is the time t
$

necessary for the
laser to deliver a measurable power P

�
starting from a noise power P

�
. From

(4.A.14), this build-up time is given by:

t
$
� log(P

�
/P
�

)#
$
� log(P

�
/P
�
)

1

�
�
c�

(4.A.16)

Laser build-up time

The usual value taken for log(P
�

/P
�
) is 30, corresponding to an arbitrary detection

threshold power of 1 mW and a photon noise power of 10���W.

Example
When the laser gain is small, build-up time can be fairly long compared with other
characteristic times of the cavity. If we assume a laser medium of unsaturated gain
of 0.01 cm�� and a light velocity of c�� 2� 10�� cm s��, the characteristic build-
up time #

$
is 5 ns and the build-up time t

$
is 30 #

$
, i.e. 150 ns.
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4.B Saturation in laser amplifiers

We saw in Chapter 3, and again in Chapter 4, how the optical amplification
resulting from stimulated emission saturates rapidly. This saturation was de-
scribed by (4.10) and shall be briefly rederived here. We consider a four-level
system (Fig. 4.3) — in which carriers in the ground state �0
 are promoted by optical
pumping (R) to an excited state �3
. Carriers in level �3
 are assumed to relax
instantaneously to level �2
, which in turn possesses a long lifetime. Stimulated
emission then proceeds involving radiative carrier relaxation from level �2
 to �1
,
with a characteristic time #

�
. Subsequent relaxation processes between levels �1


and �0
 are finally assumed to proceed instantaneously. This situation is described
by the following system of differential equations:

�
dN

�
dt

�R��
��
N
�
��

N
�

#
�N

�
� 0

(4.B.1)

where � is the photon flux and �
��

is the optical cross-section for the transition
�2
� �1
. The stationary electron density N

�
in level �2
 is then given by:

N
�
�

R#
�

1��/�
���

�
N
��

1��/�
���

(4.B.2)

whereN
��

is the low signal inversion population density and �
���

is the saturation
flux 1/�

��
#
�
. The gain of the amplification medium is given by ���

��
(N
�
�N

�
)

or:

��
�
�

1� I/I
���

(4.B.3)

with �
�
� �

��
R#
�

being the cold cavity gain for the medium and the saturation
intensity I

���
being given by:

I
���
�

��
�

��
#
�

(4.B.4)

We recall that this value is generally quite small. For instance, for an optical
cross-section of 4� 10�� cm��, a lifetime of 1.2 ms, and a transition energy �� of
1.16 eV, I

���
� 500 W cm�, which corresponds to a fairly low optical power density.

We now consider a laser medium of length L and surface A, which we shall use
as an amplifier. At one end, we inject a light beam with an intensity I

�
and seek its

output intensity I
#

at the exit of the amplification stage. There are no mirrors in
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this amplifier to enable optical feedback. We recall that if the gain of a propagation
medium is �, then the electric field strength is proportional to e��� and the intensity
to e�. As the gain has a dependence on the intensity resulting from saturation
effects (Eq. (4.B.3)) and since the intensity is a function of the position z, the light
intensity in the medium is therefore a solution of the differential equation:

1

I(z)

d

dz
I(z)�

�
�

1� I(z)/I
���

(4.B.5)

This equation may be easily integrated to obtain the dependence of intensity I on
position z in the medium through the implicit relation:

�
�
z� ln�

I(z)

I
�
��

1

I
���

[I(z)� I
�
] (4.B.6)

Figure 4.B.1 shows this variation in intensity as a function of z position.
We notice that as the intensity increases as a function of position, the medium

saturates along with the amplification. Taking G as the total amplifier gain
(G� I

#
/I
�
) and G

�
as the small signal gain (G

�
� e��), Eq. (4.B.6) may be written

as:

I
�
I
���

�
G

G� 1
ln�

G
�
G � (4.B.7)

We see from this last equation that G tends rapidly towards 1 when the light
intensity exceeds its saturation value in the medium. The following example will
look at the variation in gainG of a laser medium having a small signal gain of 800.
We notice that the available gain decreases rapidly with I

#
. Thus, for an entrance

power of 882 W cm�, the gain is only 4, and the output power 3530 W cm��.
Saturation is a negative and unavoidable effect, as shall now be explained.
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We label as I
"���

the optical power dispensed by the amplification medium, i.e.
I
"���

� I
#
� I

�
. Expression (4.B.7) then gives:

I
"���

� ln�
G
�
G � I��� (4.B.8a)

If we neglect the logarithmic term in front of the linear term in (4.B.6), I
"���

may
then be written:

I
"���

� I
#
� I

�
� �

�
LI

���
(4.B.8b)

or again, using an alternative set of definitions:

I
"���
L

�
N
��

��
#
�

(4.B.9)

Maximum available power in an optical amplifier limited by optical saturation

This last equation states that the maximum power that an amplifier can give to an
incident light beam is given by the energy �� stored by each inverted atom (having
a density of N

��
) over time #

�
.

Example
For an amplification medium of Nd: YAG doped 10� cm��, the maximum stored
energy density is then given by 10� cm��� 1.16� 1.6� 10�� J or 1.85 J cm��.
The maximum power which may be transferred to an incident beam is then
1.85 J cm��/1.2 ms, or 1.54 kW cm��. For a 1-m long amplification stage, we there-
fore obtain a maximum available power of 154 kW cm��. The small signal gain is
�
�
��

��
N
��
� 4� 10�� cm�� 10� cm��� 4 cm��. The amplifier gain as a func-

tion of input and output power levels, given by (4.B.7) (and by taking
G
�
� 2� 1 m� 4 cm��� 800), is shown in Fig. 4.B.2.

Another aspect of gain saturation in laser amplifiers is pulse shape distortion.
Indeed, since the pulse amplitude non-linearly affects the amplification factor,
different parts of the optical pulses will be subject to very different amplifications,
leading to strong pulse shape distortions. This effect is of great importance in
optical fibre amplifiers, which have immense practical applications in telecom-
munications — we will discuss this now.

We consider an optical pulse of flux �
��

(t) entering a fibre amplifier. The
amplifier population is totally inverted before time t� 0, so that the pumping rate
R is identically zero during pulse amplification in the fibre. Moreover, we neglect
spontaneous emission — too slow — during the pulse duration. Let us concentrate
on the portion of the fibre situated between x and x��x during time interval t
and t�dt. The rate of population decrease N

�
(x, t) due to stimulated emission

under photon flux �(x, t) is given by (4.B.1), i.e. with the above assumptions:
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�
�t
N
�
(x, t)���

��
N
�

(x, t)�(x, t) (4.B.10)

Spatio-temporal variation of the photon flux is given by the continuity equation.
We will re-derive it here, because it is always a stimulating exercise! In the �x
interval, the photon surface density �

��
is related to photon flux by �(x, t)� c�

�
��

(x, t) where c� is the speed of light in the fibre. The rate of change in photon
number in the �x interval is given by the input photon flux minus the output
photon flux, plus the rate of stimulated emission in the interval �x, i.e:

�
�t

[�
��

(x, t)�x]��(x)��(x��x)� �
��
N
�
(x, t)�x�

��
(x, t) (4.B.11a)

which leads to the continuity equation:

�
�t
�(x, t)� c�

�
�x

�(x, t)��
��
N
�
(x, t)�(x, t) (4.B.11b)

�
�t
N
�
(x, t)���

��
N
�

(x, t)�(x, t) (i.e. 4.B.10)

Pulse propagation equations in laser amplifier

We have repeated Eq. (4.B.10) above because these last two non-linear coupled
equations are all we need to solve any pulse shape distortion problems due to
saturation in amplifying fibres.

Like all the propagation equations, (4.B.11) can be solved in Eulerian co-
ordinates. This means that we may ‘follow’ propagation of the pulse — riding on the
photons so to say — by introducing a new system of co-ordinates:

t� . t
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(4.B.12a)x� . x� c�t

By definition, the photon flux and inversion population in these new co-ordinates
are:

�� (x� , t� ).�(x, t)

(4.B.12b)N�
�
(x� , t� ).N

�
(x, t)

The �� (constant, t� ) follows the fate of the pulse during its propagation in the fibre.
The Jacobian of this transformation can be derived in the following mnemotechni-
cal way:

�
�t�
.

�
�t

(4.B.12c)�
�x�

.
�
�x

�x
�x�
�

�
�t

�t
�x�
�

�
�x
� c�

�
�t

so that in the new co-ordinate system (4.B.10) and (4.B.11) read:

�
�x�

�& (x� , t� )� �
��
N�
�

(x� , t� )�& (x� , t� ) (4.B.13)

�
�t�
N�
�
(x� , t� )���

��
N�
�

(x� , t� )�& (x� , t� ) (4.B.14)

Pulse propagation equations in a laser amplifier

in moving co-ordinates

Equations (4.B.13) and (4.B.14) seem nicer than their counterparts in Lagrangian
co-ordinates. In fact, it is a trompe-l’œil: it is the boundary conditions which are
now complex, but we will neglect this aspect in the rest of the discussion. We shall
now derive integral formulations of (4.B.13) and (4.B.14) — which are in fact all we
really need to know — known as the Frantz—Nodvik model. We integrate (4.B.13)
over the fibre length, with the small cheat of using boundaries at x� � 0 and x� �L
(leaving to the reader the task of deriving the criteria for validity of these bound-
aries):

�������

�
������

d�� (x� , t� )
�� (x� , t� )

��
��

x���

�
x���

N�
�

(x� , t� )dx� . �
��
N
�

(t) (4.B.15)

where, by definition, N
�

(t) is the integrated inversion population over the fibre
length (in cm��). From (4.B.15), one immediately obtains:

�
���

(t)��
��

(t)e���+����.G(t)�
��

(t) (4.B.16)
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where G(t) is the instantaneous gain of the laser amplifier. Now, (4.B.13) and
(4.B.14) can be merged to form the second integral relation:

�
�t�

x���

�
x���

N�
�

(x� , t� )dx� ��

x���

�
x���

�
�x�

�� (x� , t� )dx� ��[�
���
��

��
(t)] (4.B.17a)

so that

�
�t�
N
�

(t)��[�
���

(t)��
��

(t)] (4.B.17b)

The latter equation expresses that flux enhancement in the fibre amplifier equals
the integrated population inversion decrease, which is reasonable. Now we can
solve the system formed by (4.B.16) and (4.B.17b) to obtain, in the first place, the
evolution of the integrated population inversion:

d

dt
N
�

(t)���
��

(t)(e���+����� 1) (4.B.18)

Introducing the photon fluence as the time integral of the photon flux:

%(t).

�

�
�

�(t�)dt� (4.B.19)

we obtain the time evolution of the integrated population inversion, instantaneous
gain, and output photon flux:

N
�

(t)�N
���

log�
G
�

G
�
� (G

�
� 1)e��������+���� (4.B.20)

G(t)�
G
�

G
�
� (G

�
� 1)e��������+���

(4.B.21)

�
���

(t)��
��

(t)
G
�

G
�
� (G

�
� 1)e��������+���

(4.B.22)

Frantz–Nodvik equations

where N
���
� 1/�

��
is the saturation fluence, G

�
is the unsaturated amplifier gain

(G
�
��

��
N
��

), and N
��

is the initial integrated population inversion or total
available fluence in the fibre (in cm��). These three equations describe the pulse
shape distortion in a laser amplifier. For instance, if one injects a square pulse
�

��
(t)��

��
at the fibre input, (4.B.22) shows that the output will be stretched with

an exponential time constant e��������. Another case (Gaussian input) is numeri-
cally analysed in the example below and the result shown in Fig. 4.B.3. The effect of
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Fig. 4.B.3. Pulse distortion in a fibre amplifier due to saturation (see the example above).

pulse shape distortion is clearly seen in the figure.
Finally, as in the CW case derived at the beginning of this complement, it is easy

to find the maximum available energy E
"���

that one can extract from the fibre
amplifier:

E
"���

�N
��

�� (4.B.23)

This calculation is left as an exercise for the reader.

Example
Let us investigate the behaviour of a 2-m long erbium-doped fibre, with an inner
core diameter of 8 �m and doped to 7� 10� cm��. The wavelength of the emitted
photons is 1.55 �m (0.8 eV) and the optical cross-section of Er�� in the silica fibre is
taken as 10��� cm��. The saturation fluence is thus:

N
���
� 1/(10��� cm��)� 10�� cm��

The total available fluence N
��

available in the fibre (4.B.15) is:

N
��
� 7� 10� cm��� 2� 10� cm� 1.4� 10�� cm��

i.e. 14 times the saturation fluence. Large pulse distortion is thus expected. The
total available energy from the fibre (4.B.23) is:

E
"���

� 1.4� 10�� cm��� 1.6� 10�� J� 0.8 eV
� [3.14� (8� 10��)� cm�/4]� 0.9 mJ

The MATHEMA TIC A program below gives an example of Gaussian pulse
distortion.

N0 = 7.1019 (*cm-3*); � = 1.10−21 (*cm-2*) ; h� =
1.24

1.55
1.6 10−19;

Usat=
h�

�
(*J/cm2*) ; Dfibre= 8 10−4 (*8 �m*) ; S= N[� Dfibre2 / 4] ; # = 10 (*ns*) ;
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lfibre= 200 (*2 m*) ; G0 = Exp[� N0 lfibre] ; I0=
1

S
(* 1 W input*) ;

Iin[t–] := I0 Exp�− �
t

#�
2

� (*W/cm 2̂*) ; Uin= 10−9 I0 �
��

��

Exp�− �
t

#�
2

� dt (* J/cm 2̂*) ;

"[t–] :=
10−9

Usat �
�

��

Iin[t] dt; Nrel =
1

� N0 1fibre
Log�

G0

G0 − (G0− 1) Exp[−"[t]]� ;
Iinp= S I0 Exp�− �

t

#�
2

� ; Iout = S
G0

G0 − (G0 − 1) Exp[−"[t]]
Iin[t] ;

p1 = Plot[Iinp, �t, −50, 50�,
PlotRange� All, PlotStyle� RGBColor[1, 0, 0], DisplayFunction� Identity] ;

p2 = Plot[Iout, �t, −50, 50�,
PlotRange� All, PlotStyle� RGBColor[0, 1, 0] , DisplayFunction� Identity] ;

Show[p1, p2, DisplayFunction� $DisplayFunction, AxesLabel� ��t (ns) �, �Pout (W) ��]

FURTHER READING

L. M. Frantz and J. S. Nodvik, J. App. Phys. 24, 2346 (1963).

4.C Electrodynamic laser equations: electromagnetic foundations for
mode locking

Up until now, we have been chiefly interested in the density of photons contained
in a laser cavity, without paying much attention to the (electromagnetic) wave
nature of laser light. We recall that the photon results from quantization of the
electromagnetic mode of a cavity. This, however, does not free us from further
having to impose upon the photons an appropriate set of boundary conditions
relating to the cavity itself. An exact description of a laser cavity, therefore,
requires that we solve Maxwell’s equations, appropriately modified to include the
laser effect. Here, we will present elements of the theory of Slater modes, which will
allow us to understand the calculation method and its application to the phenom-
enon of mode locking. We consider a cavity of arbitrary shape, supposed to be
completely empty for the time being. Slater was able to show that Maxwell’s
equations for such a hollow cavity admit an ensemble of solutions which form a
complete and orthonormal basis. Furthermore, these solutions �E

�
, H

�
� are time

independent and must respect any and all other boundary conditions set by the
cavity (e.g. in the case of metallic boundaries, E

�
must be perpendicular to the

surface; whereas H
�

can only have a parallel component). Of course, the notion of
orthonormality should be understood in the sense of distributions, e.g.
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'
�
E
�
(r)E

$
(r)d�r� �

�$
, where �

�$
is the Kronecker delta. Furthermore, the elements

forming this Slater double basis must satisfy the following relationships:

k
�
E
�
(r)���H

�
(r)

(4.C.1)k
�
H
�
(r)���E

�
(r)

(We recall that H is the magnetic induction related to the magnetic field by
H�B/�

�
). Note that with these definitions, the vectors E

�
and H

�
automatically

satisfy two of Maxwell’s equations in a vacuum, i.e. divE
�
� 0 and divH

�
� 0. The

electric field E
�
(r) must additionally meet the surface boundary requirement that:

n�E
�
� 0 (4.C.2)

where n is the normal vector to the surface boundary. It is easy to show that
condition (4.C.2) and the definition of H

�
given by (4.C.1) further require the

magnetic induction at the boundary surface to satisfy:

n · H
�
� 0 (4.C.3)

From (4.C.1) and remembering that ����A��(� ·A)���A, we obtain:

��E
�
(r)� k�

�
E
�
(r)� 0

(4.C.4)��H
�
(r)� k�

�
H
�
(r)� 0

Every electromagnetic wave, being subject to Maxwell’s equations in any arbitrar-
ily shaped cavity, may therefore be decomposed in the Slater basis, thus automati-
cally simultaneously satisfying the boundary conditions. The Slater basis is therefore
a more generalized notion for photons in complex geometry cavities in which
plane waves may no longer constitute valid cavity solutions (and as such no longer
offer a viable eigenfunction basis). It is customary (following Slater) to write such a
decomposition in the form:

E(r, t)���
�

�

��
p
�
(t)E

�
(r)

(4.C.5)
H(r, t)���

�

�

��
�

�
�
q
�
(t)H

�
(r)

where �
�
� k

�
c�. The last two of Maxwell’s equations act on the decomposition

given in (4.C.5) and their effect may be summarized as:

p
�
� q"

�

(4.C.6a)p"
�
����

�
q
�
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which is in fact quite compact in terms of the required notation! Eliminating q
�

from these last two equations, we find:

p̂
�
���

�
p
�
� 0 (4.C.6b)

This tells us that the time dependence is constructed of functions which oscillate
with frequencies satisfying the requirement that �

�
� k

�
c�. Also, (4.C.6) reminds us

that p
�

and q
�

are conjugate variables and their quantization will give rise to
observables that will not commute. The Slater bases lead to a very concise
formulation of Maxwell’s equations in an empty cavity of arbitrary shape. It
remains, however, a somewhat formal notation as considerable work resides in
finding the basis �E

�
, H

�
�. We will see that in spite of this drawback, this approach

considerably simplifies the treatment of oscillation problems in cavities.
We will now interest ourselves in the electromagnetic fields which reside in a

cavity filled with a laser medium characterized by a susceptibility $� $
�
� i$

��
.

The electromagnetic waves in this laser cavity are solutions to Maxwell’s equa-
tions:

��E(r, t)��
�
�t

B(r, t)

(4.C.7a)1

�
�

��B(r, t)� i(r, t)�
�
�t

D(r, t)

where the current density of free charge carriers i(r, t) is given by Ohm’s law to be:

i(r, t)��E(r, t) (4.C.7b)

(Beware: here � is the electrical conductivity and not a cross-section!) The displace-
ment current D(r, t) is given by:

D(r, t)�
�
�t

[�E(r, t)�P

��	�

(r, t)] (4.C.7c)

In this last equation, P

��	�

is the polarization vector associated with the resonant
susceptibility of the laser medium, whereas the polarization due to the host
medium (for example, the YAG crystal in a Nd: YAG laser) is included in the
permittivity �.

Substituting (4.C.7b) and (4.C.7c) into (4.C.7a), and projecting equation (4.C.7a)
onto the Slater basis, we find immediately that:

��
�
q
�
�

�
�
p
�
� p"

�
�

1

��

�
�t�

�

P

��	�

(r, t)E
�
(r)d�r (4.C.8)

Therefore, every Slater mode is decoupled from the others. We then differentiate
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(4.C.8) and use the conjugation relation (4.C.6), which leads us to:

��
�
p
�
�

�
�
p"
�
� p̈

�
�

1

��

��
L�t��

�

P

��	�

(r, t)E
�
(r)d�r (4.C.9)

If �� 0 and P

��	�

� 0, we recover the dispersion relation �
�
� k

�
c� with a new

group velocity being given by c�� c/n
��

. The term in dp
�
/dt is a damping term. The

photons in the cavity escape with a time constant which is none other than the
photon lifetime in the cavity:

#

�

�
�
�
Q

�
�

(4.C.10)

where, by definition,Q is the quality factor of the cavity. In addition to ohmic losses
(4.C.7b), we may incorporate the effects of other dissipation mechanisms in � such
as mirror transmission. In this instance, it is required that the losses at the cavity
extremities be averaged over the entire volume of the medium.

We will suppose that the photon lifetime is very large in comparison to the mode
frequency �

�
, or again that the quality factor Q is very large. The solutions to

(4.C.9) without source terms are clearly sinusoidal functions with frequencies �
�

damped slowly by a factor of e����. It is therefore tempting to express the solutions
to (4.C.9) in the form:

p
�
(t)� p�
�$

�
(t)e��� (4.C.11)

where�
�
�� and p�
�$

�
(t) are slowly varying functions (i.e. dp�
�$

�
(t)/dt��

�
p�
�$
�

(t)).
We then substitute (4.C.11) into (4.C.9) to obtain the differential equation to which
p�
�$
�

(t) is subjected:

�(��
�
���)� i

��
� � p�
�$�

��2i��
�
�� p" �
�$�

(4.C.12)

�
e����
��

��
�t��

�

P

��	�

(r, t)E
�
(r)d�r

Equation (4.C.12) is then the most general equation for calculating the behaviour
of a real laser cavity of arbitrary shape and mode distribution.

To facilitate our physical interpretation of this result, we will temporarily
assume the existence of a single mode l, in the cavity. In (4.C.12), field polarization
in the laser is then given by:

P

��	�

(r, t)� �
�
$

��	�

E(r, t) (4.C.13a)

further, taking (4.C.5) and (4.C.11) into account leads to:
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P

��	�

(r, t)��
�
�

��
($
�
� i$

��
)p�
�$
�

e���E
�
(r) (4.C.13b)

where $

��	�

is the susceptibility of the laser medium as introduced in Section 3.3.
Substituting (4.C.13b) into (4.C.12) and supposing the laser to be in a stationary
state, we find the self-consistent equation to which � and $ are subject:

(��
�
���)� i

��
�
�

���
�

�
($
�
� i$

��
) (4.C.14)

Condition (4.C.14) is none other than the laser oscillation conditions, with the real
part constituting the condition on the phase and the imaginary portion setting the
condition on the gain. For example, the latter condition may be written as
����

�
$
��

. Recall that (3.36) relates the imaginary part of the optical susceptibil-
ity to the gain by:

$
��
�

�n�
k

(4.C.15a)

where n is the index of refraction and k is the wavenumber. The condition on the
imaginary portion of (4.C.14) may then be written:

��
1

c#


(4.C.15b)

which is nothing other than the oscillation condition (4.21b). We may similarly
develop a condition on the real part of (4.C.14). We find that the resonant
frequency of the cavity is not its eigenvalue, but rather is slightly offset by
dephasing resulting from dispersion in the laser medium. This phenomenon is
referred to as frequency pulling.

We will now use the Slater basis to explore the mode-locking mechanism in a
laser cavity in greater detail. We will suppose that the cavity is equipped with a
device allowing one to modulate the cavity loss (e.g. an acousto-optical cell, a
Pockels cell, etc., . . .) as shown in Fig. 4.17. The mechanism is described by a
modulated loss �(r, t) given by:

�(r, t)� �
�


cos(�
�

t) f (r) (4.C.16)

The function f (r) is arbitrary — the function, for instance, could be something like
f (r)� �(z� z

�
), which would represent a shutter placed in the z� z

�
plane. To

simplify the analysis, we will study the cavity response without taking into account
laser amplification, i.e. without introducing the source term P


��	�
. Including this

effect would complicate the required notation unnecessarily and grant us little in
terms of additional insights into the problem. We will concentrate on the mechan-
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ism of mode locking, which is independent from the mechanism of laser oscillation.
Clearly, the P


��	�
term will have to be reintroduced to obtain a more comprehen-

sive description of mode locking.
The equations describing the cavity are then given by Maxwell’s equations:

��E(r, t)��
�
�t

B(r, t)

(4.C.17)1

�
�

��B(r, t)� �(r, t)E(r, t)� �
�
�t

E(r, t)

Again, using the fact that ����A��(� · A)���A, and supposing E��/�t�
��E/�t (which is reasonable in practice), (4.C.17) implies:

��E��
�
�(r, t)

�
�t

E��
�
�
��
�t�

E� 0 (4.C.18)

We will now use a Slater basis taking into account the expression for p
�
(t) in

(4.C.11), i.e:

E(r, t)��
�

1

��
�

p�
�$
�

(t)e����E
�
(r) (4.C.19)

Expressing (4.C.18) in terms of this Slater basis gives:

�
�

�p�
�$
�

(��E
�
���

�
�
�
�E

�
)� (�

�
�� 2i�

�
�
�
�)p" �
�$

�
E
�

(4.C.20a)� i�
�
�
�
��
�$
�

E
�
� �

�
�p̈�
�$
�

E
�
�e����� 0

Using (4.C.3) and assuming a high-Q factor for the cavity (�/���
�
) and a slow

variation of p�
�$(dt�
�$/dt��
�
p�
�$), allows us to neglect the term in p̈�
�$

�
. Equa-

tion (4.C.20a) then becomes:

�
�

E
�
(r)�

�
p" �
�$
�

(t)e�������
�

E
�
(r)

�(r, t)

2�
�
�
p�
�$
�

(t)e���� (4.C.20b)

We can then use expression (4.C.16) for the loss modulation and project the
resulting equation onto a Slater mode E

�
(r), which gives:

p" �
�$
�

���
�

S
��

�
�


cos�
�

t

2�
p�
�$
�

e���������

(4.C.21)

���
�

S
��

�
�


4�
p�
�$
�

e�������%��
��

where S
��

is the overlap integral:
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S
��
�

�
�

�
�
�
�

f (r)E
�
(r)E

�
(r)d�r (4.C.22)

While perhaps not being entirely obvious, (4.C.21) is in fact the equation we were
looking for. It expresses how the perturbation �

�

couples the initially independent

modes to one another. As integration of (4.C.21) leads to terms in 1/(�
�
�

�
�
��

�

), sizeable contributions will only result for �

�
��

�
��

�

. Therefore, the

only modes to survive (in analogy to the ‘survival of the fittest’ mechanism
mentioned earlier) will be those having a frequency separation from neighbouring
modes close to the modulation frequency �

�

, i.e:

���
�
��

�%�
��

�

� 0 (4.C.23)

As in a cavity, the frequency separation between two adjacent modes is simply the
inverse of the round-trip time in the cavity (4.25), Eq. (4.C.23) gives the synchroniz-
ation condition for the modes found earlier in Section 4.7.3. Taking (4.C.23) into
account, (4.C.21) becomes:

p" �
�$
�

���
�$
���

e���� �p�
�$
���

e���� (4.C.24a)

where the coupling constant � is given by:

��
S
���%�

�
�


4�
�

�
�


4� �
�

f (r)E
�
(r)E

�%�
(r)d�r (4.C.24b)

In order to solve this system of equations (4.C.24), we write the coefficients p�
�$
�

in
the form:

p�
�$
�

(t)� ic
�
e���� (4.C.25)

Substitution of this into (4.C.24) then gives:

�qc
�
�

�
�
c
���

�
�
�
c
���

(4.C.26)

This recurrence relation admits as a solution:

c
�
� I

��
�
�� (4.C.27)

where I
�

is the modified Bessel function of order q. Finally, the electromagnetic
field in the cavity is given by (4.C.19) with the result (4.C.26) yielding:

E(r, t)��
�

I
��

�
�� e���&����
��E

�
(r)
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(4.C.28)
��

�

1

	�2�
�
��

e�����e���&����
��E
�
(r)

where we have reintroduced �
�

as the central oscillation frequency of the laser
medium (which is somewhat arbitrary in relation to the derivation given above).
Equation (4.C.28) shows how the phases, frequencies, and amplitudes of the
different modes are strictly interrelated by the loss modulation.

Thus, use of the Slater mode formalism has allowed us to show that a modulated
loss in a cavity will synchronize modes whose frequency separation approaches the
modulation frequency. Equation (4.C.25) also shows that if the losses are distrib-
uted uniformly throughout the cavity ( f (r)� constant), then mode locking be-
comes ineffective. This formalism can be applied to many situations and remains
an infallible approach for solving any and all laser problems. The most common
Slater basis employed by far is that consisting of Gaussian functions.

Finally, it is worth noting that this formalism only describes a medium subject
to inhomogeneous broadening where each mode may oscillate independently of
the others. In a homogeneous gain medium, mode locking is still possible. In this
case, the lateral modes �

�
� q�

�

are created by non-linear interactions between

the laser medium and the modulator oscillations �
�


. The formalism required to
describe the ensuing mode locking in the cavity then becomes very different from
that developed in this section.

FURTHER READING

W. H. Louisell, Quantum Statistical Properties of Radiation, Wiley, New York (1973).
A. E. Siegman, Lasers, University Science Book, Mill Valley, CA (1986).
J. C. Slater, Microwave Electronics, Van Nostrand, Princeton, NJ (1964).
A. Yariv, Quantum Electronics, Wiley, New York (1989).

4.D The Schawlow–Townes limit and Langevin-noise force

One of the most cited particularities of laser emission (outside of its brilliance) is its
highly monochromatic nature. The question may then be asked, ‘What limits the
spectral width of laser emission?’ We might reasonably think the finesse of the
cavity resonance or the width of the atomic transition, which participates in the
stimulated emission, as being the causes. Both of these answers, however, are very
wrong! In fact, taking these considerations into account leads to expressions
several orders of magnitude larger than what is observed! For example, for a
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r r

d

I

I

= c’/2d

F

Fig. 4.D.1. The bandwidth of the transmission peaks in a Fabry—Pérot cavity is equal to the
mode spacing ��� c�/2d divided by the cavity finesse.

Fabry—Pérot type cavity (of length d, with mirror reflectance r, see Fig. 4.D.1), the
cavity finesse F and the width of the Fabry—Pérot resonance frequency ��


are

given (consult Complement 9.D) by:

F� �
�r

1� r
�

2�
T

(4.D.1)
��


�

1

F

c

2d
�

1

2�#


where #


is the photon lifetime in the cavity given by (4.24b). For a cavity 10 cm in
length and a transmission coefficient T of 10��, we obtain a finesse of 628 and a
bandwidth of 2.4� 10�Hz, in stark contrast with experimental laser bandwidths
found to be of the order of 1 Hz for certain lasers. Possible contributions from the
widths of atomic transitions are often of the order of gigahertz (see Table 4.1). To
understand the origin of the extremely narrow bandwidths associated with laser
emission, we need to return to and, to some extent, modify the dynamic equations
given for photons in a cavity (4.A.12). To begin, we recall that the electric field
E(x, t) at any point x in the laser cavity is given by E(x, t)�Re(E(x, t)e����), where
time dependence of the envelope functionE(x, t) describes the time evolution of the
electromagnetic field due to laser amplification. This dependence is much slower
than that described by the electromagnetic field oscillations given by e����. In
(4.A.12), we replace the number of photons in the cavity P, by the envelope of the
electric field E(t) defined at any given point in the cavity (supposing the entrance
mirror to be at x� 0) by recalling the relationship between these two quantities
(see (2.77)) to be:

P�
��E��V

2��
(4.D.2)
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f (t,   )1

f (t,    )2

t

Fig. 4.D.2. A stochastic process is a random function f (t, ") where each realization (or draw)
" leads to a function f (t). At any given time t, f (t, ") is a random variable.

where � is the dielectric constant of the medium (�� �
�
n�
��

). We note that the
spontaneous emission term (the �1 term in (4.A.12)) does not tell us anything
about the moment when the photon is spontaneously released. We therefore
replace it by a forceF(t) which will be used to describe the random character of this
emission. We then obtain:

dE

dt
�

1

2�
1

#


�
G

#

�#��
�E�F(t) (4.D.3)

Langevin’s equation

where F(t) is the Langevin force and has the following characteristics:
∑ F(t) is a stochastic process or a random variable with time-dependent behaviour.

Figure 4.D.2 depicts such a stochastic process. It is a function F(t, ") which is
randomly selected at t���, and where " is an event belonging to an ensemble
of possible results �. For each draw (i.e. for each value of "), F(t, ") is a function
of time t, and for each time value t, F(t, ") is a random variable.

∑ F(t) is an ergodic process (see Complement 3.A), i.e. implying that the temporal
and statistical averages are identical at all times t:

F ��
�

F(t, ")d"� lim

���

1

T

���

�
����

F(t, ")dt (4.D.4)

∑ The process is without memory, i.e. the random variables F(t) and F*(t� #) are
uncorrelated for any #� 0:

F(t)F*(t� #)�A�(#) (4.D.5a)

where A is a constant to be determined later on. We further suppose that:

F(t)F(t� #)� 0 (4.D.5b)

This is not absolutely necessary (it could be written in the form of B�(#)), but it
greatly simplifies calculations.
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F(t  )

g  (  )

E(t  )

e g  (  )e
2

S(  )
S(  )

Fig. 4.D.3. A system with linear gain S(�) transforms a stochastic process of spectrum g
�
(�)

into a stochastic process with g
#
(�)� �S(�)��g

�
(�).

∑ Finally, F(t) is a process with null average:

F(t)� 0 (4.D.6)

Let us now write the solution to (4.D.3). It can easily be shown that this solution is
given by:

E(t)�

�

�
�

F(t�)e�������dt� (4.D.7)

where we have temporarily set:

��
1

2�
1

#


�
G

#

�#��
� (4.D.8)

Equation (4.D.7) may be interpreted as the response of a system with linear gain
(where the response to the impulse varies as e��) to a random excitation F(t). This is
a classic problem in electronics (see Fig. 4.D.3). We first calculate the average value
of the electric field E(t):

E(t)�

�

�
�

F(t�)e�������dt�� 0 (4.D.9)

from (4.D.6). The variance of the field E(t) is given by:

�E(t)���
�

�
�

F(t�)e�������dt�
�

�
�

F*(t�)e�������dt�

(4.D.10)

�

�

�
�

dt�
�

�
�

dt�F(t�)F*(t�)e�����������

Using the fact that the process is without memory (4.D.5), this last expression takes
the form:
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Im(E(t ))

Re(E(t ))

E(t ) =    I(t )

  I(
t )

Fig. 4.D.4. Fresnel representation of the amplitude and phase of an electric field. Under the
effect of the Langevin force, the vector E(t) rotates in the plane (the phase is said to diffuse)
while the amplitude remains largely unaffected.

�E(t)���A

�

�
�

dt�
�

�
�

dt��(t�� t�)e����������� �A

�

�
�

dt�e�������� (4.D.11)

or replacing � by its value (4.D.8):

�E(t)���
A

(G/#

�#��

� 1/#

)

[e�-��
�#��������� 1] (4.D.12a)

or again, by introducing the number of photons P with the help of (4.D.2):

P�
�VA
2��

1

(G/#

�#��

� 1/#

)

[e�-��
�#��������� 1] (4.D.12b)

Comparing this expression to that obtained within the framework of Complement
4.A (see (4.A.13)), we see that the two approaches lead to an identical result by
identifyingA as:

A�
2G��
�#


�#��
V

(4.D.13)

The approach of the Langevin equation is better, however, than that of the ‘excess
photon’ introduced in Complement 4.A, in the sense that it describes the random
dynamics associated with laser emission. We will now introduce the amplitude I(t)
and the phase �(t) of the electric field, see Fig. 4.D.4:

E(t)��I(t)e����� (4.D.14)

Evidently, I(t) and �(t) are now stochastic processes. Substituting (4.D.14) into
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(4.D.3), we obtain the following system of differential equations:

dI

dt
� 2�I��IRe[F(t)e���] (4.D.15a)

d�

dt
�

1

i�I
Im[F(t)e���] (4.D.15b)

We see that in (4.D.15a), I is damped by the term 2�I. Consequently, the amplitude
fluctuations of lasers are very small and often neglected. We will perform this
calculation in Complement 13.G for the case of semiconductor lasers. Equation
(4.D.15b), however, has no such damping term on the phase. Therefore, the phase
fluctuations will be considerable. This effect results from the random temporal
characteristics associated with spontaneous light emission. We rewrite (4.D.15b) in
the form:

d�

dt
�

1

2i�I 
[F(t)e����F*(t)e���] (4.D.16)

where, considering the weak fluctuations in amplitude I, we have replaced it by its
average value I . Equation (4.D.16) may be formally integrated as:

�(t)��(t
�

)�
1

2i�I 

�

�
��

[F(t�)e����F*(t�)e���]dt� (4.D.17)

Clearly, the average value of � is zero. The variance, however, is given by:

���� [�(t)��(t
�

)]�

��
1

4I 

�

�
��

dt�
�

�
��

dt� [F(t�)e����F*(t�)e���][F*(t�)e���F(t�)e���] (4.D.18a)

This last expression may be considerably simplified if we utilize the relationship in
(4.D.5) and further suppose that:

F(t)e����F(t) e��� (4.D.18b)

This last expression generally holds, in spite of the fact that the processes F and �
are clearly correlated. Equation (4.D.18) then becomes:

�����
1

4I 

�

�
��

dt�
�

�
��

dt� [F(t�)F*(t�)�F(t�)F*(t�)]

(4.D.19)
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�
A

2I 

�

�
��

dt�
�

�
��

dt��(t�� t�)�
A

2I 

�

�
��

1 dt��
A

2I 
(t� t

�
)

We find therefore that the standard deviation of the phase changes with time as
described by:

��������	
A

2I 
(t� t

�
) (4.D.20)

We recognize (4.20) takes the form of a diffusion equation where the diffusion
constant D is given by D�A/2I , or given the expressions for A in (4.D.13) and I
from (4.D.2) and (4.D.24a):

D�
A

2I 
�

1

2

2��G
�#


�#��
V

�V
2��P 

�
1

2

G

#

�#��

1

P 
(4.D.21)

Above laser threshold, the gain G is clamped to its threshold value given by
G/#


�#��
� 1/#


. Moreover, (4.D.1) tells us that the bandwidth of the cold cavity (i.e.

the bandwidth of the Fabry—Pérot resonance) is given by ��

� 1/2�#


. The

diffusion coefficient for the phase is then finally found to be:

D�
���


P 

(4.D.22)

Phase diffusion constant (in s−1)

We now need only calculate the emission bandwidth for a laser. To do so, we write
the electric field corresponding to the laser emission in the canonical form de-
scribed at the beginning of this complement:

E(t)�Re[E(t)e�����]�
1

2
[E(t)e������E*(t)e�����] (4.D.23)

where �
�

is the emission frequency of the laser. From Complement 3.A, we know
that the spectral distribution of the signal E(t) is given by the Fourier transform of
the autocorrelation function (Eq. (3.A.13)). This is the Wiener—Kintchine theorem
(see Fig. 4.D.3). This autocorrelation function may be calculated by writing:

E(t)E(t� #)�

(4.D.24a)1

4
[E(t� #)e����������E*(t� #)e��������][E(t)e������E*(t)e����]

or again

E(t)E(t� #)�
1

4
[E(t� #)E*(t)e������ c.c.] (4.D.24b)

191 4.D The Schawlow–Townes limit and Langevin-noise force



We replace the electric field E(t) by its expression in (4.D.14) and by remembering
that the amplitude of the fluctuations in I are small enough to warrant its
substitution by its average value:

E(t)E(t� #)��I(t� #)I(t)e�������������� (4.D.25)

We have already encountered the average value for e�������������� in (3.A.16) assum-
ing a Poisson-type process. Making the same assumption about �(t):

e��������������� e������ e��)� (4.D.26)

where ��� is the variance of the phase fluctuations. Consequently, the expression
from the autocorrelation function (4.D.24) now becomes:

G
�

(#)�E(t)E(t� #)�
1

4
(I e��)�e������ c.c.)�

I 

2
e��)�cos (�

�
#) (4.D.27)

The spectral distribution for E(�) is then given by the Wiener—Kintchine theorem
(3.A.13), i.e. by taking the Fourier transform of (4.D.27), or:

i(�)� �E(�)���
I 

�
D/2�

(���
�

)��D�/4
(4.D.28)

Using the expression for the diffusion coefficient in (4.D.22), we find that the
bandwidth of the spectral distribution for emitted laser light (as might be meas-
ured, for instance, by a dispersive spectrometer) is given by:

��
"#
�

��


P 
(4.D.29)

The Schawlow–Townes linewidth

Thus, we conclude that the laser linewidth is the cavity bandwidth ��


divided by
the number of photons in the cavity (a considerable quantity). The bandwidth of a
laser may therefore theoretically be extremely fine. Equation (4.D.29) can be put in
a more accessible form for calculation by using (4.D.1) for ��


and (4.30), which

relates the number of photons P in the cavity to the laser output power P:

P�P
h�
#


(4.D.30)

The Schawlow—Townes equation then takes the form:

��
"#
�

h�
2�#�


P

(4.D.31)

The Schawlow–Townes equation
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Example
(a) The linewidth of a Nd�� : YAG laser cavity (h�� 1.17 eV, n

��
� 1.82) 1 cm in

length, having a mirror transparency of 0.5% (or a photon lifetime of 24 ns), and
emitting an output power of 1 mW is ��

"#
� 1.17� 1.6� 10�� J/

(2�� (24� 10� s)�� 10��W) or 5� 10��Hz.
(b) The linewidth of a semiconductor laser (h�� 1.4 eV, n

��
� 3) 100 �m in length,

possessing mirrors with a transparency of 30% (corresponding to a photon
lifetime of 6 ps), and emitting an output power of 1 mW is ��

"#
� 1.4�

1.6� 10�� J/(2�� (6� 10��� s)�� 10��W) or 1 MHz.

FURTHER READING

G. Grynberg, A. Aspect, and C. Fabre, Introduction aux lasers et à l’optique quantique, Ellipses,
Paris (1997).

A. E. Siegman, Lasers, University Science Book, Mill Valley, CA (1986).

4.E A case study: diode pumped lasers

In this section, we will interest ourselves in an aspect of considerable importance in
terms of the technological application of lasers — laser efficiency. This quantity is
defined as the ratio of the output power delivered by a laser to the optical power
required to pump it. We will take as an example a fairly common laser used in
industry — the neodymium-doped YAG laser (or Nd�� : YAG). The ensemble of
atomic levels which come into play in the operation of the Nd�� : YAG laser is
shown schematically in Fig. 4.E.1a. As one may notice from the absorption spectra
of this ionic system (Fig. 4.E.1b), the wavelength of the pump photon transition is
0.81 �m and its associated bandwidth is of the order of ��� 30 nm. Let us begin
by calculating the efficiency of this laser used in conjunction with a xenon flash
lamp as a pump source. A Xe lamp may be considered to be a blackbody raised to
a temperature T; in which case, the spectral emittance in terms of energy is given by
Eq. (2.B.4). At best, the power absorbed �P by the pump transition is given by the
integral of the spectral emittance (2.B.4) over the absorption window �� of the
laser material (see Fig. 4.E.2) or:

�P�
d

d�
R(�, T )���

2�hc�
��

1

e�������� 1
�� (4.E.1a)

or

�P� 1.14� 10 e��������'�����W �m��m�� (4.E.1b)
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Fig. 4.E.1. (a) Levels involved in absorption and emission in a Nd�� : YAG laser. (b)
Absorption spectrum of Nd�� : YAG (THALES).

The total energy emitted is the integral of (2.B.4) over the entire spectrum, which
using Stephan’s law (2.B.8) gives:

P� �T�� 5.67� 10�	T�W m�� (4.E2)

The maximum possible efficiency of the laser is then �P/P or:

�P
P

� 2� 10��T��e��������'����� (�m) (4.E.3)

Assuming a typical blackbody temperature of ,8000 K and a spectral absorption

194 Complement to Chapter 4



Nd    : YAG3+

P

Blackbody

(a) (b)

Fig. 4.E.2. In a laser pumped by a flash lamp (a), the overlap between the blackbody spectral
distribution (very large) and the laser absorption band (very narrow) leads to poor conversion
efficiencies (b).

width of 0.03 �m, we find an efficiency of roughly 1.5%. Therefore, intrinsically, the
efficiency of lamp pumped lasers is very low as the bulk of the light emission falls
outside of the absorption band of the laser (see Fig. 4.E.2).

It is therefore natural to seek a highly monochromatic and brilliant pump
source as afforded by semiconductor laser diodes. At the end of this complement
we will see the reason for using diode pumped lasers, as opposed to making direct
use of the laser diodes themselves.

Figure 4.E.3 represents a diode pumped Nd�� : YAG laser assembly, as first
conceived of by Robert Byer and his research team at Stanford. A lens is used to
couple the otherwise divergent light beam of the GaAs laser diode to the entrance
mirror of the laser rod. The laser rod shown in the figure was fashioned into the
shape of a Gaussian resonator with length d� 2L� 0.5 cm.

We recall that aGaussian beam perfectly describes the propagation of diffraction
limited electromagnetic waves. If a Gaussian wave propagates along the Oz axis,
the amplitude of the electromagnetic field U(�, z) as a function of the distance �
from the Oz axis is given (see Fig. 4.E.4) by:

U(�, z)�A
W
�

W(z)
e�����/�����e������� ����!��������� (4.E.4)

where various parameters of interest are:

R(z)� z�1��
z
�
z �
�

� Radius of curvature

W(z)�W
��1��

z

z
�
�
�

�
���

Spatial extent

z
�
�

�W�
�
n
��

�
Rayleigh length (4.E.5)
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Fig. 4.E.3. Schematic of a Nd: YAG laser pumped by a laser diode.
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To minimize the threshold power of the pump, we are generally interested in
diminishing the overall volume occupied by the laser mode. Let us suppose we
have a beam width W

�
of 40 �m (this is fairly difficult to achieve with a laser diode).

Since �� 1.06 �m and n
��
� 1.82, the third equation in (4.E.5) gives us the

Rayleigh length of the beam, i.e. z
�
� 8.6 mm. The radius of curvature of the

entrance mirror is given by the first equation in (4.E.5), i.e.R� 3.2 cm. As z
�

 d/2,

we may consider W(z)� constant, so that the volume V occupied by the Gaussian
mode is then �dW�

�
or 2� 10�� cm��.

We are now interested in the photon lifetime in the cavity neglecting parasitic
absorption �

�
. The entrance mirror has 100% reflectivity for photons at 1.06 �m

and the exit mirror has reflectivityR
#
� 99.7%, which yields a photon lifetime (see

(4.24b)) of:

#

�

2d

T
#
c/n

��

�
2� 0.5 cm

3� 10��� 3� 10�� cm s��/1.82
� 20 ns
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The threshold inversion density is then (see Table 4.1 and Eq. (4.23c)):

n
���	���
"

�
1

�
��
#

c/n

��

�
1.82

4� 10�� cm�� 20 ns� 3� 10�� cm s��

� 7.5� 10�� cm��

and the power density at threshold is given by:

p
���	���
"

�
n
���	���
"

��
����

#
�

�
7.5� 10�� cm��� 1.5 V� 1.6� 10��C

1.2� 10�� s
� 1.5 W cm��

The pump power at threshold is then given by:

P
���	���
"

� p
���	���
"

V� 0.03 mW

The required pump power at threshold is particularly low for two reasons:
∑ the volume V is very small (enhanced by the Gaussian resonator);
∑ all the pump photons have energies that are resonant with the pump transition

in the laser medium (i.e. all photons are useful in pumping the laser medium).
Clearly, parasitic loss mechanisms (absorption by impurities, . . .) will tend to
increase the threshold pump power requirement. Nonetheless, diode pumped
lasers maintain extremely low threshold pump power requirements.

The output power P
#

far above threshold is given by (4.28b), (4.29), and (4.24b),
or in our case (�

�
� 0, R

�
� 1, and T

#
� 1):

P
#
�

1

2
R
�
#

c/n

��
T
#
��


��	�
� dR

�
��


��	�
(4.E.6)

We recall that the pump rate R
�

is in cm�� s��. Supposing all the pump photons
are absorbed along the total length d of the laser rod, the pump rate is then related
to pump power by:

P
����

� dR
�
��

����
(4.E.7)

The efficiency is then found to be:

P
#

P
����

�
��


��	�
��

����

� 1� )
�

(4.E.8)

which is easy to understand conceptually: )
�

is the laser quantum defect. In this
case, the excess energy in the pump photons (i.e. the quantum defect) is trans-
formed into heat.

A threefold advantage is gained in using diode pumped lasers over the direct use
of laser diodes. First, the Gaussian resonator in the YAG rod plays the role of a
mode transformer. As a result, the optical power of several GaAs laser diodes
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Fig. 4.E.5. Experimental set-up for a Q-switched Nd: YAG laser pumped by laser diodes
(courtesy of J. P. Pocholle, THALES).

possessing relatively poor beam characteristics can be efficiently converted into a
single diffraction limited beam by the resonator. Also, as explained in Complement
4.D, the bandwidth of a Nd: YAG laser is significantly less than that of a semicon-
ductor laser (the principal reason being the large differences in the photon lifetimes
between the two mediums). Last, thanks to the long lifetime of its excited state
(#
�
� 1.2 ms), the Nd: YAG laser allows for Q-switched operation, resulting in the

production of laser pulses with peak power levels 10� times greater than the
average power levels supplied directly by the GaAs diodes. Figure 4.E.5 shows the
configuration of an actual diode pumped Nd: YAG laser.

FURTHER READING

W. Koechner, Solid-State Laser Engineering, 4th Edn, Springer, Berlin (1996).
T. Y. Pan and R. L. Byer, IEEE J. Quantum ElectronQE 24, 895 (1988).
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5 Semiconductor band structure

5.1 Introduction

In this chapter, for the first time we touch upon condensed matter physics per se.
Until now, we have studied quantum systems comprising two, three, and up to
four quantized levels situated either in a vacuum or in a medium characterized by a
given index of refraction. We have not, however, considered the problem of
interaction of many such systems present at elevated concentrations and leading
to chemical bonding on a mass scale. This problem, a priori insoluble given that
there are as many coupled equations needing to be solved as there are electrons in
matter (of the order of 10�� cm��), becomes greatly simplified in the case of
crystalline or semicrystalline materials.

5.2 Crystal structures, Bloch functions, and the Brillouin zone

The most stable form of matter at zero kelvin results from the periodic arrange-
ment of atoms into a crystalline structure. The number of possible crystalline
structures is immense and forms the subject of a science in itself — crystallography.
A crystal structure is characterized by the periodic repetition (ad infinitum or close
to in practice!) from point to point (with the ensuing pattern being referred to as a
lattice) of a basis consisting of a single atom or assembly of atoms. The term
‘monoatomic lattice’ is used to describe the lattice that results when a basis
comprising a single atom is used to fill the lattice. The most common lattice type
for elemental semiconductor crystals (Si, Ge, C) is that of diamond. For binary
semiconductors, such as GaAs, the most common structure is that of zincblende,
shown in Fig. 5.1.

Of immediate concern is the fact that the crystal lattice may be spanned by
linear combinations of three fundamental vectors a

�
, a
�

, and a
�

, i.e. all atomic
bases are distributed at points r

�
such that:

r
�
� n

�
a
�
� n

�
a
�
� n

�
a
�

(5.1)

where the n
�
s correspond to arbitrary integers. The Hamiltonian which describes

the interaction between the electrons and the atoms in the crystal is extremely
complex as it must take into account all the electron interactions, the nuclear
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Fig. 5.1. The zincblende crystal structure.

motions, etc. A primary aim of solid state physics then is to show that many of
these interactions average out across the crystal to the extent by which they may be
successfully represented by an effective potentialU(r). Given the periodic nature of
the lattice, the Hamiltonian used to describe an electron in a crystal takes the form:

H
��!��

�
p�

2m
��

�

U(r� r
�
) (5.2)

or alternately:

H
��!��

�
p�

2m
�V(r) (5.3)

where V(r) possesses the periodicity of the crystal:

V(r� r
�
)�V(r) (5.4)

Given the periodicity condition (5.4), the periodic potential may be expanded in
terms of a Fourier series:

V(r)� �
G$�%

V� (G)e��Gr (5.5)
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Fig. 5.2. Crystal lattice (a), and its associated reciprocal lattice (b). The translation vector for
the reciprocal lattice is the vector A located at 2�/a. The two perpendicular lines at the
midpoints of OA and �OA define the first Brillouin zone of the reciprocal lattice.

where the points G(OG�G) are distributed in a reciprocal lattice (RL) space
spanned by the unitary vectors:

A
�
� 2�

a
�
� a

�
a
�

· a
�
� a

�

; A
�
� 2�

a
�
� a

�
a
�

· a
�
� a

�

; A
�
� 2�

a
�
� a

�
a
�

· a
�
� a

�

(5.6)

The construction of reciprocal lattices of crystalline structures lies within the
venerable domain of geometry. Figure 5.2 shows a one-dimensional, monoatomic
lattice (a) alongside its associated reciprocal lattice (b).

We recall that in a vacuum, where H� p�/2m, the stationary wavefunctions of
free electrons are represented by the wavevectors k and may be written in the form
of exp(�ik · r). It can easily be shown (Complement 5.A), that the solutions to
Schrödinger’s equationH

��!���

%(r)�E%(r) are Bloch—Floquet functions, and that

they may be indexed according to their wavevector k:

%(r)� uk(r)e��k�r (5.7)
Bloch–Floquet functions

where the functions uk(r) possess the periodicity of the crystal:

uk(r� r
�
)� uk(r) (5.8)

The real (or imaginary) portion of a Bloch—Floquet function is shown in Fig. 5.3.
We note the general form of the functions, which consists of rapidly varying atomic
wavefunctions under a more slowly modulated envelope function exp(�ik · r). It is
these modulations that are transported within the crystal and which lie behind the
phenomenon of effective mass described later on.

As usual, when dealing with an infinite medium, the wavevectors k are pseudo-
quantized for reasons of convenience (see Complement 1.A). This can be achieved
by introducing infinite potential barriers along the six planes defined by:

n
�
� 0, n

�
� n

���
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Fig. 5.3. Bloch—Floquet functions (stationary electron states in the periodically varying
potential of atoms distributed throughout a crystalline lattice) are the periodic modulation of
atomic wavefunctions by a travelling wave of the form e��k�r.

n
�
� 0, n

�
� n

���
(5.9)

n
�
� 0, n

�
� n

���

In this case, pseudo-quantization would have led arbitrarily to positive discrete k
vectors. The Bloch wavefunctions would therefore have been stationary as they
result from waves propagating back and forth in both directions between the
limiting surfaces. It is customary in solid state physics to employ another pseudo-
quantization procedure: the Born—von Karman cyclic boundary conditions. We will
suppose that at all L

�
�Na

�
(i� 1, 2, 3), the crystal repeats itself identically, or in

other terms, that all space within the crystal is completely filled by adjacent boxes
having dimensions of L

�
�L

�
�L

�
. The Born—von Karman cyclic conditions

require that the wavefunction %(r) be the same within each of these boxes, i.e. that
%(r� n

�
L
�
� n

�
L
�
� n

�
L
�
)�%(r). The wavevectors k then belong to a recipro-

cal lattice described by the points:

k
�
� n

�

2�
Na
�

; k
�
� n

�

2�
Na
�

; k
�
� n

�

2�
Na
�

(5.10)

where n
�
, n
�

, and n
�

are now positive or negative integers. Clearly, the quantityN
may be made arbitrarily large, in such a manner as to keep unobservable any
effects relating to the pseudo-quantification procedure.

Together with the Born—von Karman boundary conditions, the Schrödinger
equation, (5.3), has solutions of Bloch form (5.7), i.e. 	k(r). For each k there is a
whole family of solutions whose eigenenergies we designate as E

�
(k), m being an

integer. We can conceive that these families form continuous bands in the sense
that for k� close to k, E

�
(k�) will be close to E

�
(k). Therefore, m is referred to as a

band index.
Over larger scales, however, we must realize that an eigenstate of Bloch form

(5.7) corresponding to the band m, with G a reciprocal lattice vector, can also be
written as:
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�k(r)� u

�k(r)e��k�r� [u
�k(r)e��G�r]e���k�G��r (5.11)

which is again of Bloch form since e��G�r is a periodic function of the crystal lattice.
It is therefore identical to one of the solutions of the Schrödinger equation for the
wavevector k�G. For the eigenenergies this means that we have:

E
��

(k�G)�E
�

(k) (5.12)

for somem�. The energy bands are consequently periodic in k, with the period given
by the reciprocal lattice.

A further consequence of the fact that 	
���k�G(r) is identical to and the same

solution as 	
��k

(r) is that to present all the solutions we do not need all of the
reciprocal space.

A common practice (as explained in Complement 5.A) is to restrict the integer
values n

�
in (5.10) to the interval�N/2� n

�
�N/2 (i.e. n

�����
� 0,�1,�2, . . .,�N/

2). Thus, the wavevectors k belong to a zone defined by:

�
�
a
�

� k
�
�

�
a
�

; �
�
a
�

� k
�
�

�
a
�

; �
�
a
�

� k
�
�

�
a
�

(5.13)

This zone is defined by a set of perpendicularly bisecting planes which cross the
reciprocal lattice (RL) translation vectors (connecting the nearest neighbouring
RL points) at their respective mid-points. The region of space in the RL delimited
in such a fashion is referred to as the first Brillouin zone. Figure 5.2 represents the
first Brillouin zone in a one-dimensional structure. Figure 5.4a and b shows the
first Brillouin zone for a two-dimensional square lattice and for a three-dimen-
sional zincblende structure. The most important points (and corresponding direc-
tion vectors), in the case of the latter, have been labelled according to convention.

In some cases it is more convenient to exploit the periodicity of the bands to
count the states, by associating one eigenenergy with each point in reciprocal
space. A particular case is the nearly free electron model studied in Complement
5.A. To return to the standard band structure in the first Brillouin zone from this
representation of solutions, one should perform a translation of the band, as in Eq.
(5.12), by the reciprocal lattice wavevector G, which makes k�G lie in the first
Brillouin zone. This procedure is known as band folding and is shown explicitly in
Fig. 5.A.2.

One of the principal aims of solid state physics is to solve Schrödinger’s
equation, obtained by the introduction of (5.11) into (5.2). This is generally carried
out using heavy numerical methods and allows one to obtain a relationship E

�
(k)

between the electron energies in a structure, their corresponding wavevectors k in
the first Brillouin zone, and the band index m. The ensemble of resulting curves
E
�

(k) defines the band structure of a material. We will content ourselves here with
summarizing the principal aspects of this important area of solid state physics.
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Fig. 5.4. First and second Brillouin zones for a two-dimensional square lattice (a) and the
first Brillouin zone for a three-dimensional zincblende structure (b). In the latter case, the more
significant points of symmetry have been labelled according to convention.

5.3 Energy bands

One of the most spectacular consequences of interaction between electrons in a
crystalline lattice and the periodically varying crystal potential is the existence of
forbidden energy bands for the electrons. There are several ways of understanding
the origin of these forbidden bands and, of course, all of them are interrelated.

From the point of view of Chapter 1, the wavelength of an electron of energy E

in vacuum is given by �� 2��/�2mE. The typical ionization energy for electrons
in an atom is ,5 eV, corresponding to a wavelength of 5 Å. As atoms in a crystal
are typically separated by 3 to 5 Å, the electronic matter-waves will be diffracted
by the periodic crystal potential (see Fig. 5.5). More precisely, those electronic
waves for which 2�/�� k��/a

�
, i.e. those which are located at the edge of the

Brillouin zone, are diffracted and cannot propagate through the crystal thus
forming a zone of forbidden energies. The theoretical approach founded upon this
conceptual image corresponds to the nearly free electron model. This method is
examined more closely in Complement 5.A.

A second viewpoint relies upon the chemical model. We may recall from
Complement 1.B, that when two atoms approach one another, their orbitals
become hybridized. The degeneracy between the energy levels is lifted and two
distinct levels result (the bonding and anti-bonding configurations). Generaliz-
ation of this phenomenon to an infinite number of atoms leads to the appearance
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Fig. 5.5. Bloch functions equivalent in periodicity to the crystal lattice cannot propagate
within the crystal. This effect is at the origin of forbidden energy bands. Thus an externally
impinging electron with a matter-wave periodicity commensurate with atomic lattice spacing
will not be able to penetrate the crystal.

of an ensemble of compact levels, with the bonding levels leading to the formation
of a valence band and anti-bonding levels leading to a conduction band (Fig. 5.6).
These two bands constitute two distinct continuums of allowed electron energies.
A forbidden band of electron energies may or may not emerge depending on
whether the energy separation between the two bands is large enough to keep
them from overlapping. This approach, referred to as the tight binding model, is
examined in Complement 5.B.

Without entering into unnecessary details in this book, we may nonetheless
distinguish between two types of forbidden bands. One type emerges when the
valence band’s energy maximum and the conduction band’s energy minimum are
situated at the same location within the Brillouin zone (i.e. they share the same k).
We will see that optical transitions between inferior levels in the conduction band
and superior levels in the valence band occur at constant k. Such optical transi-
tions are then possible between the two band extrema; the corresponding energy
gap is referred to as being direct. In GaAs, the two extrema are situated at k� 0
— this is the � point of the Brillouin zone (Fig. 5.7b).

A second type of band gap emerges when the band extrema of the valence and
conduction bands are each located at different points within the Brillouin zone.
Transitions between the band extrema must then take place with non-conserving
wavevectors k

�
, the band gap is referred to as being indirect (Fig. 5.7a). This is the

case for silicon, where the valence band extremum is situated at the � point and the
conduction band minimum lies 85% of the way along �X.
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Fig. 5.6. Chemical hybridization and resulting energy bands in solids. As atoms with
individual quantized energy levels E

�
(n� 1, 2, . . .) are brought closer together (a), the levels

hybridize leading to the formation of energy bands (b). If the broadening of the bands remains
inferior to the initial spacing level, a forbidden energy band or gap emerges within the crystal.

5.4 Effective mass and density of states

The tight binding or nearly free electron models both lead to the same result with
respect to dispersion E(k) close to the extrema of the valence and conduction
bands k

	��
(see Complements 5.A and 5.B). In both cases, we find a quadratic

dependence of E versus k represented by the matrix product:

E(k)�E
	��
�

��
2

(k� k
	��

)�M��(k� k
	��

) (5.14)

where A� is the transpose of vector A and M is a real symmetric matrix known as
the effective mass matrix, for reasons which will be explained shortly. After diag-
onalizing theM��matrix, we see that the band structureE(k) may be written in the
form:

E(k)�E
	��
�

��
2 �

(k
�
� k

	����
)�

m
�

�
(k
�
� k

	����
)�

m
�

�
(k
�
� k

	����
)�

m
�

� (5.15)

where the k
�
s and k

	����
s are components of k and k

	��
along the eigenvectors of

M��. We recognize the expression relating the energy to the wavevector for free
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Fig. 5.7. Two examples of forbidden energy bands: (a) indirect gap for Si and (b) direct gap
for GaAs.

electrons (E� ��k�/2m) but with different masses. These are the effective masses
and result from interaction of the electrons with the periodic potential of the
crystal. The effective masses are positive when the energy band curvature is
directed upwards and negative when the curvature is downwards. We shall con-
sider the significance of this negative effective mass later on. The constant energy
surfaces obtained by setting E� constant form ellipsoids centred about the ex-
trema in the Brillouin zone. Figure 5.8 shows such constant energy ellipsoids in the
vicinity of the conduction band extrema in silicon. As indicated in the table on
p. xvii, silicon possesses two effective conduction masses — one in the transverse
direction m

	�
, and another in the longitudinal direction m

	

.

For most semiconductors, the valence bands are degenerate at k� 0. The origin
of this is the predominantly triplet nature of the sp� orbitals which form the
valence band. The degeneracy is lifted, however, for k� 0, leading to bands with
different curvatures. The bands with low curvature are those which lead to heavier
effective masses. These bands are thus referred to as heavy hole bands (we shall
describe later on what we mean by a hole). Alternately, bands with a greater degree
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Fig. 5.8. Constant energy ellipsoids in silicon and GaAs.

of curvature are referred to as light hole bands. The table on p. xvii gives the
different values for effective electron and hole masses in Si and GaAs.

We now wish to calculate the density of states in the various allowed bands.
These quantities are of fundamental importance in all calculations involving
transitions between bands. To keep from needlessly overburdening the required
notation, we will temporarily focus upon the simple case involving a GaAs
conduction band, where the effective mass matrix is isotropic. The band structure
is then given by:

E(k)�E

�

��
2m



(k�
	
� k�



� k�

�
)�E


�

��k�
2m



(5.16)

where k is the norm of the wavevector k and E


is the energy at the bottom of the
conduction band. We can easily calculate the density of states in k space. In a
volume d�k�dk

	
dk



dk

�
, Eq. (5.10) shows that there are (Na

	
)(Na



)(Na

�
)/

8���V/8�� states assuming cyclic Born—von Karman boundary conditions. If we
had used the boundary conditions in (5.9), the density of states would have been
V/��, but the integration volume (with n

�
, n
�
, and n

�
all being positive in this case)

would have been eight times smaller. The density of states in k space is the
infinitesimal number of states d�N��(k)d�k situated in the volume element d�k:

�(k)�
V

(2�)�
(5.17)

k space density of states assuming periodic boundary

conditions and ignoring electron spin

The number of states dN situated in the volume contained between two spherical
shells of radius k and k� dk is then given by:

dN�
V

8��
4�k�dk�

V
2��

k�dk (5.18)
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This volume k�dk in k space corresponds to an equivalent volume in energy space
obtained by differentiating (5.16):

k�dk� 2����
m


���
���

(E�E

)���dE (5.19)

The energy density of states �

(E) in the conduction band for GaAs is the number

of states situated between energy E and E� dE. To find the number of states, we
need only substitute (5.19) into (5.18), without forgetting to take into account the
contribution due to electron spin degeneracy (this allows two electrons of opposite
spin to occupy the same energy level). Correspondingly, the final expression must
be multiplied by a factor of 2, giving:

�

(E)�

V
2���

2m


�� �
���

(E�E

)��� (5.20)

Density of states for an isotropic band structure

The generalization of this result to arbitrarily shaped ellipsoids draws upon the
theory of conic sections and is of little interest to us here. We find, for indirect
conduction bands, as in the cases of silicon and germanium:

�

(E)�

V
2���

2m*


�� �
���

(E�E

)��� (5.21)

where m*


is the average effective mass of the conduction band given by:

m*

� (nm���

	

m

	�
)��� (5.22)

and where n is the number of equivalent valleys (n� 6 for Si and n� 4 for Ge).
These values are also given in the table on p. xvii. Similarly, the density of states in
the valence band is given by:

�
0
(E)�

V
2���

2m*
0

�� �
���

(E
0
�E)��� (5.23)

whereE
0

is the valence band maximum and the effective mass for the valence band
density of states is:

m*
0
� (m���

��
�m���


�
)��� (5.24)

It is important to remember that the density of states in a three-dimensional
crystal increases as E��� and m���. Figure 5.9 schematically shows the band
structure and density of states obtained using the quadratic approximation in the
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Fig. 5.9. Band structure (a) and density of states (b) near the allowed energy band extrema.

vicinity of the band extrema. Nothing general can be said using this model about
the middle of the band where the quadratic approximation clearly breaks down.

5.5 Dynamic interpretation of effective mass and the concept of holes

Up to this point, we have made reference several times to the notion of a hole. It is
in fact a complex notion, which draws upon (in a rigorous description) many-body
theory. We content ourselves in this section with presenting a few intuitive
elements concerning the theory of holes. We begin by giving a dynamic interpreta-
tion of the concept of effective masses.

The electron wavefunctions may be written as a combination of travelling
waves:

%(r)���� a(k)e��k�r���
k�
 ��d�k (5.25a)

or again, in terms of the results of Section 5.2:

%(r)� �
���"��

��� a�(k)u
��k

(r)e��k�r���
k�
 ��d�k (5.25b)

The wavepackets constructed from wavefunctions near a particular k value have a
group velocity given by the dispersion relation v

�
�d�/dk, so that in the case of

electronic matter-waves in the band, see Fig. 5.10:

v
�
�

1

�
�kE (5.26)

The work done by an exterior force F over a time interval dt is:
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Fig. 5.10. Relationship between band structure, group velocity, and effective mass.

dE��F · v
�
dt (5.27)

where the change to wavepacket energy also has as a consequence a shift in the
average position of the wavepacket in the band structure given by:

dE���kEdk���v
�
dk (5.28)

By inspection, we see therefore that the centre of a wavepacket subjected to a force
F obeys:

F� �
dk

dt
(5.29)

We note that if no dissipative mechanisms occur to counteract the effects of this
force F, the wavepacket will begin to move or circulate through the band structure,
see Fig. 5.11. The oscillations which occur as the carriers cycle through the reduced
Brillouin zone are referred to as Bloch oscillations.

Example
The relaxation time # between successive collisions for an electron in a solid lies on
the order of 0.1 ps. Assuming an applied electric field strength E of approximately
10�V cm��, the wavepacket will take on a dk� qE#/� or �10� cm��. This quan-
tity is much smaller than the typical size of a Brillouin zone (�/a� 10	 cm��). As a
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Fig. 5.11. In the absence of collisions, electrons under the influence of an electric field will
cycle through the Brillouin zone in a periodic fashion. This gives rise to the phenomenon
known as Bloch oscillations.

result, Bloch oscillations have not yet been observed in bulk materials.
In the complete absence of dissipative processes, an electron subjected to a

homogeneous force F will acquire a uniform motion in k space and experience a
corresponding acceleration in real space. This acceleration is given by:

dv
�

dt
�

1

�
d

dt
�kE�

1

�
[�k�kE]

dk

dt
(5.30)

or, taking (5.29) into account:

dv
�

dt
�

1

$̌�
[�k�kE]F (5.31)

The matrix [�k�kE] is none other than ��M��, where M is the effective mass
matrix in (5.14). Thus, the response of the wavepacket may then be described in
terms of Newtonian dynamics as long as the mass of the particle is replaced by its
effective mass m

	  
.

Under the effect of an electric field E, each element d�k in the band structure
contributes a volume of d�k/8��moving at velocity v

�
(k). An electrical current will

then travel through the material as given by:

J��q�v
�

��2q ���

���

���� (��	

d�k

(2�)�

1

�
�kE (5.32a)

or
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Fig. 5.12. (a) In a filled band, the electrical currents resulting from occupied states at k and
�k cancel out. In a partially unfilled band (b), the electrons acquire a velocity v

�
under the

influence of a force F given by (5.26—5.29). Electrons are therefore transferred along the
symmetry axis, and the sum total of the velocities is non-null. This incomplete band may
therefore conduct electricity.

J��
q

4��� ���
���

���� (��	

�kEd�k (5.32b)

where we have taken into account the additional factor of 2 resulting from electron
spin degeneracy. If the energy band is completely occupied (see Fig. 5.12), the only
possible motions in k space will involve permutations. As E(k) is symmetric
relative to k, the volume elements in the band structure with opposing k will cancel
out, i.e. destructively interfere (Fig. 5.12). Therefore, a completely occupied band
will not conduct electricity, i.e:

J(Filled band)� 0 (5.33)

A material in which the last band is completely occupied by electrons, which is
separated from the next adjacent empty band by an energy gap, cannot conduct
electricity and is referred to as an insulator.

If this band, which we refer to naturally as the conduction band, is partially filled
(to a maximum energy�E

���
), the electrons will acquire a velocity in k space

given by (5.31), and move in the direction of the force. The current resulting from
these electrons does not cancel out due to the lack of symmetry (Fig. 5.12). These
electrons may be contributed by the material itself (as in the case of a metal), or
may have been added to an insulator (as in the case of a semiconductor). More
specifically, if for example the electric field is applied along the Ox axis, electrons
are transferred from states with k

	
� 0 to the k

	
� 0 region, and a current will flow
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in the crystal, given at t� 0 by (see (5.32)):

j
	
��

q

4��� �
�1����

dE

dk
	

dk
	

(5.34)

This current will grow monotonically in time since E
���

will gradually slip in the
electric field direction. Clearly, within a transitory period lasting a few tenths of a
picosecond, collisions will stabilize the current flow. Under stationary state condi-
tions, the situation is described by Boltzmann’s equations, which we shall see later
in Chapter 6.

Similarly, if we can by some means succeed in emptying electrons from a filled
band (the valence band) up to an energy E

���
, the current will be given by:
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(5.35)

��
q

4��� �
���

���� (��	

dE

dk
	

dk
	
���

q

4��� �
'�������	" ����	�

dE

dk
	

dk
	�

or, given (5.33):
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(5.36)

where the integral is evaluated from E
���

up to the top of the valance band (Fig.
5.13). We therefore see that the current carried by a nearly filled band, may be
interpreted as resulting from the flow of positively charged quasi-particles such as
holes. A derivation identical to the one given earlier shows the mass of these
particles to be positive and given by:

M����
1

��
[�k�kE] (5.37)

since the curvature at the top of the valence band is negative. Figure 5.13 allows us
to see how a ‘hole’ (i.e. an unoccupied electron state in the valence band) may be
considered to carry a positive charge. The novice may find some assistance with
this concept from simple hydrodynamics. In this case, electrons may be seen to
‘fall’ to the bottom of the conduction band much like water to the bottom of a
glass, whereas holes ‘rise’ to the top of the valence band in a manner similar to
bubbles (holes in a fluid) in a glass of champagne.

To complete this section, we should add that the complete wavefunction for a
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hole is in fact an entanglement of the entire valance band eigenstates (symmetrized
into the form of a Slater determinant) from which a single electron has been
removed. This sort of function is not particularly practical, but is called upon at
times, as for instance in the theory of excitons.
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5.6 Carrier statistics in semiconductors

5.6.1 Fermi statistics and the Fermi level

Electrons and holes in semiconductors obey, as must all indistinguishable spin 1/2
particles, Fermi—Dirac statistics. Therefore, the probability at temperature T, of a
state with energy E being occupied is given by the Fermi—Dirac distribution
function f (E). At temperature T, the energy distribution function of such particles is
given by:

f (E)�
1

1� e����3����
(5.38)

so that the carrier density, for instance in a semiconductor conduction band, is
given by:

n�

�

�
�

�

(E) f (E)dE (5.39a)

Indeed, below E


there are no available states. Given the expression for the density
of states in the conduction band (see (5.20)), this last equation may be written in the
general form:

n�N

F
����

E
3
�E


kT �

N

�

1

4�
2m*


kT

��� �
���

(5.39b)

F
���

(u)�
1

�(3/2)

�

�
�

x���

1� e�	���
dx

where F
���

is the Fermi integral and N


is the effective density of states in the
conduction band.

Figure 5.14 represents the Fermi—Dirac distribution at zero and non-zero
temperatures. At T� 0, we must recall that the Fermi energy is the energy of the
last occupied state. By definition, the Fermi level is the chemical potential of the
particles in the structure. It describes the amount of energy which must be spent to
add a particle (initially infinitely far away) to the system. At thermodynamic
equilibrium, this chemical potential is the same for all particles and is identical
throughout the structure. We will return to this very important point during our
study of diffusion.
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Fig. 5.14. Fermi—Dirac distribution at different temperatures.

In calculating the Fermi level in a semiconductor as a function of the number of
electrons, two distinct situations arise depending on whether the Fermi level is
situated within a forbidden or an allowed energy band within the sample’s band
structure.

Occupied Fermi level: degenerate system (Fig. 5.15)
In this case, the Fermi—Dirac function may be approximated by the step function:

f (E)� 1, if E�E
3

f (E)� 0, if E�E
3

The volume electron density is then given by the overlap between the Fermi
function and the energy density of states per unit volume in the conduction band,
i.e:

n�

�3

�
�

�

(E)dE�

1

2���
2m
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���
�3

�
�

(E�E

)���dE (5.40)

or again as:

n�
1

3���
2m


�� �

���
(E
3
�E


)��� (5.41)

We note that the number of carriers is not a function of temperature. This point is
characteristic of degenerate systems such as metals or highly doped semiconduc-
tors.

Example
We seek the number of carriers corresponding to a Fermi level of 30 meV inside the
GaAs conduction band.
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Fig. 5.15. Method for calculating the Fermi level when it is situated in an allowed energy
band.

For GaAs, m

� 0.067m

�
:

n� (2� 0.067� 0.91� 10���kg/1.1� 10��	 J� s�)���
� (0.03 eV� 1.6� 10��C)���/3��

or,

n� 4.4� 10�� cm��

Thus, for electron concentrations in excess of 10�� cm��, GaAs behaves as a metal
and its Fermi level is occupied even at zero temperature.

Unoccupied Fermi level (Fig. 5.16)
In this case, the Fermi level is situated in the forbidden gap of a semiconductor.
The number of electrons is again given by the overlap of the Fermi—Dirac function
for the electrons f


(E)� 1/(1� exp((E�E

3
)/kT)) and the density of states in the

conduction band. This time, a different approximation for the Fermi function is
required. Here we suppose that the Fermi level is sufficiently deep within the
forbidden gap in comparison to kT, so that E�E

3

 kT. That being the case, the

Fermi—Dirac function may be approximated by the Boltzmann distribution
e�����3���� (non-quantum regime):

n�

�

�
�

�(E)e����3����dE

(5.42a)
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Fig. 5.16. Method for calculating the carrier density in semiconductor bands as a function of
the Fermi level position.

i.e.

n�N

e�����3���� (5.42b)

Electron concentration and Fermi level

where we recall that m*


is the effective mass for the density of states in the
conduction band given by (5.22). N


is the effective density of states in the conduc-

tion band:

N

�

1

4�
2m*


kT

��� �
���

(5.43)

With regards to holes, the occupation probability f
0
(E) of a hole is equal to the

probability that this state is unoccupied by an electron, whereby:

f
0
(E)� 1� f


(E)� 1�

1

1� e����3����
�

1

1� e�����3����
(5.44)

Fermi–Dirac statistics for holes

Therefore, in the Boltzmann regime the hole density p in the valence band is
related to the Fermi level by:

p�

�

�
�

�(E)e��(�(3����dE�N
0
e���3��0���� (5.45a)

Hole concentration and Fermi level

whereN
0

is the effective density of states in the valence band given by:

N
0
�

1

4�
2m*

0
kT

��� �
���

(5.45b)
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The term ‘effective density of states’ takes its meaning when one contemplates Eqs.
(5.42) and (5.45). The population statistics in semiconductors behave in the same
way as a two-level system of energy E

0
and E


, with an energy separation given by

the band gap E

�E

0
�E

�
and densities of states given byN

0
andN


, respectively

(see Fig. 5.18). Introducing values for the relevant physical constants, these effec-
tive densities become:

N

� 2.5� 10��

m*

m
�
�
���

�
T

300�
���

cm��

(5.46)
N
0
� 2.5� 10��

m*
0
m
�
�
���

�
T

300�
���

cm��

Effective density of states for semiconductors

Example
For GaAs, m*


� 0.067 and m*

0
� 0.64, at 300 K Eq. (5.46) leads to:

N

� 4.3� 10�� cm��

N
0
� 1.3� 10� cm��

Equations (5.42) and (5.44) are also useful for calculating the position of the Fermi
level once the electron or hole densities are known:

E
3
�E


� kTln

N

n
�E

0
� kTln

N
0
p

(5.47)

Fermi level and carrier concentrations

We therefore see that the Fermi level penetrates into the bands, i.e. the semicon-
ductor becomes degenerate once the electron (or hole) density exceeds the effective
density of states (see Fig. 5.17).

Equation (5.47) is interesting in that it shows that the Fermi level is nothing
other than a change of variables without immediate physical added value. It is a
measure of population densities on an energy scale. However, this concept will
display all its power in heterogeneous systems found in device physics. In fact, the
constancy of the Fermi level throughout the different regions where ther-
modynamic equilibrium prevails is one of the major tools of device physics.

Finally, if we suppose that the electrons and holes are in thermodynamic
equilibrium, they then share the same chemical potential (i.e. the Fermi level is the
same everywhere this thermodynamic equilibrium is respected). We will appreci-
ate the power of this concept better when exploring aspects of device physics in
Chapter 10. Following (5.42) and (5.44), this has as a consequence that the product
np is independent of the Fermi level and is found to be:
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Fig. 5.17. Behaviour of the Fermi level as a function of free carrier density n. For carrier
concentrations in excess of the effective density of states N


the semiconductor becomes

degenerate with its Fermi level varying as n��� as in the case of a metal.

CB
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p

Fig. 5.18. In a lightly doped semiconductor, the bands behave thermodynamically as two
discrete levels with concentrationsN


and N

0
(CB, conduction band; VB, valence band).

np�N

N
0
e������ (5.48)

Law of mass action in semiconductors

where E
�
�E


�E

0
is the width of the bandgap. Expression (5.48) gives the

relationship between the semiconductor electron and hole concentrations at equi-
librium, and is known as the law of mass action.

5.6.2 Intrinsic semiconductors

A semiconductor is said to be intrinsicwhen the origin of the electrons and holes in
it is endogenous. In this case, the holes in the valence band result from electrons
which have been thermally excited to the conduction band (Fig. 5.18). The electron
and hole densities (n and p, respectively) are then equal to the intrinsic carrier
density:

n� p� n
�
��N


N
0
e��������� (5.49)

Intrinsic density of carriers
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Example
In GaAs, where the bandgap E

�
� 1.42 eV, the carrier density at T� 300 K is

n
�
� 3� 10� cm��. Clearly, this makes GaAs a poor insulator at room tempera-

ture. Residual impurities present within GaAs, however, contribute carrier den-
sities significantly above this value.

For HgCdTe, a small bandgap material (used in infrared detection — see Chapter
11), E

�
� 0.116 eV and the intrinsic carrier concentration is n

�
� 1.0� 10�� cm��.

Such a material will therefore conduct electricity at room temperature without
additional doping.

5.6.3 Doped semiconductors

An intrinsic semiconductor on its own is relatively useless. It is both a poor
conductor and a poor insulator. Alternately, it becomes quite a fantastic (and
useful!) material when doped. In fact, when certain chemical impurities are intro-
duced at low levels into semiconductors, they can substitutionally occupy lattice
sites within the host crystal. In this case, the chemical impurity wavefunctions
hybridize with the atoms in the host lattice and donate an extra electron to the
conduction band. This occurs, for example, with pentavalent phosphorous in
silicon (Fig. 5.19), or when silicon is introduced as an impurity into GaAs. These
impurities are referred to as donors; the doped semiconductor which results from
their incorporation is called an n-type semiconductor. Other impurity types may
capture an electron from the crystalline host (the captured electron becoming
bound to the impurity). This occurs, for instance, with boron in silicon (Fig. 5.20).
These impurities (or acceptors) therefore liberate holes into the semiconductor
valence band, turning the crystal into p-typematerial.

It can be shown that such impurity types (donors or acceptors), behave in
semiconductors as hydrogenic impurity centres to which the electrons or holes are
bound (via the Coulombic interaction) with a characteristic ionization energy of:

E
���
�

m*q�

8��
!
��
�
h�

�
m*

m
�
��
!

� 13.6 eV (5.50)

wherem* is the effective mass and �
!

is the relative permittivity of the semiconduc-
tor. This gives rise to ionization energies ranging between 5 and 25 meV. Conse-
quently, these impurities are, for the most part, ionized at room temperature. This,
however, is not the case for large gap semiconductors such as GaN, where the
ionization energies for such hydrogenic impurities may reach 200 meV.

We suppose in what follows that a density N
)

of donors has been introduced
into a semiconductor, and that over the expected range of temperatures, all
the donors are ionized. If N

)

 n

�
, we may easily show that all the carriers in the
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Fig. 5.19. A pentavalent impurity like phosphorous introduced substitutionally into a silicon
lattice hybridizes with the tetragonally neighbouring atoms and releases an extra electron into
the lattice as a free electron (a). This impurity introduces a donor state a few tens of meV
below the conduction band (b). At room temperature, all these impurity centres are ionized
and donate their free electrons to the conduction band of the host material (c).

Fig. 5.20. A trivalent impurity like boron introduced substitutionally into a silicon lattice
hybridizes with the tetragonally neighbouring atoms and borrows an electron from a nearby
covalent bond. This missing electron becomes a hole in the valence band (a). This impurity
introduces an acceptor state a few tens of meV above the valence band (b). At room
temperature, all these impurity centre states are occupied by electrons originating from the
valence band and a corresponding number of holes are left to populate the valence band of the
host material (c).

conduction band have been thermally excited from the donor levels, so that:

n�N
)

(5.51)

Consequently, the Fermi level is found to be:

E
3
�E


� kT ln

N


N
)

(5.52)

Similarly, if a density of acceptors N
(

is introduced in a semiconductor with
N
(

 n

�
, then all the holes in the valence band result from capture of electrons

from the top of the valence band:

p�N
(

(5.53)

and the Fermi level is given by:
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Fig. 5.21. Position of the Fermi level in the GaAs bandgap as a function of doping
concentration. The semiconductor becomes degenerate for doping levels in excess of the
effective density of states N
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� kT ln

N
0

N
(

(5.54)

Equations (5.52) and (5.54) show that, as long as the doping level is less than the
effective density of states in the bands, the semiconductor will remain non-
degenerate. For illustrative purposes, Fig. 5.21 shows the position of the Fermi
level in the GaAs bandgap as a function of doping.

5.6.4 Quasi-Fermi level in a non-equilibrium system

Up until now, we have considered different cases leading to electron and hole
populations in thermodynamic equilibrium. There are, however, numerous instan-
ces where the densities of the populations are dominated by non-equilibrium
processes. In fact, the operation of all semiconductor components takes place
under non-equilibrium conditions either by applying an electric field or by illumi-
nating the structure. In these cases, the electron and hole populations are no longer
in thermodynamic equilibrium with each other, nor with the host crystal. We may
therefore consider an external process which generates electrons and holes in a
semiconductor with a generation rate G

�
and G

�
(in cm�� s��) for electrons and

holes, respectively. We additionally consider the existence of a recombination
process, characterized by time constants #

�
and #

�
and leading to the stabilization

of the electron and hole populations to levels where the generation and recom-
bination rates are equal, i.e.G

�
� n/#

�
andG

�
� p/#

�
. The stationary concentration

of electrons and holes is then given by:

n�G
�
#
�

(5.55)p�G
�
#
�
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Fig. 5.22. (a) At thermal equilibrium, the electrons and holes share the same Fermi level.
(b) Away from thermodynamic equilibrium (e.g. if the bands are populated by photogenerated
or electrically injected carriers), the electron and hole populations are each described by their
own Fermi (or quasi Fermi) levels which no longer coincide with (a).

In this last formula, we assumed that the created carrier densities are in excess of
the thermal generation levels, i.e. n
 n

�
and p
 p

�
. A particularly powerful

insight given by Shockley was to consider that these populations may continue to
be described in terms of a quasi-Fermi level (playfully named Imref, which spells
Fermi backwards!). If the system is non-degenerate, these quasi-Fermi levels are
defined starting from (5.52) and (5.54):

E
3�
�E


� kTln�

N


G
�
#
�
�

(5.56a)
E
3�
�E

0
� kTln�

N
0

G
�
#
�
�

Non-degenerate quasi-Fermi level

For the case where the system becomes degenerate, the quasi-Fermi levels are then
obtain via (5.41) or:

E
3�
�E


�

��
2m



(3��n)���

(5.56b)
E
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��
2m

0

(3��p)���

Degenerate quasi-Fermi level

Clearly, as G
�
#
�

 n

�
and G

�
#
�

 p

�
, we see that the quasi-Fermi levels do not

coincide (see Fig. 5.22) and, in fact, are separated from the Fermi level by the
quantity:

(E
3�
�E

3
)� (E

3�
�E

3
)� kT ln��

G
�
#
�

n
�
�
�

G
�
#
�

p
�
�� (5.57)

This last equation allows one to calculate the displacement of the quasi-Fermi
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levels as a function of pump rate and different recombination times. This equation
is central to the physics of semiconductor lasers, a topic we shall cover later in
Chapter 13.
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Complement to Chapter 5

5.A The nearly free electron model

In this complement, we present a first approach to band structure theory founded
upon a perturbation of the free electron model, and aptly named the nearly free
electron model. We take Schrödinger’s equation for an electron in a periodic
one-dimensional crystal having a lattice spacing of a (keeping in mind that
generalization of this discussion to three dimensions merely involves the cou-
rageous addition of appropriate indices). The periodicity of the crystal potential
then makes this quantity suitable for Fourier analysis:

V(x)� �
�	�������



�����	

V
-

e�-	 (5.A.1)

where we recall that the vectors G belong to the reciprocal lattice, i.e. they are of
the form G� integer� 2�/a. Schrödinger’s equation written in terms of this
expression for the potential becomes:

H	(x)��
p�

2m
��

-

V
-

e�-	�	(x)�E	(x) (5.A.2)

The wavefunction	(x) may also be written as a Fourier series by drawing upon the
Born—von Karman cyclic boundary conditions — K� n2�/(Na), where Na refers
to the total crystal length and n is a positive (or null) integer — so that:

	(x)��
4

C(K)e��4	 (5.A.3)

Substituting (5.A.3) into (5.A.2), we obtain:

�
4
��

��K�
2m

�E�C(K)e��4	���
-

V
-
C(K)e���4�-�	��� 0 (5.A.4)

Let us multiply this equation by a wave e���	 and integrate the whole over the
entire crystal volume. The only non-zero terms will be those for whichG�K� k.
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Fig. 5.A.1. The points indicated on this figure represent the allowed wavevectors k, by the
Born—von Karman cyclic boundary conditions for a crystal of length L� 20a, where a is the
lattice constant. If the k term (��8 in this figure) appears in the sum (5.A.4), all the terms
k� 2n�/a will also be included.

This is to say that if a term k appears in the sum, so will all other vectors which result
from the addition of one or more reciprocal lattice vectorsG to it (see Fig. 5.A.1). We
may therefore index the wavefunctions by a wavevector k chosen arbitrarily from
the first Brillouin zone, allowing the eigenfunctions to be written as:

	
�
(x)��

-

C(k�G)e�����-�	 (5.A.5)

This is nothing else but the Bloch—Floquet theorem. Schrödinger’s equation (5.A.2)
applied to the Bloch functions 	

�
then becomes:

�E��
��k�
2m �C(k)��

-

V
-
C(k�G)� 0 (5.A.6)

This is a secular equation in C(k�G), which possesses non-trivial solutions (i.e.
non-zero solutions) if and only if the determinant of the linear system is zero. This
determinant has a rank equal to the number of points in reciprocal space. It would
then appear that we have gained little relative to our original expression for
Schrödinger’s equation were it only that we had replaced a differential expression
with an algebraic one. We now make the hypothesis that the function is highly
periodic, which is to say that it possesses so few Fourier components that we can
consider a single component — as would be the case for a purely sinusoidal
potential. A portion of the secular equation in (5.A.6) may then be written as:

�
E(k)�

��(k�G)�

2m
V 0 0

V E(k)�
��k�
2m

V 0

0 V E(k)�
��(k�G)�

2m
V

0 0 V etc.
�� 0 (5.A.7)
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For each wavenumber k, the secular equation is a polynomial in E(k) of equal
degree to the rank of the matrix (there are thus as many possible solutions as rows
in the matrix). These solutions are continuous in k and therefore form energy bands.
A particularly interesting case arises when k is situated near the Brillouin zone
boundary, i.e. k�G/2� �/a. In this case, G� k and k have the same value, and
the diagonal elements of the 2� 2 submatrix:

�
E(k)�

��G�
8m

V

V E(k)�
��G�

8m �
are identical. Interaction with the nearest neighbour V lifts the degeneracy be-
tween the two unperturbed levels E(k)� ��G�/8m. This means that the energy
bands which otherwise would have the same energy at k�G/2 have their degener-
acy lifted —we will now look a little deeper into this effect. In proximity to k�G/2,
the determinant of (5.A.7) is dominated by the 2� 2 submatrix near k�G/2 and
the equation for lifting of the degeneracy may be written as:

�
E(k)�

��k�
2m

V

V E(k)�
��(k�G)�

2m
�� 0 (5.A.8)

This equation admits two ensembles of solutions from the secular equation, which
after a little effort, may be written in the form:

E(q)�
��
2m�q��

G�

4 ��	
��G�
2m

��q�
2m

�V� (5.A.9)

where q� k�G/2. We introduce �
-

, which is the energy that the free electron
would have at k�G/2, i.e. �

-
� ��(G/2)�/2m. For small q values, Eq. (5.A.9)

becomes:

E(q)� �
-
�V�

��q�
2m �1�

2�
-

V � (5.A.10)

Figure 5.A.2 depicts solutions to Schrödinger’s equation in terms of (5.A.7). We see
that we may arbitrarily choose to describe the band structure over all the Brillouin
zones, or proceed by folding the entire band structure into the first Brillouin zone,
with appropriate labelling of the bands. This latter convention is referred to as the
reduced zone scheme and is most often used. Several essential points should be
noted in this figure. First, far away from the boundaries of the Brillouin zone, the
band structure takes the form of that for the free electron (this can be shown).
Second, a forbidden energy band of approximately 2V in width results from the
lifting of the degeneracy between the e��� and the e����-�� waves. We also note that
the dispersion relation E(q) is parabolic (in q�), which allows one to find for the
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Fig. 5.A.2. Essential features of the nearly free electron model. The periodic perturbation
due to the crystal potential lifts the degeneracy near the edges of the Brillouin zone (G/2��/a)
giving rise to a forbidden energy band. The grey curves were obtained by folding the energy
curves E(k) into the first Brillouin zone — this is referred to as the reduced zone scheme.

effective mass in this model:

m
	  
� ���

d�E

dq��
��
�m

�

1

1� 2(�
-

/V)
��m

�

V
2�
-

(5.A.11)

We therefore see that the smaller the width of the forbidden energy band 2V, the
smaller the effective masses. This relationship is also found in other models.
Narrow gap semiconductors (very useful in infrared light detection) characteristi-
cally possess small effective electron and hole masses.

FURTHER READING

N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York
(1976).

C. Kittel, Introduction to Solid State Physics, 5th Edn, Wiley, New York (1976).

5.B Linear combination of atomic orbitals: the tight binding model

In Complement 1.B, we saw that the eigenstates of two identical atoms possessing
identical energy levels, hybridize when they are brought together, giving rise to
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Fig. 5.B.1. One-dimensional model of a crystal potential. Overlap of the orbitals between
neighbouring atoms in the crystal allows electrons to travel (tunnel) from one atom to the
next.

bonding and anti-bonding levels with distinct eigenenergies. These levels are
separated in energy by an amount relating to the degree of overlap (inversely
correlated to the physical separation here) between the atoms’ eigenstates. We will
now demonstrate how to extend this procedure to the description of an entire
crystal, and show how one arrives using this model at the notion of allowed and
forbidden energy bands. This approach is founded upon a chemical interpretation
of the significance of semiconductor band structure and is referred to as the tight
binding model illustrated in Fig. 5.B.1. This model seeks to give a description of
crystal states in terms of linear combinations of constituent atomic orbitals. We
consider a one-dimensional, periodic sequence of identical atoms. To begin, we
will assume that the atoms are sufficiently separated as to allow one to neglect the
influence due to the potential of any given atom on its neighbour.

The Hamiltonian for an electron subject to a single potential due to atom i,
situated in the lattice at ia is:

H
�
�
p�

2m
�V(x� ia) (5.B.1)

All the atoms therefore have the same energy levels E
�

and the same displaced
eigenfunctions:

�n, i
�	
���

(x)�	
�
(x� ia) (5.B.2)

We now bring the atoms close together and seek to find the stationary states and
eigenenergies E for the Hamiltonian describing an electron in the ensuing crystal:

H�
p�

2m
��

�

V(x� ia) (5.B.3)

As the basis of wavefunctions 	
���

is complete, we may use it to express the
Hamiltonian (5.B.3) as a matrix. Let us have a look at the different terms:
∑ The diagonal terms �i, n�H�i, n
 are given by:
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�n, i�H�n, i
�E
�
��

���

�n, i�V(x� x
�
)�n, i
 (5.B.4)

The term in the sum is independent of i and leads to an offset in energy. This
term is thus of little physical consequence and will be neglected.

∑ For the off-diagonal terms, we will only interest ourselves in those correspond-
ing to the nearest neighbour:

�n, i�H�n, i� 1
�E
�
�n, i�n, i� 1
��

���

�n, i�V(x� x
�
)�n, i� 1


(5.B.5)
� �n, i�V(x� x

�
)�n, i� 1
��A

�

In (5.B.5), we neglected the overlap between orbitals of type �n, i�n, i� 1
 and kept
in the sum only those terms A

�
corresponding to tunnelling between nearest

neighbours. Making this assumption, the Hamiltonian describing the crystal
electrons can be broken down into independent Hamiltonians for each unpertur-
bed energy level E

�
:

H
�
� �

E
�

�A
�

0 0

�A
�

E
�
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0

0 �A
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E
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0 0 �A
�

· · ·
� (5.B.6)

The stationary wavefunctions are then given by:

�	
�

��

�

C
���
�n, i
 (5.B.7)

The coefficients C
���

are given by Schrödinger’s equation, i.e. solutions to the
coupled equations:
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(5.B.8)

where E is the energy of the new stationary states. We recognize in Eq. (5.B.8),
recurrence relations for the Fibonacci series which admit as solutions:

C
���
� e���	� (5.B.9)

where x
�
� ia. We may therefore index the new eigenstates of the crystal Hamil-

tonian as 	
���

. These functions can be readily shown to be equivalent to the
Bloch—Floquet functions obtained in (5.B.5) (see Fig. 5.B.2). Substituting (5.B.9)
into (5.B.8), we find as energies for the Bloch wavefunctions 	

���
:
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Fig. 5.B.2. Bloch—Floquet functions describing the stationary states of electrons in the
periodic potential consist of linear combinations of isolated atomic orbitals (a) weighted by
coefficients representing a travelling wave in the crystal (b).

E
�
(k)�E

�
� 2A

�
cos(ka) (5.B.10)

The stationary state energies are thus located on energy bands which depend
sinusoidally on k. These bands are depicted schematically in Fig. 5.B.3. This model
presents a certain number of advantages over others, namely a greater degree of
physical predictability.
1. The bands have a chemical origin and result from the hybridization of levels

broadened into bands by tunnelling effects between adjacent atoms. This
picture is more satisfying (and closer to reality!) than that employed in the
nearly free electron model. We understand more clearly why the conduction
band in Si is characterized by the hybridization of the singlet sp� states, and
why the valence band shares the properties of hybridized triplet states. We also
understand better the origin of the degeneracy in the valence band.

2. The forbidden bands have as their origin the empty region left between the
unperturbed states E

�
after lifting of the degeneracy. If the band broadening is

greater than the separation between levels E
�
, the bands touch and no energy

gap emerges.
3. The deeper the states in energy (small n), the greater the potential (or tunnel)

barriers which separate like states in adjacent atoms, and the smaller the values
(A
�
) which result from the tunnelling integrals. As a result, the deeper lying

energy bands (having width 2A
�
) are significantly narrower than the higher

lying bands.
4. Near the band extrema, the dispersion relations E(k) are parabolic and lead to
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Fig. 5.B.3. Allowed sinusoidal energy bands obtained using the tight binding model. A
forbidden energy band results as the allowed bands do not overlap.

an effective mass:

m
	  
�

��
2Aa�

(5.B.11)

We again find that the effective mass m
	  

is inversely proportional to the width
of the allowed energy band.

FURTHER READING

N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart, and Winston, New York
(1976).

5.C Kane’s k · p method

The nearly free electron and tight binding models are useful didactically, but both
suffer a severe handicap. It is extremely difficult, in practice, to start from experi-
mentally determined parameters (e.g. crystal structure, the electronic structure of
constituent atoms, . . .) and obtain predictions such as the size of the bandgap in
GaAs, etc. This difficulty emerges as a result of the highly simplistic nature of the
approximations used in obtaining the results in Complements 5.A and 5.B. Intro-
duction of the slightest sophistication into these models rapidly leads to intrac-
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table calculations. The k · p method is a semi-empirical approach attributed to
Kane which introduces into the band structure calculations, experimentally ac-
cessible data (derived from optical measurements, etc.).

We recall the Schrödinger equation which must be solved:

H	
��k

(r)��
p̂�

2m
�V(r)�	��k(r)�E

��k
	
��k

(r) (5.C.1)

where 	
��k

are the Bloch functions:

	
��k

(r)� u
��k

(r)e�kr (5.C.2)

We see that the operator p̂��i�� acts on the Bloch—Floquet wavefunctions in
the following manner:

p̂�[u
��k

(r)e�kr]� [(p̂� �k)�u
��k

(r)]e�kr (5.C.3)

As a result, the periodic portion of the Bloch function u
��k

is a solution to the
Schrödinger-type equation:

�
p̂�

2m
�

��k�
2m

�
�
m

k · p�V(r)� u��k(r)�E
��k
u
��k

(r) (5.C.4)

For k� 0, we remark that this equation is totally identical to Schrödinger’s
equation applied to the periodic portion of the Bloch—Floquet functions u

��0
:

�
p̂�

2m
�V(r)� u��0(r)�E

��0
u
��0

(r) (5.C.5)

k · p theory then uses u
��0

as a complete basis for u
��k

:

u
��k

(r)��
�

c���
�

(k)u
��0

(r) (5.C.6)

and Schrödinger’s equation in (5.C.4) transforms into:
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k · p�V(r)� c���� (k)u
��0
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E���(k)c���
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��0
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Thus, taking the projection onto u
5�0

:

�E5�0�
��k�
2m
�
� c���5 (k)��

�

�
m
�

k · �u
5�0

�p�u
��0


c���
�

(k)

(5.C.8)
�E���(k)c���

5
(k)
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This equation represents the usual problem of diagonalizing an effective Hamil-
tonian matrix. If all the matrix elements �u

5�0
�p�u

��0

 are known, we may proceed

directly to diagonalizing the matrix. This, however, is not usually the case. Addi-
tionally, only the band regions near the gap are of real interest. For k near 0, the
terms due to the k · p operator can be considered as perturbations. If we define:

H��
5�
�

�
m
�

k ·�u
5�0

�p�u
��0

 (5.C.9)

(5.C.8) may be written as:

�E5�0�
��k�
2m
�

�E���(k)� c���5 (k)��
�

H��
5�
c���
�

(k)� 0 (5.C.10)

In this last equation, we made use of the superscript (n) to designate one of the
solutions (beware of degeneracy!) for whichE���(k) tends towardsE

��0
as k goes to 0.

Simplification of the problem is achieved by separating the bands into an ensemble
M
�

of interest (which couples strongly to band n) and a second ensemble M
�

of
other bands. We then have:

�E5�0�
��k�
2m
�
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�$5�

H��
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�
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H��
5�
c���
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(k)� 0 (5.C.11)

For n �M
�

and M �M
�

, the last sum is much smaller than the first. This gives:
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For n �M
�

and M �M
�

, we insert this result and find:
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(5.C.13)

After relabelling m��m,m�m� in the double sum, the equation becomes a
diagonalization problem uniquely in the basis of functions belonging to the
relevant bandsM �M

�
:

�E5�0�
��k�
2m
�

�E���(k)� c���5� �
�$5�

(H��
5�
�H���

5�
)c���
�
� 0

(5.C.14)
with H���

5�
� �

��$5�

H��
5��
H��
���

E���(0)�E
���0

where we have suppressed the k argument in the coefficients c
�

. Following a
perturbative approach, we have therefore rolled the influence of uninteresting
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bands into an effective Hamiltonian which acts upon the bands of interest. Using
this method (called Löwdin’s method), we have reduced the size of the problem by
restricting the range of validity to the vicinity of k� 0. By focusing on the bands
nearest in energy to E

5�0
, the method becomes equivalent to stationary perturba-

tions — perturbation of a degenerate level if E
5�0

is degenerate, and a simple
perturbation otherwise.

In III—V semiconductors, cubic zincblende is the crystal structure. In this case,
the conduction band is non-degenerate (doubly degenerate if spin is included) and
has a minimum at the Brillouin zone centre. Near k� 0 the dispersion in this band
is given by (5.C.14) in the simplest version, where the ensemble M

�
contains only

the conduction band (c):

��E�0�
��k�
2m
�

�E��(k)��
��
m�
�

�
��

��u
5�0

�k · p�u
��0


��
E
�0
�E

��0
� c�� � 0 (5.C.15)

whence:

E��(k)�E
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��0
(5.C.16)

The most important contribution naturally comes from states closest in energy —
the states in the valence band. If we neglect the other terms in the sum, we find:

E��(k)�E
�0
�

��k�
2m
�

�
��k�
2m
�

P�

E
�

(5.C.17)

where:

P��
2

m
�

��u
�0
�p
	
�u
��0


�� (5.C.18)

is the Kane matrix element and E
�

is the gap.
From the dispersion E��(k), we may deduce the effective mass:

m


m
�

��1�
P�

E
�
�
��

(5.C.19)

It turns out that P� can be obtained by optical measurement and that it varies
relatively little (�20—25 eV) from one III—V semiconductor to another. Thus this
simple formula predicts that the smaller the bandgap of a semiconductor, the
smaller the effective mass in the conduction band. This prediction is well verified
experimentally, and the fact that m


/m
�
� 1 is due to the strong coupling P�/

E
�

 1 between the conduction and valence bands.
It is easy to apply the same method to the valence band (assumed to be

non-degenerate), in which case we obtain:
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indicating that the hole’s effective mass should roughly equal the electron’s.
Unfortunately, the situation in the valence band is more complicated, as this band
is degenerate at maximum.

We cannot enter here into detailed calculations for the valence band, but rather
will limit ourselves to offering a qualitative description of the results.

The crystal potential V(r) possesses the symmetry of the zincblende structure.
This means that its value will remain unchanged under the application of a
symmetry operation on r. Using symmetry arguments, it can be shown that such a
potential leads to threefold degenerate eigenstates at the Brillouin zone centre, and
that the degeneracy is independent of the magnitude of the potential. The valence
band stems from such degenerate eigenstates.

The three basis functions can be labelled �X
, �Y
, and �Z
, where the letters
designate the symmetry properties of these wavefunctions. The effect of a symme-
try operation on any of these functions is then to map one of the basis functions
into one of the other two (or possibly back onto itself ). Let us take, for example,
mirror reflection in the (1 1� 1) plane (see Fig. 5.1) and which corresponds to the
change of co-ordinates x� y, y� x, z� z. The basis functions have the properties:

�X
� u
6

(y, x, z)� u
7

(x, y, z)

�Y
� u
7

(y,x, z)� u
6

(x, y, z) (5.C.21)

�Z
� u
8

(y,x, z)� u
8

(x, y, z)

We say that the functions transform among each other as x, y, and z. With these
symmetry properties, it can be easily shown that the momentum operator p̂� �/i�
evaluated between two different functions yield a null matrix element. Let us take
as an example �Z�p

�
�X
. A rotation of � about the z axis transforms �Z
 to �Z
, p

�
to p

�
, and �X
 to ��X
. Therefore �Z�p

�
�X
���Z�p

�
�X
� 0. The lifting of the

degeneracy at k� 0 by k · p interaction cannot occur via coupling between the
valence band functions, but must necessarily result from interactions with other
bands. Given the restricted basis formed by the three valence band functions, the
cubic symmetry forces the effective interaction (see (5.C.14)) to take the form:
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(5.C.22)
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with three different constants L, M, N. We can now proceed to diagonalize the
effective Hamiltonian to obtain the form of the three valence bands for k� 0 in
terms of these three parameters. Unfortunately, our troubles do not end here, as we
must still take into account spin and spin—orbit interaction. If not for this last
effect, the effect of spin alone would be to double the number of available states in
each valence band with a total degeneracy of 3� 2 at k� 0.

Spin—orbit interaction results from a relativistic effect, which may be explained
qualitatively as follows: an electron crosses an electrostatic potential at great
speed. In the electron’s frame of reference, the electric field associated with this
potential transforms into a magnetic component which in turn interacts with the
electron’s spin. Overall, the electron motion and spin become coupled, with the
result being that the spin operator no longer commutes with the Hamiltonian. The
original 3� 2 degenerate levels split into two levels, one being fourfold degenerate
and the other being twofold degenerate and situated �

�
in energy below the

former. The lifting of this degeneracy is in perfect analogy with that of the p
	
, p


, p
�

orbitals in an atom under the influence of spin—orbit interaction. As a result, the
angular momentum l� 1 and spin s� 1/2 are no longer good quantum numbers.
On the other hand, the new stationary states of the system are eigenvectors of the
observables J� and J

�
, where J�L� S. The observable J� has as eigenvalues

J�� j( j� 1), with j� 3/2 and 1/2. The state j� 3/2 is fourfold degenerate with
j
�
��3/2, �1/2; and the state j� 1/2 is twofold degenerate with j

�
��1/2. The

new stationary states are now linear combinations of the basis functions �X�
,
�X�
, �Y�
, �Y�
, �Z�
, �Z�
, and the new states are designated �j, j

�

 as is common

practice in atomic physics. This then complicates the form of the k · p matrix, but
some small compensation is obtained by noting that near k� 0, we may limit
ourselves to the j� 3/2 level applying Löwdin’s method to the ensuing 4� 4
matrices. The fact that there are only three parameters is due to the persistence of
cubic symmetry. A fairly involved calculation leads to the following form for the
effective Hamiltonian in �3/2, �3/2
 and �3/2, �1/2
 basis:
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with the elements:
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where the three Luttinger parameters �
�

, �
�

, �
�

, are related to the parameters L,M,
and N by �

�
� 2m

�
(L� 2M)/3, �

�
� 2m

�
(L�M)/6, and �

�
� 2m

�
N/6. These

parameters are given in Table 5.C.1 for GaAs and InP.

Table 5.C.1. Values of the different Kane—Kohn—Lüttinger parameters used in
calculating the band structure in GaAs and InP

Parameters GaAs InP

a (Å) 5.6533 5.8688
E
�

(eV) 1.42 1.35
�
*

(eV) 0.341 0.11
�
�

7.0 5.04
�
�

2.25 1.55
�
�

2.9 2.4

Diagonalization of the effective Hamiltonian (5.C.14) yields two doubly degen-
erate energies:
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If we absorb the contribution of the free electron into the constant �

�
, we see that

the� before the square root corresponds to a heavy hole mass (�) and a light hole
mass (�). For either of these, there is a dependence on the direction of k. In (1 0 0)
and equivalent directions, we have:
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(5.C.26)
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Fig. 5.C.1. Band structure of GaAs calculated using the k · p method by including 9� 2
bands in (5.C.10). Near k� 0 the heavy hole and light hole bands vary according to (5.C.25).
As we move away from the zone centre, however, the effective mass approximation becomes
poorer.

and in (1 1 1) directions:
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(5.C.27)

We may conclude that the equipotential surfaces are spherical only if �
�
� �

�
.

Finally, we need to determine the Luttinger parameters for a given semiconduc-
tor experimentally. In practice, cyclotron resonance measurements are used to
extract the shapes of the hole equipotential surfaces to which equation (5.C.25) is
then fitted to obtain the ‘best fit’ Luttinger parameters.

Figure 5.C.1 shows the bandstructure of GaAs calculated by the k · p method by
including 9� 2 bands in (5.C.10). Close to k� 0, we see the dependence on k of the
heavy and light hole bands as on (5.C.25), but the more we move away from the
centre of the Brillouin zone, the less the effective mass approximation is valid.

FURTHER READING

P. Yu and M. Cardona, Fundamentals of Semiconductors, Springer, Berlin (1995).
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5.D Deep defects in semiconductors

As we have shown up until now, the existence of forbidden energy bands results
from periodicity of the crystal potential. Any deviation from this periodicity will
therefore introduce additional, allowed energy levels to the electron in the band-
gap. We may use the chemical model as a means of conceptualizing this (refer to
Fig. 5.6). In this case, an atom not involved in sp� bonding, would leave a level
situated right between the bonding and anti-bonding energy levels. A level of this
type, necessarily deep in the bandgap relative to the shallow hydrogen-like states
of donor and acceptor atoms, is called a deep defect and generally contributes
undesirable characteristics to its semiconductor host. We will see in Chapters 6, 11,
and 13 that such defects often behave as non-radiative recombination centres. We
will now give, within the framework of the tight binding model, a brief theoretical
description useful in arriving at some degree of understanding of the nature of
these defects.

We return to our one-dimensional crystal, as described back in Complement
5.B. In this case, our lattice consisted of a periodic succession of isolated atomic
potentials coupled by a tunnel integral A (and identical between all nearest
neighbours). We now suppose that a different atomic species, impurity, vacancy,
. . ., is located atm� 0. This impurity will be assumed to possess a different energy
level at E�

�
; but for simplicity, the nearest neighbour tunnel integral A, will be left

unchanged. The secular equations (5.B.8) then remain unchanged:
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(5.D.1)

except at m� 0 where they become:
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(5.D.2)

It can be shown that the allowed bands are not fundamentally changed. We will
focus on the fact, however, that there are now spatially localized states atm� 0, i.e.
of type e��� for m� 0 and e���� for m� 0, where � is real.

The functions:

C
�
� e%���, for m� 0 (5.D.3)

still remain solutions to (5.D.1) as long as the following relationship holds:

E(�)�E
�
��A(e��� e���)��2Acosh(�a) (5.D.4)
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Fig. 5.D.1. Representation of a defect in a one-dimensional periodic potential.

except for m� 0. Without the presence of the middle equation in (5.D.2), it is the
equality �� ik imposed by the Born—von Karman cyclic boundary conditions
which leads to the existence of bands. Alternately, the equation at m� 0 (5.D.2)
becomes another equation at the limits which (given the above equation) results in:
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e�����C
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� (e��� e���)e���

�Ae����E�
�
C
�
�Ae��� [E

�
�A(e��� e���)]C
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� e���� (e��� e���)e��

(5.D.5)

Clearly the upper (m��1) and lower (m��1) equations admit C
�
� 1 as a

solution, which then leads to a median equation (at m� 0) of:

E�
�
�E

�
��2Asinh(�a) (5.D.6)

We note that, as � is positive, there will only be a solution if E�
�
�E

�
, i.e. an

impurity cannot localize an electronic level unless the energy of its fundamental
level is deeper than that of the atoms in the host crystal. We then eliminate �
between both (5.D.4) and (5.D.6) to obtain the energy position of the impurity level
E(�), which we label E

"	 
:

E
"	 
�E

�
��(E�

�
�E

�
)�� 4A� (5.D.7)

This level is positioned below the conduction band minimum E
�
� 2A and,

therefore, within the forbidden gap of the semiconductor (see Figs. 5.D.1 and
5.D.2). Associated with this deep level is a localized wavefunction, with a decay
parameter � given by:

�
"	 
�

1

a
arg cosh�

E
�
�E

"	 
2A � (5.D.8)

The deeper the level in the bandgap, the more spatially localized the state. The
consequence of the presence of impurities in semiconductors is then generally the
introduction of allowed energy states within the bandgap which serve to localize
or trap carriers. The influence of these levels is undesirable for many reasons. First,
these centres trap charge carriers, which decreases the conductivity of the semi-
conductors. Also, these levels behave both as non-radiative generation and
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Fig. 5.D.2. Change in the position of the deep level in gap E
"	 	��

as a function of difference
in chemical energy between the starting levels E

�
�E�

�
(in units of 2A).

recombination sites for electrons and holes leading to leakage currents across
junctions and non-radiative recombination in lasers. As a result, the development
of a novel semiconductor material for device applications, often involves a gigantic
metallurgical development stage to find a means of eliminating (or reducing below
some critical level) these deep defects from the bulk material.

FURTHER READING

J. S. Blakemore, Semiconductor Statistics, Dover, New York (1987).
S. T. Pantelides, Ed., Deep Centers in Semiconductors, 2nd Edn, Gordon and Breach, New York

(1992).
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6 Electronic properties of semiconductors

6.1 Introduction

We saw in Chapter 5 that electrons in a crystalline medium are distributed within
allowed energy bands (of conduction or valence type) and that the relative position
of the Fermi level with respect to band extrema allows one to explain the isolating,
metallic, or semiconducting characteristics of a given material. Using a quantum
theory of solids, we also saw that the effect of an externally applied electric field on
the electrons in a crystal is to cause them to circulate in periodic fashion through
the Brillouin zone (i.e. Bloch oscillations) — a prediction that has yet to be observed
experimentally in crystals (it has recently been observed in superlattices, though).
In this chapter, we will elaborate on a few theoretical elements which will allow us
to correlate quantum and classical aspects of the behaviour of electrons in matter.
In particular, we will discuss how scattering mechanisms between different states
within the band structure allow one to account for such macroscopic electronic
properties in semiconductors as described by Ohm’s or Fick’s laws, avalanche, etc.
At the end of the chapter, we will be in a position to present an ensemble of
equations which will allow us to understand the dominant transport mechanisms
in semiconductors.

6.2 Boltzmann’s equation

We saw in Chapter 5 that the motion of an electron within a semiconductor band
subject to an electric field F may be said to experience a change of states in the
band given by:

�a(k, t)��� � a�k�
qFt

�
, 0� �

�
(6.1)

This implies that if an electron is in a state k in the band at time t� 0, then it will be
in a state k� qFt/� at time t. We recall that this observation forms the basis for the
phenomenon of Bloch oscillations. Alternatively, the effect of the field may be
described by the equation:

�
dk

dt
� qF (6.2)
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This formula is analogous to Newton’s law if we consider �k as a pseudo-momen-
tum. In real space, the velocity of an electron in state k is given by the group
velocity:

v(k)�
1

�
�kE(k) (6.3)

and therefore:

d�r

dt�
�

dv

dt
�

dv

dk

dk

dt
�
qF

��
· �k�kE(k)�M�� · qF (6.4)

where we may suppose that the inverse matrixM�� for the effective mass does not
depend on k in the vicinity of an energy extremum in reciprocal space. This
description is valid for an ideal semiconductor (or any other crystalline solid) with
the caveat that the field be sufficiently weak as to prevent band-to-band transitions
and more importantly, that scattering by imperfections (phonons, impurities, etc.)
resulting in transitions between different k states may be ignored (this latter
condition is generally untenable and severely limits the practicality of this descrip-
tion).

On the other hand, this description forms the basis of the semiclassical approxi-
mation for electronic transport. In this case, the response of an electron (at time t,
situated at a position r within a semiconductor, and in a state k within the nth
band) to a local field F(r) is determined according to (6.1) and (6.4). Deviations
from the ideal case (impurities, lattice vibrations, defects, . . .) provoke transitions
between k and k� without any corresponding effect on the particle’s position. Clearly,
this is an approximation, as the simultaneous specification of the position and
velocity (to arbitrary precision) of an electron is not possible in quantum mechan-
ics and because the notion of a state k has no precise sense except in a semiconduc-
tor of infinite extent. In spite of these restrictions, this approximation is quite
correct as long as the variations in the relevant parameters (e.g. field strength, . . .)
are negligible over length scales equal to or greater than the mean distance
between scattering events experienced by the electron. Further details concerning
justification of the semiclassical approximation are not given here. Clearly, a
quantum well will not admit a semiclassical description for the motion of an
electron perpendicular to the interfaces. In fact, the main feature of semiclassical
approximation is that the wave nature of the electron only comes into play
indirectly through the band structure E(k) and via scattering processes, which are
calculated as transition probabilities per unit time (given by Fermi’s golden rule)
between wavefunctions corresponding to an initial state k and a final state k�.

The ensemble of electrons in a band can now be described by a distribution
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Fig. 6.1. Orbits for a group of particles in phase space between times t
�

and t
�

without
collision.

function f (r, k, t) which designates either the probability at time t of finding an
electron at position r in state k, or the number of electrons in a phase space volume
element of d�rd�k. The two interpretations are related through the density of states
g
#
d�r/(2�)�, where g

#
� 2 is the electron spin degeneracy.

Evolution of f (r, k, t) in the absence of any collisions between t and t�dtmay be
obtained by observing a volume in phase space at time t� dt, Fig. 6.1. The
particles now at (r,k) were initially at (r� vdt, k� (dk/dt)dt) at time t, and have
therefore drifted:

� f
�t
�
f (r, k, t�dt)� f (r, k, t)

dt

�

f�r� vdt, k�
dk

dt
dt, t�� f (r,k, t)

dt
(6.5)

��v(k) · �r f (r,k, t)�
dk

dt
· �k f (r, k, t)

To the particles having drifted towards (r,k), we must add the net number of
particles injected into this region of phase space due to collisions from states k�:

�
� f
�t�

��



��
k�

S(k��k) f (r, k�, t)� S(k�k�) f (r,k, t) (6.6)

where S(k��k) is the probability per unit time for a transition to occur between
states k� and k.

The equation describing the evolution of f under the combined effects of an
electric field and collisions is therefore:
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� f
�t
� v(k) · �r f�

qF(r)

�
· �k f��

� f
�t �

��



(6.7)

Boltzmann’s equation

This equation, referred to as Boltzmann’s equation, is of great significance as it
relates both the quantum and classical aspects of electrons in solids to each
another. Once the solution f (r, k, t) to this equation is known, we may calculate
such average macroscopic quantities as the carrier density:

n(r, t)��
g
#
d�k

(2�)�
f (r,k, t) (6.8)

the current:

j(r, t)� q�
g
#
d�k

(2�)�
v(k) f (r, k, t) (6.9)

the average kinetic energy of the particles:

�E(r, t)
�
1

n(r, t)�
g
#
d�k

(2�)�
E(k) f (r,k, t) (6.10)

and the variance of the velocity:

��
0

(r, t)�
1

n(r, t)�
g
#
d�k

(2�)�
[v�(k)� �v
�] f (r, k, t) (6.11)

Equation (6.7), used in conjunction with the collision term (6.6), is of little practical
use. We will now seek to obtain a few simple solutions to Boltzmann’s equation.
First, we shall suppose that the collision integral may be approximated by a single
relaxation time (depending only on the energy of state k) which will tend to bring
the distribution back to its equilibrium form f

	�
(r, k, t) (see Fig. 6.2), i.e:

�
� f
�t�

��



��
f (r, k, t)� f

	�
(r, k, t)

#(E(k))
(6.12)

The approximation (6.12) is of overwhelming physical significance. While all the
transport equations introduced up to now are invariant with respect to time
reversal, (6.12) introduces a privileged direction of time (‘time arrow’). Many of the
unsolved bridges between microscopic theory of matter and macroscopic ther-
modynamics lie hidden in that equation. This last approximation implies that once
the perturbing electric field is removed, the function will relax in exponential
fashion back to its equilibrium shape, with a relaxation time #(E). Seeking a
stationary solution close to the equilibrium distribution, we find by iteration the
distribution function:
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Fig. 6.2. Distribution functions at equilibrium ( f
	�

(k)) and under the influence of an electric
field ( f (k)).

f� f
	�
� #(E(k))[v(k) · �r f	�

� qF · �k f	�
]

(6.13)

� f
	�
� #(E(k))�v(k) · �r f	�

� qv(k) ·F
� f

	�
�E �

Using this last expression, we obtain for the average velocity:

�v(r)
�
��

g
#
d�k

(2�)�
#(E(k))�vv · �r f	�

� qvv · F
� f

	�
�E �

�
g
#
d�k

(2�)�
f
	�

[r,E(k)]

(6.14)

In the case of a simple non-degenerate semiconductor at temperature T,
f
	�
	 exp(�E/k

9
T), where k

9
is Boltzmann’s constant, and for which we may

suppose v(k)� �k/m*, Eq. (6.14) may be written:

�v(r)
��F�D
�rn

n
(6.15)

where � is the mobility defined as:

��
q

3k
9
T
� v�# exp��[E(k)/k

9
T]�d�k

� exp��[E(k)/k
9
T]�d�k

(6.16)

and D is the diffusion constant:

D�
1

3

� v�# exp��[E(k)/k
9
T]�d�k

� exp��[E(k)/k
9
T]�d�k

(6.17)
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F

Fig. 6.3. Combined effects of an electric field and scattering in a solid: under the influence of
an electric field, carriers in this figure are swept from left to right, while being scattered by
collision processes.

Comparing these two last equations, we find the following Einstein relation which
connects mobility to diffusion:

D�
k
9
T
q

� (6.18)

Einstein relation

Returning to (6.15), we see that the current is given by the sum of two terms:

j(r)� qn(r)�v(r)
� qn(r)�F� qD�rn(r) (6.19a)

which may be written (see Fig. 6.3) as:

j(r)� j
���"

(r)� j
"�  

(r) (6.19b)

The conduction current j
���"

is the current described by Ohm’s law:

j
���"

(r)� �F (6.20a)
Ohm’s law

where � refers to the electrical conductivity and relates to the mobility � by:

�� nq� (6.20b)

The diffusion current j
"�  

relates to the migration of the carriers to lower density
regions. This current is given by Fick’s law:

j
"�  

(r)��qD�rn (6.21)
Fick’s law

Note: Given that q��e in our definition of electron mobility, this quantity is negative. A more common
practice, however, is to make use of the absolute values for q and � and to change the sign in front of � in Eq.
(6.15) as necessary.

A particularly important case arises when only the states in the vicinity of an
energy minimum are occupied and where the effective mass near the minimum is
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isotropic (E(k)� ��k�/2m*�E

). The mobility may then be written as a function

of a certain average of # over the kinetic energy:

��
q

3k
9
Tm*

�

�
�

E���#(E)exp[�(E/k
9
T )]dE

�

�
�

E���exp[�(E/k
9
T )]dE

(6.22)

If the relaxation time is independent of energy E, this last expression leads to the
simple Drude model whereby:

�� q
#
m*

(6.23a)

Mobility (cm2 V−1 s−1) in the Drude model

More generally, in the case where #(E)� #
�

(E/E
�

)�, Eq. (6.22) yields:

��
q#
�
(k
9
T )�

m*

2

3

�[(5/2)� �]

�(3/2)
(6.23b)

where � is the gamma function, �(1/2)���, �(x� 1)� x�(x).

Example
At 300 K, gallium arsenide doped to a carrier concentration of 10�� cm�� has an
electron relaxation time of 0.3 ps. Using the Drude model, the expected electron
mobility would be 1.6� 10��C� 3� 10��� s/(0.067� 0.9� 10���kg) or
8000 cm�V�� s��.

6.3 Scattering mechanisms

Collision mechanisms (also referred to as scattering mechanisms) are absolutely
essential in describing the electrical properties of materials successfully. Most
notably, these processes explain the proportionality between induced current flow
and the magnitude of an applied electric field (Ohm’s law). Among these mechan-
isms, the most important contributions generally arise from carrier scattering by
charged impurities and phonons. Phonons (lattice vibrations) and electron—
phonon interaction will be dealt with in the complements at the end of this chapter.
Here we will study carrier scattering by impurities, a process generally dominated
by the residual ions used in doping the host semiconductor.

Given the length scale of an electron wavelength in a conduction band, a
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Fig. 6.4. (a) Conduction electrons accumulate around a positively charged impurity, thereby
screening the impurity potential over a length scale given by the Debye wavelength. (b) Debye
screening length as a function of doping concentration for GaAs (�

!
� 12) at various

temperatures.

charged impurity may be treated as a point chargeZe. As the charge is situated in a
crystal containing free electrons, we may expect the electron concentration near
the impurity to increase thereby screening to a large extent the electric field
associated with the defect. The simplest possible treatment (and highly valuable
nonetheless) of this phenomenon, which follows, is attributed to Debye. We know
that in a non-degenerate semiconductor, the conduction band possesses an aver-
age electron density of n

�
�N


exp(�(E


�E

3
)/k

9
T) (see (5.42) and (5.43)). If we

add a slowly varying (with respect to lattice spacing) electrostatic potential V(r),
each electron at r will have, in addition to its lattice energy E(k), a potential energy
�eV(r) (see Fig. 6.4). We may visualize the entire conduction band as being
displaced vertically in energy by �eV(r). At thermodynamic equilibrium, the
Fermi energy is constant across the material, and the electron density varies as:
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n(r)�N

exp��

[E

� eV(r)�E

3
]

k
9
T �� n

�
exp�

eV(r)

k
9
T � (6.24a)

The change induced by the potential is then:

�
��"

(r)��e(n� n
�

)��en
��exp�

eV(r)

k
9
T �� 1�

(6.24b)

��
e�n

�
k
9
T

V(r)���q�
)
V(r)

where the linearization of the charge defines theDebye wavevector q
)

, or theDebye
length �

)
� 1/q

)
as follows:

q�
)
�
e�n

�
�k
9
T

(6.25)

�
)
�	

�k
9
T

e�n
�

Debye wavevector and length

This length is important as it describes the length scale over which an electron gas
may screen an external potential. This point is better illustrated by considering the
electrostatic potential due to an external charge density �

	��
(r). The potential is

then determined using Poisson’s equation:

��V��
�
�
��

�
	��
� �

��"
�

��
�

	��
�
� q�

)
V (6.26)

where � is the permittivity of the medium (�� �
!
�
�

). This equation may be solved
by Fourier transformation:

V� (r)��
d�k

(2�)�
V(k)e�k · r. . .

�k�V� (k)��
��
	��

(k)

�
� q�

)
V� (k) (6.27)

V� (k)�
��

	��
(k)

(k�� q�
)

)�
�

V�
	��

(k)

1� (q�
)

/k�)

For a point charge �(r)�Ze�(r) such that �� (k)�Ze, we find (after performing a
somewhat lengthy inverse transformation) the total and external potentials:

V(r)�
Ze

4��
e��)�

r
, V

	��
(r)�

Ze

4��r
(6.28)
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Fig. 6.5. Scattering of an electron by an impurity: (a) in reciprocal space and (b) in real space.

which indeed gives the screened Coulomb potential over distances on the order of
the Debye length.

Example
For GaAs doped with a carrier concentration of 10�� cm��, we find:

�
)
�	

�(k
9
T/e)

en
�

�	
12� 8.8� 10���� 0.026

1.6� 10��� 10��
� 13 nm

We will now proceed with calculation of the scattering probability for an electron
initially in a momentum state k within the crystal and having as a wavefunction:

	k(r)�
1

�V
uk(r)e�k�r (6.29)

by a distribution of impurities located at r
�
:

V
�	�

(r)��
�

V
���

(r� r
�
) (6.30)

Returning to time-dependent perturbation theory, developed in Section 1.6.2,
along with this stationary potential introduced at t� 0, we find following the same
arguments the transition rate towards other k� states using Fermi’s golden rule:

S(k� k�)�
2�
�
��k��V

�	�
�k
���[E(k�)�E(k)] (6.31)

which, to within a prefactor, is the same formula given by Eqs. (1.78) and (1.83) for
�� 0. The prefactor here is four times larger as we have not separated out the time
dependence for positive and negative frequencies. Energy conservation shows that
such a collision is elastic, see Fig. 6.5.

Substituting the wavefunctions for the states k and k�, we find for the matrix
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element:

�k��V
�	�

�k
�
1

V� u*k�(r)uk(r)e���k��k��rV
�	�

(r)d�r

(6.32)

��
1

V
Ze�I(k�,k)

�[(k�� k)�� q�
)

]
�
�

e���k��k��r�

where we have used in addition to the periodicity of the uk wavefunctions the
following approximations: (i) V

�	�
(r) does not vary appreciably over a crystal

period, and (ii) the overlap integral:

I(k�,k)�
1

V
�	


�
�	



u*k�
(r)uk(r) (6.33)

is often approximated as being unity for nearby states lying in the same band.
The square modulus of the matrix element will contain double sums of the type:

�
����

e���k��k��r��r
���

A priori, we know nothing about the positions r
�

of the impurities. The most simple
approach is to exploit this ignorance by supposing that the positions are random
in such a manner as to render the contributions of the different impurities equal to
zero, as the phases (k��k) · (r

�
� r

��
) will be equally random for j� j�. As a result,

only the sum for j� j� remains, yielding the number of impurities,N
���

.
Finally, the transition rate is found to be:

S(k�k�)� n
���

2�
�

�I(k�,k)��
V

Z�e�

��
1

[(k�� k)�� q�
)

]�
�[E(k�)�E(k)] (6.34)

where n
���
�N

���
/V is the impurity density and Ze is the charge on a single

impurity. We recall that � is the permittivity of the crystal without, however, taking
into account the contribution due to free electrons. Their polarization is taken into
account by q

)
. We note as well that S(k�k�)�S(k��k), as must always be the

case for an elastic process.
Knowing S(k�k�), we may now calculate the relaxation time #(k) for the simple

case involving electrons in an isotropic, parabolic band, having an effective mass
m*. Equations (6.6), (6.12), and (6.13) give:

�
� f
�t�

��



��
f� f

	�
#(k)

�
�e�
m*

F · k
� f

	�
�E

(6.35)

�
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F ·�
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(k�� k)S(k�k�)
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Fig. 6.6. 1/#(E) for charged impurity scattering at T� 300 K in n-type GaAs.

from which we conclude that:

1

#(k)
��

k�
�1�

k� · k
k� �S(k�k�) (6.36)

Since S(k�k�) depends on the angle " between k� and k, the pertinent relaxation
rate differs from the average collision rate *S(k� k�). As the collisions are
weighted by the change in momentum they produce, this quantity refers rather to a
momentum relaxation time. Approximating I(k�,k) by 1, we finally obtain:

1

#(k)
� n

���

2�
�
Z�e�

V�� �
Vd�k�
(2�)�

(1� cos ")�[E(k�)�E(k)]

[2k�(1� cos ")� q�
)

]�
(6.37)

and the integral can be calculated using the spherical co-ordinates (k�, ", �) and the
relationship �((��/2m*)(k��� k�))� (m*/��k)�(k�� k):

1

#(k)
� n

���

Z�e�

��
m*

8���k��ln�1��
2k

q
)
�
�

��
(2k/q

)
)�

1� (2k/q
)

)�� (6.38)

We can convince ourselves that the rate is of order O(k) if k� q
)

and of order
O(k�ln(k)) if k
 q

)
.

Figure 6.6 shows numerical values for 1/# for different values of n
���
� n

�
at

room temperature for electrons in GaAs. In Fig. 6.7, mobility values are obtained
by numerically evaluating the integral in (6.16) for # over the kinetic energy. In fact,
we will see that at room temperature, scattering by phonons dominates over
impurity scattering with the exception of samples possessing impurity concentra-
tions in excess of n

���
� 10�� cm��.

256 Electronic properties of semiconductors



103

104

105

106

107

108

30025020015010050

Temperature (K)

1013 cm

1014 cm

1015 cm

1016 cm

1017 cm

n imp

Fig. 6.7. Mobility determined by charged impurity scattering.

6.4 Hot electrons

The solution obtained to Boltzmann’s equation (6.13) is only valid provided that
both the electric field and the density gradient are weak. In this instance, a linear
response is obtained, as in the cases of Ohm’s and Fick’s laws. In this regime, we
can easily show that the kinetic energy of the electrons remains equal to that at
equilibrium, (3/2)k

9
Tn: if we replace k by �k in (6.13), we see that the deviation

from equilibrium of the distribution function simply changes sign and therefore
does not contribute to the average energy.

As we increase the field strength F, Boltzmann’s equation no longer possesses a
general analytic solution. As a result, a large number of numerical methods have
been developed to assist with the study of such particular cases. This rather
technical area of analysis exceeds the framework of this book, so we shall limit
ourselves here to offering here a phenomenological description of some of the
more important effects which arise under these conditions.

6.4.1 Warm electrons

When the linear regime is exceeded, the electric field supplies energy to the electron
gas. The primary effect of collision is to randomize the velocities of the particles
over the time scale set by the momentum relaxation time. As the electrons acquire
a mean velocity �v
 in the direction of the current, the energy contribution of the
field to the electrons is given by j · eF� e�n�v
F. Initially, this energy heats the
electron distribution. Once the system reaches a stationary state, this energy is
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dissipated by inelastic processes (most notably electron—phonon interaction,
which transfers electronic energy to the vibrational lattice energy, i.e. transfers the
heat in the host material). This transfer takes place over a characteristic time,
which is referred to as the energy relaxation time. This time is usually several orders
of magnitude greater than the momentum relaxation time. This description implies
that the electron gas takes on an average kinetic energy greater than that set by the
equilibrium value. The temperature of the electron gas then exceeds that of the
crystal lattice. Since electron mobility is temperature dependent, we may expect a
corresponding correction to Ohm’s law in the form of:

�v
� (�� �F�)F (6.39)

the term in F� being excluded by symmetry (we must have �v
���v
 for
F��F), and where � is proportional to d�/dT. We have just seen how impurity
scattering leads to increasing mobilities with higher temperatures so that �� 0. In
Complement 6.B, we will show how scattering by phonons may lead to �� 0.
Thus, simple determination of the sign of the correction to Ohm’s law may give an
indication of the nature of the dominant process limiting mobility in a semicon-
ductor.

The mathematical expression which corresponds to this image is an approxi-
mation to the distribution function and is called the displaced Maxwell approxi-
mation:

f (k, k
�

, T
�
)� n�

2���
m*k

9
T
�
�
���

exp��
��(k� k

�
)�

2m*k
9
T
�
� (6.40)

for which the mean velocity is �v
� �k
�

/m* and the average kinetic energy is
(3/2)k

9
T
�
� (1/2)m*�v
� per electron. A method of solving Boltzmann’s equation

consists of applying this approximation to evaluate the collision integrals and the
relaxation times as a function of these two parameters and scattering processes.
The parameters are then determined by writing the rate equations of momentum
and energy supplied by the field, and the relaxation rates due to collision.

We will not pursue this topic quantitatively any further, but the idea of the
electronic temperature being able to differ from the crystalline lattice temperature
is a very important point to note. It is of use in distinguishing between two separate
relaxation time scales: one reflecting the rapid thermalization of the electron
distribution itself, and another reflecting a slower process involving the transfer of
electronic energy to the lattice.

6.4.2 Hot electrons: saturation velocity

Under the influence of strong electric fields, the electronic distribution becomes
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highly skewed. The average velocity usually tends in this case to a saturation value,
where the velocity becomes independent of the applied field strength. For semicon-
ductors, this saturation velocity is of the order of 10� cm s��. Figure 6.8 shows the
dependence of velocity on field strength in Si and GaAs.

An extremely simplified model put together by Shockley elegantly explains the
velocity saturation effect (Fig. 6.9). Let us suppose that the main inelastic scatter-
ing mechanism involves the emission of a (optical) phonon having an energy of
��

��
, and that this process is so efficient as to guarantee that as soon as an electron

accumulates an amount of kinetic energy corresponding to the phonon energy, it
will emit a phonon and lose all its energy and speed. The motion of each electron is
then completely deterministic: immediately after the emission of a phonon, the
electron finds itself at k� 0 and begins to accelerate anew as given by:

k�
�eF

�
t (6.41)
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This acceleration continues up to the threshold set by the phonon energy:

��k�
2m*

� ��
��

, v
���

�
�k
m*

�	
2��

��
m*

(6.42)

As a result, the velocity distribution becomes an equidistribution between v� 0
and v

���
, in a direction parallel to the applied field, with an average velocity

�v
� v
���

/2, which is clearly independent of the electric field F.

Example
Inserting the relevant numerical values for GaAs, i.e. ��

��
� 36 meV, m*�

0.067m
�

, we find:

v
���
�	

36� 1.6� 10���

2� 0.067� 9.1� 10���

m

s
� 2� 10�m s�� (6.43)

Which is quite good considering the simplicity of the model.
This model is extreme in several ways. The distribution is completely anisot-

ropic and is very far from being Maxwellian. It would therefore not be meaningful
to define an electronic temperature in this case. Also, the assumption that phonon
emission proceeds as soon as it is permitted by energy conservation, implies that
the average energy (3/2)��

��
is itself field independent. Clearly, much room re-

mains for improving this model.

6.4.3 Hot electrons: negative differential velocity

For certain semiconductors, such as GaAs (see Fig. 6.8) and InP, the average
velocity as a function of field strength displays a maximum followed by a regime of
decreasing velocity. An explanation for this behaviour can be found by consider-
ing the band structure for these semiconductors (Fig. 5.7). The conduction band
possesses, away from the global minimum at the centre of the Brillouin zone, local
minima (the L and X valleys) a few hundred meV above the � valley. At thermal
equilibrium, states in these valleys are unoccupied. The application of a sufficiently
strong electric field, however, will be able to accelerate electrons from the � valley
to energies approaching that of the L valley to which they may be subsequently
scattered. After being transferred to the L valley, the velocities of the electrons are
greatly reduced. Even though the electric field will again be able to accelerate these
electrons from states in that valley, their velocities will remain significantly smaller
than those electrons in the � valley, given that the effective massm

�
is greater than

m�. At a stationary state, the occupation of states with reduced mobility continues
to increase with the field strength, resulting in an overall decrease in the average
electron velocity, as depicted in Fig. 6.10.

This negative differential resistance (NDR) effect is not simply a matter of
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Fig. 6.10. Effect of electron transfer between the � and L valleys for increasing field
strengths. The low velocity of electrons in the L valley is responsible for the region of negative
differential resistance in the average velocity.

curiosity as it can create spatial and/or temporal instabilities. Imagine, for in-
stance, a semiconductor doped to an average density n

�
and polarized by a field

strength lying in the NDR regime. Positive fluctuation in the field at location z at
time t will reduce the velocity of the carriers at this location so that downstream
(i.e. in the direction of the electron flow) the carrier density will dip below n

�
, and

peak above n
�

upstream. As a result, a charge dipole will be set up whose further
effect will be to increase the field (and hence the field inhomogeneity) at z. This
process then feeds back on itself, forming a dipolar domain which drifts at a
velocity situated somewhere between the saturation velocity and the maximum
velocity in the crystal. This dipole structure disappears once it arrives at the anode,
with new ones being created near the cathode. In a qualitative sense, we see how
the current traversing the circuit will possess an oscillating component having a
period of the order of L/v, where L is the length of the active zone of the
semiconductor. For L � 1 �m and v� 10�m s��, this corresponds to an oscilla-
tion frequency of 100 GHz. Such devices (called Gunn diodes after their inventor)
allow for the fabrication of compact solid state microwave sources and constitute
an important application of NDR.

6.5 Recombination

It is the possibility for electrons and holes to coexist which forms the basis for
the application of semiconductors in optoelectronics (and, for a large part, in
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electronics as well). We saw in Chapter 5 that, at thermodynamic equilibrium, the
density of electrons n

�
and holes p

�
, is subject to the relation n

�
p
�
� n�

�
(T ), where n

�
is the intrinsic density (Eq. (5.49)). The density n

�
(and p

�
) can be chosen by doping.

This equilibrium can be perturbed, for example, by creating electron—hole pairs, by
illuminating a sample (optical pumping) or by injecting carriers on either side of an
interface separating alternately doped n-type and p-type regions (i.e. a p—n junc-
tion).
Nature is conservative, in that it always provides a number of mechanisms

capable of bringing a system back to equilibrium. In the case of electron—hole
pairs, these are the generation—recombination mechanisms. Each process requires
an associated interaction. Interaction with an electromagnetic field allows for
radiative recombination in which a photon is emitted, whereas photon absorption
corresponds to a generative process for electron—hole pairs. The two processes
form the principal subject of this book and will be treated in detail, most particu-
larly, in the following chapter.

Non-radiative generation—recombination mechanisms are often a nuisance in
optoelectronics as they proceed in parallel and in competition with radiative
processes. It is therefore important to understand them in order to evaluate the
performance and limitations of optoelectronic devices. The two dominant pro-
cesses are:
1. Shockley—Read—Hall recombination — in which impurities play an essential role.

At first an electron and then a hole become trapped on the same impurity
centre, thereby eliminating one electron—hole pair.

2. Auger recombination — resulting from electron—electron interaction, whereby an
electron recombines with a hole and transfers the resulting energy gained by the
recombination to another electron (or hole) in the form of kinetic energy. This is
an intrinsic process and does not rely on the participation of defect or impurity
centres. The corresponding generation process in this case is impact ionization,
where an electron with sufficient kinetic energy can create an electron—hole pair
by transferring its energy to an electron in the valence band and promoting it to
the conduction band.

The Auger effect and impact ionization are addressed in Complement 6.D. Here
we will describe Shockley—Read—Hall recombination (Fig. 6.11).

To be specific, let us suppose that a donor impurity population exists at a
concentrationN

�
corresponding to localized states with energy E

�
in the gap. We

saw in Complement 5.D that an impurity can create a deep (electronic) level (i.e. an
allowed state) within the forbidden gap of a semiconductor. The additional
electron supplied by the donor can be ionized and released into the conduction
band, leaving behind it a positively ionized donor atom as described by:

N�
�
�N�

�
� e (6.44)
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Fig. 6.11. Shockley—Read—Hall recombination and generation processes (CB, conduction
band; VB, valence band).

The ionized donor can also capture an electron from the valence band, corre-
sponding to the creation of a hole, according to:

N�
�

�N�
�
� h (6.45)

In the first reaction, the number of electrons created per second is proportional to
the number of neutral traps:

G
�
� e

�
N�
�

(6.46)

where e
�

is the emission coefficient (s��). The inverse process, describing recom-
bination by capture, is proportional to the number of electrons and ionized traps:

R
�
� c

�
N�
�
n (6.47)

with c
�

being the capture coefficient (cm� s��).
At equilibrium, which we designate by writing a bar above the relevant quanti-

ties, the two rates are equal:

G
�
�R

�
�
e
�
c
�

�
N�
�
n
�

N�
�

(6.48)

This type of reasoning, in which we extract a general expression tying emission and
recombination from a particular equilibrium situation, is entirely analogous with
Einstein’s reasoning presented in Complement 3.C (when relating the stimulated
and spontaneous emission coefficients B and A). Equation (6.47) is called the

263 6.5 Recombination



principle of detailed balance. For the second reaction (6.44), we similarly find:

G
�
� e

�
N�
�

R
�
� c

�
N�
�
p (6.49)

G
�
�R

�
�
c
�
e
�

�
N�
�

N�
�
p
�

Away from equilibrium, the net rate of electron generation becomes:

dn

dt
�G

�
�R

�
� c

��
N�
�

N�
�

n
�
N�
�
� nN�

�� (6.50)

and for holes:

dp

dt
�G

�
�R

�
� c

��
N�
�

N�
�

p
�
N�
�
� pN�

�� (6.51)

Given the Fermi distribution, we have:

N�
�

N�
�

�
N�
�

N
�
�N�

�

� exp��
E
�
�E

3
k
9
T � (6.52)

and for a non-degenerate semiconductor:

n
�
�N


exp��

E

�E

3
k
9
T �

(6.53)

p
�
�N

0
exp��

E
3
�E

0
k
9
T �

so that (6.50) and (6.51) become:

dn

dt
� c

��N��N
exp��

E

�E

�
k
9
T ��N�

�
n�

(6.54)
dp

dt
� c

��N�
�
N
0
exp��

E
�
�E

0
k
9
T ��N�

�
p�

In a stationary state (where, for example, a state of non-equilibrium is maintained
by continuous optical pumping), we have dn/dt�dp/dt, from which we may
express the number of ionized and neutral traps by n and p:
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N
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c
�
N

exp��

E

�E

�
k
9
T �� c

�
p

c
��N0

exp��
E
�
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9
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��N
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�
k
9
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(6.55)

N�
�

N
�

�

c
�
N
0
exp��

E
�
�E

0
k
9
T �� c

�
n

c
��N0

exp��
E
�
�E

0
k
9
T �� p�� c

��N
exp��

E

�E

�
k
9
T �� n�

with the recombination rate:

�
dn

dt
�

np� n�
�

1

c
�
N
�
�p�N

0
exp��

E
�
�E

0
k
9
T ���

1

c
�
N
�
�n�N


exp��

E

�E

�
k
9
T ��

(6.56)

which may also be expressed in the form of a lifetime �dn/dt� (n� n
�

)/#
�
:

1

#
�

�
(np� n�

�
)/(n� n

�
)

#
���p�N

0
exp��

E
�
�E

0
k
9
T ��� #

���n�N

exp��

E

�E

�
k
9
T ��

(6.57)

with #
��
� 1/c

�
N
�

and #
��
� 1/c

�
N
�

.
This expression seems fairly complex. Let us begin by noting that the expres-

sions dependent upon E
�

are equal to the electron and hole concentrations we
would have at equilibrium assuming the Fermi level was equal to E

�
. Next, two

important cases give rise to the following simple limits:
1. For a nearly intrinsic semiconductor (n

�
� p

�
� n

�
), traps at the centre of the

gap, and strong pumping, �n� n� n
�
� �p� p� p

�

 n

�
:

1

#
�

�
�n�/�n

#
��
�n� #

��
�n
�

1

#
��
� #

��

�N
�

c
�
c
�

c
�
� c

�

(6.58)

2. For a p-doped semiconductor (n
�
� n�

�
/p
�
� n

�
), traps at the centre of the gap,

and ��n�, ��p�� p
�

:

1

#
�

�
p
�

#
��
p
�

�
1

#
��

�N
�
c
�

(6.59)

In these two situations, the lifetime does not depend on the densities and the
notion of a ‘lifetime’ becomes meaningful.

Example
The capture coefficient c

�
is written �v

��
, where � corresponds to a capture

cross-section and v
��

is the thermal velocity v�
��
� �v�
. For �� 10��� cm� and
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v
��

� 10� cm s��, we have c� 10�	 cm� s��. The emission coefficient is given by
(6.48) and (6.52), where:

e
�
� c

�
N

exp��

E

�E

�
k
9
T �

For N

� 5� 10�� cm�� and assuming the traps are situated 0.4 eV below the

conduction band (O in GaAs), we have e
�
� 560 s�� at room temperature.

6.6 Transport equations in a semiconductor

In principle, the semiclassical description of transport properties in a semiconduc-
tor device would be a Boltzmann equation including all the electrons in the
conduction and valence bands. In the scattering integral, one would have to
specify all the relevant interactions, including those interactions which scatter
electrons between bands, corresponding to generation and recombination pro-
cesses. To this equation, one would also have to add Maxwell’s equations for the
fields responsible for the forces acting on the electrons.

Such a description would clearly be very difficult to manipulate and the results
obtained from it would be far too detailed. We therefore prefer to fall back on
equations which are more global in nature and which are also, in part, phenom-
enological.

The first equations we will derive are the continuity equations, which are
obtained from Boltzmann’s equation by integrating the distribution function over
all k states and by separating out the electron and hole contributions:

�n
�t
�

1

e
� · j

�
�G�R

(6.60)
�p
�t
�

1

e
� · j

�
�G�R

Semiconductor equation 1: continuity equation

where G and R are the generation and recombination rates, with the electron
current density j

�
��ne� v

�

 and the hole current density j

�
� pe�v

�

. For the

current densities, we use the equations:

j
�
� e�

�
nE� eD

�
�n

j
�
� e�

�
pE� eD

�
�p (6.61)

j
���"

� j
�
� j

�
Semiconductor equation 2: Ohm’s and Fick’s laws
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These equations are inspired from the results obtained in Section 6.1 for weak
fields and gradients, whereas the mobility values and diffusion coefficients are
parameters obtained either by experiment or by numerical solution of
Boltzmann’s equation. We also note that the electric field designated by E in these
equations should not be confused with energy. Depending upon the desired level
of sophistication, we may also introduce in the model the dependencies for �

�
(E),

etc., to take into account hot electron effects.
Added to the equations describing the reaction of the particles to the fields, are

Maxwell’s equations, which determine the dependence of the fields on the material
properties:

� ·D� � (6.62)

� ·B� 0 (6.63)

��H� j
���"

�
�D
�t

(6.64)

��E��
�B
�t

(6.65)

Semiconductor equation 3: Maxwell’s equations

where for non-magnetic semiconductors, B� �
�
H and D� �E, where � is the

permittivity associated with the polarization of localized charges.
In most electronic transport problems in semiconductors, the wavelengths

corresponding to the relevant frequencies are much larger than the dimensions of
the devices, and the magnetic fields do not play a role. In these cases, the important
equations are Poisson’s equation (6.62) � · E��/�, and the fact that the total
current j� j

���"
� �D/�t is conserved, given that its divergence is zero according

to (6.64).
The charge density is given by �� e(p� n�N�

)
�N�

(
), where N�

)
is the

density of ionized donors andN�
(

is the density of ionized acceptors.
The equations given here form the basis for the description of classical semicon-

ductor devices, i.e. virtually all electronic devices (e.g. transistors, photodiodes,
photoconductors, etc.). Effects which play out over length scales that involve the
wave nature of electrons are hidden within parameters in these equations, or in
source terms like carrier generation rates by photon absorption, etc.

We now give an important application of these equations. In Section 6.3, we
encountered the Debye wavelength (Eq. (6.24)), which represented the typical
length scale over which free electrons can screen a weak perturbing potential either
by electron accumulation or depletion. In many devices, we apply potentials which
are strong enough (
k

9
T ) to deplete the electron gas completely in the vicinity of

the potential (which then possesses a charge density resulting from the concentra-
tion of ionized donors left behind). Poisson’s equation evaluated for such a case
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Fig. 6.12. (a) Charge distribution (�), (b) electric field (E
�
), (c) electrostatic potential (V), and

(d) band diagram across a depletion region. z
"	�

is given by Eq. (6.68).

leads to another screening length, referred to as the depletion length.
Let us imagine a doped semiconductor, with a donor concentration N

)
, and

further imagine that at z� 0, an electric field �E
�

pushes the electrons towards
z� 0. In a zone 0� z� z

"	�
, there will be practically no electrons (see Fig. 6.12),

and Poisson’s equation may be written:
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Fig. 6.13. GaAs (�
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� 12) depletion length for various potential barrier heights �V.

dE
�

dz
�
eN�

)
�

, 0� z� z
"	�

(6.66)

which may be easily integrated to yield:

E
�
��E

�
�
eN�

)
�
z (6.67)

The depletion zone extends all the way up to the point where E
�
� 0:

z
"	�
�

�E
�

eN�
)

(6.68)

and the potential drop across this region is:

V(z
"	�

)�V(0)�
eN�

)
2�

z�
"	�

(6.69)

so that:

z
"	�
�	

2��V
eN�

)

(6.70)

Depletion length

This length is important as it gives the scale over which a potential drop extends
within a doped semiconductor. We see that it takes on the value of the Debye
length if we replace 2�V by k

9
T/e; assuming e�V
 k

9
T implies that z

"	�

 �

)
. In

fact, the transition between the depletion region and the neutral semiconductor is
not discontinuous but rather extends over an interval of the order of �

)
, around

z
"	�

.
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Figure 6.13 shows the thickness of the depletion region for different cases.

Example
Taking �V� 1 V and N

)
� 10�� cm�� we have for GaAs:

z
"	�
�	

2��V
eN

)

�	
2� 12� 8.8� 10���� 1

1.6� 10��� 10��
m� 0.11 �m
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Complement to Chapter 6

6.A The Hall effect

We are interested in studying the influence of an applied magnetic field on a
semiconductor layer in which a current flows. Within the context of the semiclassi-
cal description, one can show that the effect of the magnetic field B on an electron
in a semiconductor is simply to add the Lorentz force to Eq. (6.2):

�
dk

dt
� q[F� v(k)�B] (6.A.1)

If, to simplify things, we restrict ourselves to considering electrons residing in those
parts of the band structure where the effective mass is isotropic, v� �k/m*, the
motion of the electrons is classical and remains similar to what would be obtained
in a vacuum:

m*
dv

dt
� q(F� v�B) (6.A.2)

Continuing with our simplification, we take F to lie along the Ox axis and B to be
parallel to the Oz axis. We then model the effect of the scattering by introducing a
frictional term �m*v/# possessing a relaxation time constant. The equations of
motion for the electron may then be written as:

m*
dv
	

dt
� q(F� v



B)�

m*v
	

#

m*
dv



dt
��qv

	
B�

m*v



#
(6.A.3)

m*
dv
�

dt
��

m*v
�

#

and the stationary state solution is:
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Fig. 6.A.1. Under the effect of a magnetic field (perpendicular to the page) the carriers are
deflected from their otherwise rectilinear trajectories between the two contacts. As charges
accumulate on both sides of the sample, an additional electric field component is set up in the
sample running perpendicular to the current. The resulting field ultimately lies obliquely to the
direction of the current flow between the two contacts.

V
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Fig. 6.A.2. Hall effect method for determining the carrier density and type. Measurements of
the longitudinal and transverse voltages under the effect of a magnetic field are used to extract
the Hall resistivity and angle.
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(6.A.4)

v
�
� 0

with the mobility �� q#/m* (Eq. (6.20)) and the cyclotron frequency �

� qB/m*.

We see that the magnetic field deflects the current from the direction of the electric
field, see Fig. 6.A.1. This phenomenon is known as the Hall effect. By measuring
the current j� nqv, we may deduce the mobility from ���j



/j
	
B, and the carrier

density from n� j/�qF separately. It is important to note that the sign of mobility
is negative for an electron gas and positive for a hole gas. Thus, by measuring the
conductivity and the Hall angle between the direction of current flow and the
applied electric field, we may obtain the carrier type, density, and mobility.

In practice, we normally fix the direction of the current by fabricating a sample
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Fig. 6.B.1. Linear chain of atoms with massesM and m. The interatomic forces have been
represented by springs so that the force between neighbouring atoms is given by k(y

�
�x

�
),

etc., and where x and y denote the displacement distances of the atoms from their equilibrium
positions.

shaped into a ‘Hall bar’ (Fig. 6.A.2). The four contacts allow one to measure the
longitudinal and transverse components of the field. Such measurements are
commonly used in semiconductor characterization.

6.B Optical phonons and the Fröhlich interaction

We will now describe how phonons in a material influence the dynamic behaviour
of carriers. Such interactions are extremely important whether in considering
transport properties (e.g. electron mobility at room temperature is dominated by
interactions with phonons) or relaxation phenomena involving carriers excited
optically or by strong electric fields.

6.B.1 Phonons

Phonons are vibrational waves involving the atoms in a lattice. To begin, we study
a simple model consisting of a linear chain of diatomic molecules. We will
approximate the interatomic forces as linearly increasing as a function of the
displacement distance from equilibrium, and being directed in such a manner as to
return the atoms to their equilibrium interatomic positions at d/2 (see Fig. 6.B.1). A
diatomic model of this sort is particularly well suited to treating compound
semiconductors such as GaAs or InP.

The displacement of the jth atom relative to the equilibrium position is taken to
be x

�
for the heavy atoms (mass M) and y

�
for the light atoms (mass m).

The classical Hamiltonian for this system is then:

H(x
�
, y
�
,x"
�
, y"
�
)��

�
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2
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my" �
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2
k(y

�
�x

�
)��

1

2
k(x

���
� y

�
)� (6.B.1)

with the conjugate variables:

p
	�
�

�H
�x"

�

�Mx"
�
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�
�

�H
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�my"
�

(6.B.2)
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The dynamic behaviour of the system is then described by the equations:
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so that:
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These are Newton’s equations for the displacement of each atom.
If we seek solutions in the form of waves having frequencies � (�0):

x
�
�Xexp(iqjd� i�t)

(6.B.5)
y
�
�Yexp(iqjd� i�t)

substituting (6.B.5) into (6.B.4) and setting ��
5
� 2k/M and ��

�
� 2k/m we obtain:
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(6.B.6)
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The condition for the existence of a non-trivial solution gives the mode frequen-
cies:
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Figure 6.B.2 shows the dispersion curves �(q). We note the presence of two
branches referred to as the optical and acoustical branches.

We easily obtain the limits at q� 0:
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Fig. 6.B.2. Dispersion curves for the vibrational modes of a diatomic chain displaying the
acoustical (AC) and optical (OP) branches, along with the characteristic limits.

and at q��/d, we find �
��
��

�
, and �

��
��

5
.

These solutions lie within the zone given by��/d� q� �/d, because a solution
for q� q

�
� 2n�/d represents exactly the same atomic displacements as the sol-

ution corresponding to q
�

. In fact:

x
�
�Xexp(iq

�
jd� i2�nj� i�t)�Xexp(iq

�
jd� i�t) (6.B.9)

Furthermore, if the chain is not infinitely long, but has a length L�Nd (see also
Eq. (5.10)), application of the periodic boundary conditions x

+��
� x

�
and

y
+��

� y
�

leads to discrete values for q:

qNd� 2�n� q
�
�

2�
L
n (6.B.10)

The mode density is then L/2� for each branch and the total number of modes is
2N, i.e. the number of degrees of freedom in a system possessing 2N atoms.

Equation (6.B.6) gives for each solution the ratio between the amplitudes X(q)
and Y(q), and for the special cases close to the zone centre (q� 0), we have:

Y��
��
�

��
5
�1� i

qd

2 �X��
M

m �1� i
qd

2 �X (6.B.11)

for optical phonons and:

Y��1� i
qd

2 �X (6.B.12)

for acoustical phonons.
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Optical phonons are therefore characterized by the opposing motion of the two
types of atoms, which explains their high frequencies. Acoustical phonons, how-
ever, do not produce any displacement in the springs as q� 0 and therefore do not
possess elastic energy (explaining why the frequency goes to zero at the centre of
the zone).

We will not study the extension of our linear chain model to a three-dimensional
crystalline lattice. The ensuing formalism would require an impressive number of
indices to keep track of the three-dimensional displacements of each of the atoms
and the wavevectors also become three-dimensional vectors in the Brillouin zone.
The essence of the model, however, remains essentially unchanged in this case. For
a diatomic system like GaAs, the total number of modes becomes 6N (where 2N is
the number of atoms in a volume V). The solutions are then distributed over three
acoustical branches having �(q)� 0 for q� 0 and three optical branches for
which �(0)� 0.

The main difference between the one- and three-dimensional cases is the exist-
ence of modes for which the displacements are not parallel to the wavevector q —
these are the transverse modes. For a two-dimensional system, Fig. 6.B.3 illustrates
the different displacement possibilities for waves propagating towards the right in
a symmetric case (in any given lattice, the displacements associated with a mode
are generally not perpendicular or parallel to the wavevector).

We now return to the one-dimensional case, which up until now has received a
purely classical treatment. To arrive at a more accurate representation of reality,
this system must be reconsidered in quantum mechanical terms. We must there-
fore replace our expression for the Hamiltonian in (6.B.1) with a Hamiltonian
operator obtained by replacing p

	�
� (�/i)�/�x

�
, etc., with the commutators

[x
�
, px�

�
]� i���

��
, etc. It is, however, much more elegant to transform the Hamil-

tonian function before introducing the operators.
Let us introduce the normal co-ordinates:

X
�
�

1

N

+
�
���

x
�
e�����

(6.B.13)

Y
�
�

1

N

+
�
���

y
�
e�����

along with the inverse transformations:

x
�
��

�

X
�
e����

(6.B.14)

y
�
��

�

Y
�
e����

Utilizing the variablesX
�

and Y
�
, the Hamiltonian function becomes:
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(6.B.15)
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The conjugate variables are then:

P	
�
�

�H
�X%

�

�MNX%
��

, P

�
�

�H
�Y%

�

�MNY%
��

(6.B.16)

and subject to the dynamic equations already put forward in (6.B.3) to (6.B.6):

P% 	
�
�NMX;

��
��

�H
�X

�

��2kN�X���Y
��

1� e����

2 �
(6.B.17)

P% 

�
�NmY;

��
��

�H
�Y

�

��2kN�Y
��
�X

��

e���� 1

2 �
and the eigenmodes, which possess a time dependence given by e����, are given by
(6.B.7). For each mode, the amplitudes are related by:

Y%
�
��1�
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��%
��
5
�

2

1� e����
X%
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(6.B.18)
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which allows us to eliminate Y
�

from the Hamiltonian function, but requires us to
sum over all the modes:
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(6.B.19)
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�
��)

The introduction of the variables X
�

lead us to a Hamiltonian function which is
the sum of independent oscillator Hamiltonian functions possessing eigenfrequen-
cies �

��%
. Along with the conjugate variables, we finally obtain:

P%
�
�

�H
�X% %

�

�NM
��%
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��

(6.B.20)
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LA phonon

TA phonon

(a)

Fig. 6.B.3. (a) Atomic displacements in a two-dimensional lattice possessing two types of
atoms. Transverse acoustical (TA) and longitudinal acoustical (LA) phonons are depicted in
the top and bottom panels, respectively.

278 Complement to Chapter 6



LO phonon

TO phonon

(b)

Fig. 6.B.3. (b) Atomic displacements in a two-dimensional lattice possessing two types of
atoms. Transverse optical (TO) and longitudinal optical (LO) phonons are depicted in the top
and bottom panels, respectively.
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Starting from this Hamiltonian function, the transition to quantum mechanics is
now direct: each classical harmonic oscillator becomes a quantum mechanical
oscillator (see Complement 1.D) having eigenenergies:

E
��%
� ��

��%�n��%�
1

2� , n
��%
� 0, 1, 2, . . . (6.B.21)

where the ‘number of phonons’ n
��%

in the mode is either zero or given by a positive
integer.

We note the great similarity between the quantization of atomic motions in a
lattice and that of the electromagnetic field. The term phonon is meant, therefore, to
reflect this close analogy with the photon. In analogy with photons, we may speak
of the corpuscular nature of phonons. As such, we may refer to emission/creation
and absorption/annihilation of phonons, etc. Clearly, such a language is based
upon the creation and annihilation operators of the harmonic oscillator (see
Complement 1.D).

As the number of phonons that may exist in mode n is not limited, phonon
populations are subject to the same occupation statistics as photons, making them
bosons. At thermodynamic equilibrium (at temperature T), the average number of
phonons in a mode is therefore given by:

�n
��%


� 1/[exp(��
��%

/k
9
T)� 1] (6.B.22)

6.B.2 The Fröhlich interaction

Phonons represent a time-dependent perturbation to the periodic crystal potential
that determines the electron states in the bands. This perturbation naturally leads
to the possibility of scattering an electron from one state to another according to
Fermi’s golden rule. In a non-polar semiconductor (such as Si), an interaction
potential which couples phonons to electrons results from the fact that the lattice
distortions change the band structure proportionately to the relative displacement
amplitude of the atoms. For example, local compression due to an acoustic wave
increases the local bandgap and raises the energy of the states in the conduction
band, see Fig. 6.B.4. Under the adiabatic approximation, an electron is therefore
subjected to a potential which is proportional to the deformation amplitude; this
potential can then induce transitions, i.e. electron—phonon collisions.

These processes (referred to as deformation potential scattering) naturally occur
in polar semiconductors (e.g. GaAs) too, but in this case, there are additional
interactions due to the fact that phonons create polarization and electrostatic
fields that follow the phonon. For acoustical phonons we speak of the piezoelectric
effect. In the case of optical phonons, the electrostatic field induces electron—
phonon interaction, referred to as Fröhlich interaction. Fröhlich interaction has a
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Fig. 6.B.4. A phonon induced variation in the bandgap (referred to as a deformation
potential) is experienced by electrons as a potential scattering centre.

stronger effect than the deformation potential, and is discussed in this section as an
illustration of electron—phonon interaction.

Since the crystal is polar, there is a transfer of charge e* from the x atoms to the y
atoms. The deformation produced by a phonon thereby induces a polarization:

P� e*(x� y)
N

V
(6.B.23)

with charge ���� ·P. For an optical phonon with a wavevector q, we have:

�(r, t)��e*
N

V
iq · (X�Y)exp(iq · r� i�qt) (6.B.24)

from which we see that only LO phonons can induce a charge. In this last case,
Poisson’s equation gives us the induced electrostatic potential:

V
��"

(r, t)�
e*

�
�
�
�

N

V
1

iq
(X�Y)exp(iq · r� i�qt) (6.B.25)

This is the potential with which an electron can interact. The matrix element which
describes this interaction between an initial electronic state k and a final state k� is:

�k��eVq(r)�k�


�
�ee*

�
�
�
�

N

V
X�Y

iq

1

V� u*k�(r)uk(r)e��q�k�k���rdr

(6.B.26)

�
�ee*

�
�
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N

V
X�Y

iq
�q�k�k�

1

V

�
�	



u*k�
(r)uk(r)dr

with the square modulus yielding:
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(6.B.27)
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�X�Y��
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�q�k�k�
I(k,k�)

Here,� is the Kronecker symbol and the overlap integral is the same as introduced
in the earlier discussion of impurity scattering (Eq. (6.33)). Before we can make use
of Fermi’s golden rule, we finally need to obtain e* and X�Y.

For e*, we use the following argument: as TO phonons have a frequency
�
#&
��(2k/m

�	"
) in our model, the oscillation amplitude near �

#&
in response to

an oscillating field with frequency � is given by:

���(X�Y)��m
�	"
��
#&

(X�Y)� e*E (6.B.28)

yielding the polarization:

P�
e*�N

m
�	"

V
E

(��
#&
���)

(6.B.29)

and the permittivity:

�(�)� �
�
�
�
�
e*�N

m
�	"

V
1

(��
#&
���)

(6.B.30)

In particular, we find a ‘static’ permittivity for ���
#&

:

�
�
�
��
� �

�
�
�
�

e*�N

m
�	"

V��
#&

(6.B.31)

In the case of LO phonons, the field increases as a result of the induced polariz-
ation field �e* (X�Y)(N/V )/�

�
�
�

resulting in the additional restoring force:

���(X�Y)��m
�	"
��
#&

(X�Y)�
e*�N

�
�
�
�

V
(X�Y)� e*E (6.B.32)

with the response:
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(6.B.33)

and a frequency �
%&

greater than �
#&

. We may therefore determine the effective
charge e* by:

e*�N

m
�	"

V
���

#&
�
�

(�
��
� �

�
)� �

�
�
�

(��
%&
���

#&
) (6.B.34)

and at the same time find the Lyddane—Sachs—Teller relation:
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so that:

e*�N
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� (6.B.36)

Finally, the mode amplitude can be determined through the correspondence
principle by making the classical energy in the mode equivalent to the number of
phonons in the mode (Eqs. (6.B.20) and (6.B.21)):

E
���
�

1

2
m

�	"
��
%&
�X�Y��N� n

�
��
%&

(6.B.37)

The near-final result for the transition rate thus becomes:

S
���

(k� k�)�
2�
�
��k�� eV

�
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���[E(k�)�E(k)� ��

�
]

(6.B.38)
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�
]

for a collision in which a LO phonon is absorbed and its energy is transferred to an
electron. We have cheated somewhat be applying Eq. (6.B.37). In reality, in a
correct quantum mechanical treatment of this problem, we would have to write
the X—Y operator in terms of creation and annihilation operators corresponding
to the Hamiltonian in (6.B.20). Afterwards, the procedure becomes completely
analogous to the photon—electron interaction treated in Section 3.5.1. It is there-
fore not surprising to find that expression (6.B.38) remains valid for phonon
absorption. In the case of phonon emission, we must replace n

�
by n

�
� 1, corre-

sponding to stimulated emission plus the spontaneous emission of a phonon:

S
	�

(k�k�)�
�
�

e���
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�
�
�

�
1

�
�
�
��
� I(k,k�)�[E(k�)�E(k)� ��

�
] (6.B.39)

It is interesting to note that the inclusion of stimulated emission ensures a detailed
balance at thermodynamic equilibrium:

S
	�

(k�k�) f
	�

(k)[1� f
	�

(k�)]� S
���

(k�� k) f
	�

(k�)[1� f
	�

(k)] (6.B.40)

when n
�

is given by the Bose—Einstein distribution (6.B.22) and f
	�

is determined by
the Fermi—Dirac distribution (5.38). The net flux of particles between any two
states is therefore null in that case.
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Fig. 6.B.5. Scattering rate due to optical phonons for electrons in GaAs at T� 300 K. The
optical phonon energy is 36 meV, �
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� 12.85, �

�
� 10.88.

Starting from Eqs. (6.B.38) and (6.B.39) we can calculate the total scattering rate
due to optical phonons by Fröhlich interaction:

�(k)��
k�

S
���

(k�k�)��
k�

S
	�

(k� k�) (6.B.41)

Making the approximation that I(k, k�)� 1, we then have:
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(6.B.42)
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Figure (6.B.5) shows � as a function of E for the case of GaAs. Phonon emission
naturally takes place only above a certain energy threshold such that E� ��, due
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to the fact that the electron following phonon emission must possess strictly
positive residual energy. We therefore see that electron—phonon interaction is
extremely efficient in dissipating excess electron energy (over time scales typically
of the order of 100 fs). This interaction therefore plays a fundamental role in optical
relaxation mechanisms.

It is also important to note that for scattering (inelastic and anisotropic)
occurring via Fröhlich interaction, we cannot in general define a relaxation time.
Mobility calculations therefore require a more complicated solution than (6.22) to
Boltzmann’s equation.

FURTHER READING

B. K. Ridley, Quantum Processes in Semiconductors, Clarendon Press, Oxford (1988).

6.C Avalanche breakdown

If the electric field applied to a semiconductor significantly exceeds the saturation
velocity field, certain electrons will be able to acquire an additional amount of
energy above the conduction band minimum, greater than E

�
, the gap energy. In

such circumstances, impact ionization processes become possible. The electron
interacts with all other electrons in the valence band through electron—electron
interaction, and can excite an electron across the forbidden gap, corresponding to
generation of an electron—hole pair (a generation process). In this process, energy
and pseudo-momentum are conserved. We have, prior to collision, an electron in a
state k

�
, with energyE


(k
�
), and an electron in a state�k

�
, with energy E

0
(k
�
). After

collision, there are two electrons in the conduction band in states k
�

and k
�

, and
the conservation laws may be written (see the inverse process in Fig. 6.D.1):

k
�
� k

�
�k

�
�k

� (6.C.1)
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To get an idea of the energy threshold for such a process, we will employ the
parabolic band approximation, E


(k
�
)�E

�
� ��k�

�
/2m

�
, and E

0
(k
�
)����k�

�
/2m

�
,

along with the effective electron (m
�
) and hole (m

�
) masses:
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We can convince ourselves that the initial energy minimum is obtained when all
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the momenta are oriented in the same direction. The minimum is found more
elegantly (using Lagrange’s method) by minimizing the function:

F�E
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��k�

�
2m

�

� �(k
�
� k

�
� k

�
) (6.C.3)

where � is the Lagrange multiplier. Taking the derivative of F with respect to k
�
,

k
�
, and k

�
, we find:
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(6.C.4)

from which we obtain a minimum initial kinetic energy of:
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�
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)
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(6.C.5)

This leads to impact emission energy thresholds slightly above E
�

in the case of
heavy holes, but of the order of 3/2E

�
if the two masses m

�
and m

�
are close to one

another. The threshold is thus lower for the generation of heavy holes.
By symmetry, the analogous process in which the initial particle is a hole, gives

the same results as obtained previously, with the roles of m
�

and m
�

being
interchanged. The threshold is generally greater in this case. We must realize,
however, that the parabolic band approximation is fairly poor over these energy
ranges.

Once a primary electron has generated an electron—hole pair, it will once again
be accelerated by the electric field enabling it to participate in subsequent pair
generation events. Similarly, after being sufficiently accelerated by the electric field,
each one of these secondary particles will in turn be able to play the role of primary
particles and participate in pair production, with the result being that the overall
free carrier population in the structure increases in a geometric fashion. This
situation in a semiconductor is referred to as avalanche, with the resulting rise in
free carrier concentration producing an increase in conductivity. In practice, we
define the ionization coefficients �

�
and �

�
(which we shall suppose to be equal in

what follows) as being the number of secondary pairs produced by a primary
electron or hole per centimetre travelled in the medium in the direction of the
applied field. These coefficients clearly depend on the local field strength F. While
travelling across a region subject to a strong field between 0� x�w, a primary
electron will therefore generate:

N
#
�

:

�
�

�
�
(F)dx (6.C.6)
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Fig. 6.C.1. Illustration of carrier multiplication by impact ionization. Under the influence of
a strong applied field F, a single primary electron enters at x� 0 and M

�
electrons emerge at

x�w.

secondary pairs. The secondary and tertiary particles, etc., will generate a total
number of electrons in the region given by:

N
:
� 1�N

#
�N�

#
�N�

#
� · · ·�

1

1�N
#

(6.C.7)

as long asN
#
� 1. If an electron enters at x� 0, a numberN

:
of electrons will exit

at w. We define the multiplication factor M
�

for electrons as being the ratio of the
exit current to the entrance current in the high-field region. In an analogous
fashion, we may define M

�
for holes as j

�
(0)�M

�
j
�
(w) where holes enter at w and

exit at 0. Figure 6.C.1 depicts the avalanche phenomenon.
The simplest model for obtaining ionization coefficients is due to Shockley and

goes by the charming name of the lucky electron model. Since only those electrons
possessing energies in excess of the energy threshold given by (6.C.5) can provoke
an avalanche, there are few electrons which will be able to do so, as most will give
up their energy in collisions before being accelerated to the threshold energy. We
will label as �

��
the electron mean free path prior to collision with an optical

phonon (and for simplicity’s sake assumed to be independent of energy) and �
�

as
the mean free path prior to impact with another electron (assuming the energy
threshold has been reached). Last, we will assume that each collision causes the
electron velocity to drop to zero. To attain the threshold energy E

�
, an electron

must travel a minimum distance x
�

given by E
�
� eFx

�
. The probability that the

electron can do so without being scattered by phonons is then:

P(E
�
)� exp��

x
�

�
��
�� exp��

E
�

eF�
��
� (6.C.8)

Once the kinetic energy of the electron exceeds the ionization threshold, see Fig.
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Fig. 6.C.2. The Shockley model for obtaining the ionization coefficient �
�
: a primary electron

gains sufficient energy to create a secondary electron—hole pair.

6.C.2, the mean free path � of the electron is given by the composite of both
collision mechanisms as 1/�� 1/�

�
� 1/�

��
. The probability that the first collision

event experienced by the electron is an impact ionization event (as opposed to a
collision with a lattice phonon) is therefore �/�

�
. If, however, the first process

encountered corresponds to a collision with a phonon, the electron’s velocity
drops to zero and it must begin to regain its kinetic energy from scratch. From
such a ‘cold start’, the ionization probability is then:

P
�
�

�
�
�

exp��
E
�

eF�
��
� (6.C.9)

If we define �
��

as being the number of phonon collisions expected in a travel
distance of 1 cm, the balance between the energy supplied by the electric field, and
the energy dissipated by ionization and phonon emission processes may be
written:

eF� �
�
E
�
� �

��
E

��
(6.C.10)

where �
�

is the ionization coefficient we seek. The number of times an electron
must start accelerating from rest (following a collision) over this distance is then
�
�
� �

��
, which gives for the number of collisions per centimetre:
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and by eliminating �
��

between (6.C.10) and (6.C.11):
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(6.C.12)
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Fig. 6.C.3. Dependence of the ionization coefficient �
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on the applied field strength
according to Eq. (6.C.13) for silicon. E
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where we have taken advantage of the fact that E
��
�E

�
(,50 meV and ,1 eV,

respectively). Reinsertion of (6.C.9) then gives the final result, illustrated in Fig.
6.C.3:
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�
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(6.C.13)

With the exception of situations involving very high field strengths F, we may
neglect the second term in the denominator to write:

�
�
�

�
�
�
E

��

eFexp��
E
�

eF�
��
� (6.C.14)

Impact ionization coefficient

In spite of the extreme simplicity of this model, expression (6.C.14) successfully
reproduces the observed experimental dependence of �

�
on the applied field

strength.

FURTHER READING

J. S. Blakemore, Semiconductor Statistics, Dover, New York (1987).

6.D Auger recombination

The inverse process to impact ionization is Auger recombination. In this case, an
electron and a hole recombine, and the liberated energy is transferred to another
electron or hole. Figure 6.D.1 shows both these processes schematically, assuming
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Fig. 6.D.1. Two possible Auger recombination processes: (a) an electron with momentum k
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recombines with a hole k
�

and another electron at k
�

receives the liberated energy and is
promoted to k

�
(CHCC); (b) a similar process involving two holes and a single electron at the

outset (CHHH).

a highly simplified band structure. The effect of a slightly more realistic band
structure including heavy and light holes would be to increase the number of
possible Auger processes by allowing the second hole to be either light or heavy,
and by allowing hole transitions in the same band or between different valence
bands.

Figure 6.D.1, equally, shows how the total energy and momentum conservation
laws restrict the combinations of possible initial and final states. For example, the
recombination between an electron at the bottom of the conduction band and a
hole at the top of the valence band is not an allowed Auger process as the
secondary particle cannot make a vertical transition.

Qualitatively, it is also evident that since the Auger effect involves three par-
ticles, it must be more prevalent under increased electron and hole concentrations.
Typically, this is the case in small gap semiconductors or in systems far from
thermodynamic equilibrium (e.g. under high levels of optical pumping or current
injection as in semiconductor lasers).

The only model which offers any hope of obtaining an analytic description of
Auger recombination (and thus some physical insight) is that involving two
parabolic bands possessing electrons and holes with respective effective masses m


andm

0
. We will suppose that the electrons can attain equilibrium with one another

and that the holes can do the same over a period of time less than the characteristic
time scale of the recombination. Also, we will assume that the distribution of
particles remains non-degenerate. We therefore have an electron density given by:

n�N

exp��

E

� �

�
k
9
T � (6.D.1)
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and a hole density of:

p�N
0
exp��

�
�
�E

0
k
9
T � (6.D.2)

where �
�
(�
�
) is the electron (hole) quasi-Fermi level. In fact, as we saw in Section

5.6.4, these equations define �
�

and �
�
, and at equilibrium �

�
��

�
�E

3
. The

quasi-equilibrium hypothesis for electrons (holes) implies that the occupation
probability of an electronic state k with energy �


:

�

(k)�E


�

��k�
2m



is given by (bands are parabolic and energy therefore only depends on the
wavevector norm k):

f

(k)� exp��

�

(k)��

�
k
9
T � (6.D.3)

and for a hole:

f
0
(k)� exp��

�
�
� �

0
(k)

k
9
T � (6.D.4)

with:

�
0
(k)�E

0
�

��k�
2m

0

The recombination rate, assuming the contribution of a process (see Fig. 6.D.1a),
with initial states comprising two electrons at k

�
and k

�
and a hole at k

�
, and a final

state corresponding to a single electron at k
�

, will be weighted by the occupation
probabilities of the states k

�
,k
�
, k
�

(and where k
�

may be assumed to be empty
with probability 1):

P(k
�
, k
�
, k
�
)� exp��

�

(k
�

)� �
�
� �


(k
�

)��
�
� �

�
� �

0
(k
�
)

k
9
T �

(6.D.5)

�
n�p

N�

N
0

exp��
��[k�

�
� k�

�
� (m


/m

0
)k�
�

]

2m

k
9
T �

But again, this process must be permitted by conservation of momentum, i.e:

k
�
� k

�
� k

�
� k

�
(6.D.6)

and of total energy:

�

(k
�

)� �

(k
�

)� �
0
(k
�
)� �


(k
�

) (6.D.7a)
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so that:

��
2m



[k
�
� k

�
� (m


/m

0
)k�
�
� k�

�
]�E

�
� 0 (6.D.7b)

Thus, if the interaction depends only slightly upon k
�

,k
�
, k
�
, the most probable

process is obtained by maximizing P(k
�

, k
�

, k
�
) under the constraints imposed by the

conservation laws.
In order to find this maximum value, we will proceed as in Complement 6.C and

use the method of Lagrange multipliers to maximize the function:

F�P(k
�

, k
�

, k
�
)� ��

��
2m



[k
�
� k

�
� (m


/m

0
)k�
�
� k�

�
]�E

��
(6.D.8)

� �(k
�
� k

�
� k

�
� k

�
)

so that:

�F
�k
�

��
��k

�
2m


k
9
T

(P� �k
9
T )� �� 0

�F
�k
�

��
��k

�
2m


k
9
T

(P� �k
9
T )� �� 0 (6.D.9)

�F
�k
�

��
��k

�
2m


k
9
T
m


m
0

(P� �k
9
T )� �� 0

with the optimum value occurring for:

k
�
� k

�
, k
�
��

m
0
m


k
�

(6.D.10)

Momentum conservation gives:

k
�
� 2k

�
� k

�
��2�

m
0
m

� k� (6.D.11)

Finally, having found k
�

, k
�
, and k

�
as a function of k

�
, this last quantity is obtained

by energy conservation, yielding the result:

��k�
�

2m


�E
�

��
(1� 2�)(1� �)

, ��
m


m
0

(6.D.12)

The maximum probability is therefore:

P�
n�p

N�

N
0

exp��
�

1��
E
�

k
9
T� (6.D.13a)

292 Complement to Chapter 6



or:

P�
n

N


exp��
�
�
� �

�
k
9
T � exp��

1� 2�
1��

E
�

k
9
T� (6.D.13b)

Auger recombination probability (CHCC)

which gives at thermodynamic equilibrium a maximum probability:

P
�
�
n
�
N


exp��
1� 2�
1��

E
�

k
9
T� (6.D.14)

The ‘mirror’ process in which two holes and one electron are involved at the onset
may be obtained by interchanging n� p,�� 1/�,N


�N

0
, giving:

P�))�
p

N
0

exp ��
�
�
� �

�
k
9
T � exp��

2� �
1� �

E
�

k
9
T� (6.D.15)

Auger recombination probability (CHHH)

and

P�))
�

�
p
�
N
0

exp ��
2��
1��

E
�

k
9
T� (6.D.16)

In most semiconductors ��m

/m

0
� 1, and comparison of the corresponding

probabilities indicates that, for comparable electron and hole densities (n and p),
the first process will dominate.

The maximum probabilities (6.D.13) to (6.D.16) describe the essentials of the
dependence of Auger recombination on temperature and carrier density. Near
equilibrium, the probabilities (6.D.14) and (6.D.16) show that the effect is consider-
able in small gap semiconductors and at elevated temperatures. At a fixed tem-
perature and gap size, the recombination rates R�)�� depend, as we might expect,
on the carrier densities n and p as:

R�)���C
�)��

n�p, R�)))�C
�)))

np� (6.D.17)

where C
�)))

is a coefficient tied to the probability P
�

given by (6.D.14). At
equilibrium, we find R�)��

�
�C

�)��
n
�
n�
�

, i.e:

R�)���R�)��
�

n�p

n
�
n�
�

(6.D.18)

For the inverse process, the creation of an electron—hole pair by an electron with
sufficient energy is found to be (following the same argument) proportional to n:

G;�G;
�

n

n
�

(6.D.19)

and, as G;
�
�R�)��

�
, we may write the net recombination as:
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�

n
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�
�
np� n�

�
n�
�
� (6.D.20)

The evaluation of the prefactors C
�)��

and C
�)))

is complicated and not particu-
larly informative given that actual band structures are only poorly represented by
the two-band parabolic model. We shall, therefore, not pursue the determination
of these values here. We present, however, an equation from B. L. Gelmont, Soviet
Physics JETP 48, 268 (1978), for the lifetime of an electron #� n

�
/R�)�� at

thermodynamic equilibrium:

#�
1

3�
�
2�
��� (4��)���

e�m

�
E
�

k
9
T�
���

exp�
E
�

k
9
T

(1� 2�)� (6.D.21)

Figure 6.D.2 shows that the lifetime of an electron in an intrinsic semiconductor
with a small gap depends greatly upon temperature due to the probability P

�
in

Eq. (6.D.14).
Away from equilibrium, the limited development in (6.D.20) shows immediately

that the rate #�� associated with the Auger effect possesses a quadratic dependence
on the carrier density, i.e. #���C

*�#	�
n�. The proportionality coefficient corre-

sponds to the Auger coefficient. Figure 6.D.3 shows experimental values for the
Auger coefficients determined at room temperature in two important systems for
infrared detection: Hg

	
Cd
��	

Te and InAs
��	

Sb
	
. The forbidden gap in these alloys

varies as a function of the fractional composition x. Figure 6.D.3 confirms the
exponential dependence of the Auger coefficient as a function of the size of the
bandgap.
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FURTHER READING

J. S. Blakemore, Semiconductor Statistics, Dover, New York (1987).
P. T. Landsberg, Recombination in Semiconductors, Cambridge University Press, Cambridge

(1991).

295 6.D Auger recombination



7 Optical properties of semiconductors

7.1 Introduction

In Chapters 1—3, we described the different interaction mechanisms between an
electromagnetic wave and a two-level quantum system. We indicated briefly at the
time that that these results may be trivially generalized to systems possessing
arbitrary numbers of discrete states. In Chapter 5, we saw how electrons in a
crystalline solid and, more specifically, in a semiconductor (given our interests) are
distributed among energy bands and can be differentiated according to a continu-
ously varying index: the wavevector k. In this chapter, we will present the math-
ematical techniques that will allow us to take into account the interactions
between light and these continuously distributed energy states. Afterwards, we will
be in a position to describe interactions between bulk semiconductor materials
and light.

7.2 Dipolar elements in direct gap semiconductors

We consider a volume V of a crystalline semiconductor in which the eigenfunc-
tions �%

�k

 with energies E

�k
are given by the Bloch—Floquet functions introduced

in (5.12):

%
��k

(r)�
u
�k

(r)

�V
e��k�r��r�%

��k

 (7.1)

We recall that k is the wavevector of an eigenstate belonging to the first Brillouin
zone of a semiconductor, and which designates the position of the state within the
nth energy band in the direction ek� k/k (see Figs. 5.2 and 5.4). The functions
u
��k

(r) possess the periodicity of the crystalline lattice (i.e. for every lattice vector
ri, u��k

(r� ri)� u
��k

(r)). Furthermore, these functions are normalized by the volume
of the primitive cell V

�
, i.e. '

��
�u
�k

(r)��d�r�V
�
. As explained in Complement 1.A, we

normalize the stationary functions with respect to a fictitious box of volume
V�NV

�
so that '

�
�%

�k
��d�r� 1, resulting in a pseudo-quantization of the

wavevectors k. We recall that the most common procedure used for pseudo-
quantization in crystalline solids consists of applying the Born—von Karman cyclic
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boundary conditions given in (5.10). Finally, an important point worth remember-
ing (and useful on many occasions) is that spatial variations in the wavefunction,
e��k�r are very slow in comparison with those arising from atomic wavefunctions
u
��k

(r) (see Fig. 5.3). In other words, e��k�r acts as an envelope to the Bloch functions.
A semiconductor is subjected to an electromagnetic wave for which the pertur-

bation Hamiltonian for the interaction (see (3.13)) may be written:

W(r, t)�W cos(k
��

· r��t)��qE · r̂ cos(k
��

· r��t) (7.2)

where r̂ is the position operator, k
��

is the wavevector of light, and E is the electric
field. The optical interaction Hamiltonian will then couple the two states �%

��k



and �%
���k�


. Equations (1.82) and (1.83) allow one to calculate the probability rate
(in s��), for an electron in the nth band with a wavevector k, of being promoted to
the n�th band with wavevector k�:

P
��k���k�

�
�

2�
��%

���k�
�W�%

��k

���(���E

���k�
�E

��k
) (7.3)

We recall that the vectors k are pseudo-quantized. The energy dependence of the
Dirac delta function expresses the requirement that energy be conserved:

���E
���k�

�E
��k

(7.4)

We will now calculate the matrix element W
��k����k�

:

W
��k����k�

��%
���k�

�W�%
��k



(7.5)

��
qE

V
· ���

�����	

u*
���k�

(r)e�k��rre��k���
ru
��k

(r)e��k�rd�r

This last integral may be simplified by noting that the function e��k��k
���

k��r varies
very slowly in comparison with the product of the two functions u

��k
(r). We may

therefore rewrite integral (7.5) in the following manner:

W
��k����k�

��
qE

V
·�
�

e��k��k
���

k�r����
�	

 �

u*
���k�

(r)ru
��k

(r)d�r (7.6)

and the integral I in (7.6) may be written:
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I����
�	

 �

u*
���k�

(R)(R� r
�
)u
��k

(R)d�R

(7.7)

� ���
�	

 �

u*
���k�

(R)Ru
��k

(R)d�R

where R spans the primitive cell about 0. The term in the integral in ri may be
eliminated from (7.7) as the Bloch functions are orthonormal for k�k�. As a
result, this integral is independent of the ith cell over which it is evaluated.
Equation (7.6) then becomes:

W
��k����k�

��
qE

V
�

· I�
�

e��k��k
���

k�r���
qE

V
�

· I�(k�� k
��
� k) (7.8)

where the Kronecker function in this last term expresses the requirement of
momentum conservation in electron—photon interaction:

k��k�k
��

(7.9a)
Momentum conservation in optical transitions

The electron and photon wavevectors in the visible and near-visible light regions
are quite distinct: k

��
� 2�/�� 10�—10� cm��, whereas typical wavevectors in the

Brillouin zone are of the order of k� 2�/a or 10	 cm�� (recalling that a is the
interatomic distance). The wavevector of light is therefore negligible in comparison
with that of electrons in each of the different energy bands, so that:

k��k (7.9b)
The optical transitions are ‘vertical’

Figure 7.1 illustrates that optical transitions within the band structure must take
place at constant k. It is in this sense that optical transitions are referred to as being
vertical. Clearly, this transition rule can only be respected if the forbidden gap is
direct, i.e. if the valence and conduction band extrema are aligned vertically in the
Brillouin zone. The case involving transitions between indirect bands is more
complicated and is not treated in this book. In future calculations, we will
therefore be able to eliminate the index k� from (7.8).

From this point onwards, we will limit our investigations to optical transitions
between the valence and conduction bands. We will denote as u

k
and u

0k
the

periodic portions of the Bloch functions in the conduction and valence bands,
respectively. The dipolar matrix element W

0
(k) between the valence and conduc-

tion bands is then:
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Fig. 7.1. Optical transitions between states in the conduction and valence bands take place
at constant k. These transitions are referred to as being ‘vertical’.

W
0�

(k)��qE · r
0
�(k�� k

��
�k)

(7.10)

r
0
����

�	



u*
�k

(R)Ru
0�k

(R)d�R

Dipole matrix element for the transition

valence band� conduction band

We can now utilize Eq. (3.D.6) to relate the matrix elements of the optical
interaction Hamiltonians A · p and D ·E:

r
0
��

i

m
�
�
�

p
0

(7.11a)
r
0
� �u

�k
�r�u

0�k

; p

0
��u

�k
�p�u

0�k



where m
�

is the vacuum electron mass, and ��
�

is the energy separating the two k
states in the conduction and valence bands. We saw in Complement 5.C that the
element p

0
may be easily obtained starting from the Kane parameter, P. The

formula is extremely useful as P is largely constant across all III—V semiconduc-
tors (see Table 7.1), making (7.10) quite predictive. Furthermore, by using Kane’s
theory, we can easily show that to first order in k, the matrix elements (7.11a) are
constant. The equation which couples p

0
to the Kane element P, can be found

across the literature in as many different forms as there are definitions for the Kane
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Table 7.1. Values of E
#

(bandgap), m
�
/m
�

(conduction band effective mass), E
+

(Kane energy), and the optical transition dipolar matrix element r
��
for various

semiconductors (from G. Bastard, Wave Mechanics Applied to Semiconductor
Heterostructures, Wiley, New York (1991))

GaAs InP GaSb InAs InSb

E
�

(eV) 1.5192 1.4236 0.811 0.418 0.2352
m

/m
�

0.0665 0.079 0.0405 0.023 0.0139
E
<

(eV) 22.71 17 22.88 21.11 22.49
r
0

(Å) 6.14 5.67 11.5 21.5 39.5

parameter. In (5.C.18), we have utilized the convention that ‘P� is homogeneous
with energy’. Other authors use the convention that ‘P is homogeneous with
velocity’ and others ‘with momentum’. We prefer to use the Kane energy E

<
(�P�

in our convention), which is more unanimously accepted (20—25 eV), leading to the
result:

�r
0
��

�
E
�
	
E
<

2m
�

(7.11b)

Dipole matrix element and Kane energy

where E
�

is the semiconductor bandgap. An equally popular notion in the litera-
ture is that of the matrix element x

0
. This term is introduced to take into account

the fact that only the heavy and light hole bands participate in the optical
transitions and not the hole spin—orbit band, which is too far away in energy. We
could use the transition elements introduced in (5.C.22) but the idea behind this
calculation is quite simple: only two-thirds of the oscillator strength (i.e. two bands
out of three) is involved, leading to:

x�
0
�

1

3

��
E�
�

E
<
m
�

(7.11c)

Table 7.1 shows the relevant physical parameters E
�
, E

<
, m


/m
�
, and r

0
for the

principal semiconductors used in optoelectronics applications. We note that for
small gap semiconductors, the dipolar matrix element becomes very large in
comparison to the interatomic distance; for optical properties, the electronic
wavefunctions become more and more delocalized as the bandgap decreases. It is
therefore customary to speak of semiconductors becoming ‘more quantum in
nature as their bandgaps shrink’.
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Example
The Kane energy E

<
in GaAs is 22.7 eV and corresponds to a Kane velocity of:

v
,��	

��(E
<
/2m

�
)

��[(22.7 V� 1.6� 10��C)/(2� 0.9� 10��� kg)]� 1.42� 10�m s��

The matrix element r
0

given by (7.11b) is then:

r
0
� 1.05� 10��� J s� 1.42� 10�m s��/(1.5 V� 1.6� 10��C)� 6.14 Å

The element x
0

enters into the absorption calculation and is equal to r
0
��(2/3)

or 5.0 Å.

7.3 Optical susceptibility of a semiconductor

We are now in a position to calculate the optical susceptibility associated with
transitions from the valence to the conduction bands. We will consider a semicon-
ductor crystal with volume V subjected to a pseudo-quantization condition. The
structure of the valence and conduction bands will be assumed to be parabolic,
and well described by their corresponding effective masses m

0
and m


. Given that

optical transitions are vertical, we will interest ourselves in the optical susceptibil-
ity $k(�) resulting from constant k transitions between the valence and conduction
bands. Equations (7.4) and (7.9) give the relationship between the conductionE


(k)

and valence bands E
0
(k) coupled by the optical transition (see Fig. 7.1):

E

(k)�E

0
(k)�

��k�
2 �

1

m


�
1

m
0
��E

�
(7.12)

where k is the norm of the vector k. It is useful to introduce the reduced effective
mass as it simplifies (7.12):

1

m
�

�
1

m


�
1

m
0

(7.13)

Reduced effective mass

The (dimensionless) optical susceptibility associated with a transition between
quasi-discrete levels E

0
(k) and E


(k) is given by (3.26) to be:

$k(�)�
q�x

0
(k)�T

�
�
�
�

[���
0

(k)]T
�
� i

[���
0

(k)]�T�
�
� 1

[N
0
(k)�N


(k)] (7.14a)

where x
0

(k) (�x
0

as we have supposed the dipolar matrix elements are indepen-
dent of k) is the transition element in the Ox direction (arbitrarily selected to
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simplify notation), �
0

(k)� (E

(k)�E

0
(k))/�, and T

�
is the relaxation time for

electrons in the bands.N

(k) andN

0
(k) represent the carrier densities (cm��) in the

levels E


and E
0
. The total susceptibility $(�) is then found by summing the

susceptibility terms (7.14a) over all wavevectors k in the band structure, i.e:

$(�)� 2�
k

q�x
0

(k)�T
�

�
�
�

[���
0

(k)]T
�
� i

[���
0

(k)]�T�
�
� 1

[N
0
(k)�N


(k)] (7.14b)

where a factor of 2 results from the fact that there are two spin states available for
every k vector. We will then suppose that the volume of the fictitious box is large
enough to allow us to replace the summation over k by an integral:

2 �
k
�$98

��
k

�(k) · d�k��
�

�(E) · dE (7.15)

Equivalence rule between the summation over k,

and the integrals over k and over energy E

where the density �(k) is in units of 1/(cm��), �(E) is in units of 1/J, and a factor of 2
is included to take into account spin degeneracy. In an isotropic medium, the
microscopic densities N


(k) and N

0
(k) in (7.14) are given by �


(k)d�k and �

0
(k)d�k,

where �

(k) and �

0
(k) are equal and given by (5.17) with �


(k)� �

0
(k)� 2V/

8���V/4�� (we have multiplied by 2 to account for spin degeneracy and recall
that V is the crystal volume). To these terms we must add an expression corre-
sponding to thermal quasi-equilibrium: i.e. introduce the Fermi—Dirac functions
f

(E

(k)) and f

0
(E
0
(k)) which describe the occupation probabilities for the levelsE


(k)

and E
0
(k) given in (5.38) and in Section 5.6:

f

(E)�

1

1� e����3����
(7.16a)

f
0
(E)�

1

1� e����30����

E
3

and E
30

are the quasi-Fermi levels for the electrons and holes. (Note that f
0

is
different from (5.44) since here we use the probability that a valence band state is
occupied by an electron). The infinitesimal density N

0
�N


in (7.14) for the

element d�k is then replaced by:

N
0
�N


��


d�k+ f

0
[E

0
(k)]�1� f


[E


(k)]�� f


[E


(k)]�1� f

0
[E

0
(k)]�,

(7.16b)
��


d�k� f

0
[E

0
(k)]� f


[E


(k)]�

The optical susceptibility is then obtained by integrating (7.14) over the first
Brillouin zone or:
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$(�)�
q�x�

0
T
�

�
�
� ��d�k� f0[E0(k)]� f


[E


(k)]�

[���
0

(k)]T
�
� i

[���
0

(k)]�T�
�
� 1

(7.17)

We emphasize again that within the framework of Kane’s theory (seen in Comple-
ment 5.C), we suppose that the matrix element x

0
is independent of k. The energy

conservation requirement can then be written in terms of (7.4), (7.12), and (7.13) as:

��
0
�E


(k)�E

0
(k)�

��k�
2m

�

�E
�

E

(k)�E

�
�

��k�
2m



(7.18)

E
0
(k)��

��k�
2m

0

The wavevectors k and the photon energies ��
0

being thus related, we may
integrate (7.17) over the frequency range of the incident photons with the help of
expressions (5.19) and (5.20):

�

dk� �

�
(�
0

)d�
0
�

1

2���
2m

�
� �

���
(�
0
�E

�
/�)���d�

0
(7.19a)

or again as:

�
�
(�)�

1

2���
2m

�
� �

���
(��E

�
/�)��� (7.19b)

�
�
(E)�

1

2���
2m

�
�� �

���
(E�E

�
)��� (7.19c)

Joint density of states (J−1 cm−3)

Expression (7.19) describes the density of states joined by a photon of energy ��.
Substituting the last equation into the integral in (7.17), we obtain the principal
finding of this section:

$(�)�
q�x�

0
T
�

�
�
�

�

�
���

�
�
(�
0

)d�
0

[ f
0
(E
0
)� f


(E

)]

(���
0

)T
�
� i

(���
0

)�T�
�
� 1

(7.20)

Optical susceptibility associated with an interband transition in a semiconductor

In this last expression, the joint energies E
0

and E


are functions of �� by
intermediary of the relations put forth in (7.18). The absorption coefficient is
related to the imaginary part of the optical susceptibility by (3.36), i.e:
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�(�)�
�
cn

��

$
��

(7.21)

or

�(�)�
�q�x�

0
�

�
�
�n

��
c

(7.22)
�

�
��

�
�
(�
0

)d�
0

[ f
0
(E
0
)� f


(E

)]

1/�T
�

(���
0

)�� 1/T�
�

This last formula may be considerably simplified by noticing that the Lorentzian
distribution behaves as a Dirac function in comparison with the more slowly
varying functions in the integral. We then obtain for the absorption coefficient � (in
cm��)

�(�)�
�q�x�

0
�

�
�
�n

��
c
�
�
(�)[ f

0
(��)� f


(��)] (7.23)

or again:

�(�)���(�)� �
�

(�)[ f
0
(��)� f


(��)] (7.24)

Absorption and gain in a semiconductor (cm−1)

where �(�) is the gain of the semiconductor medium and �
�

(�) is the empty
conduction band absorption with:

�
�
(�)�

q�x�
0

�
�
�
�
�n

��
�

2m
�

� �
���

�(��E
�
/�) (7.25a)

Empty conduction band absorption (cm−1)

The functions f

(��) and f

0
(��) are the Fermi—Dirac functions:

f

(��)�

1

1� exp�[E

(��)�E

3
]/kT�

(7.25b)

E

(��)�E

�
�
m
�
m


(���E
�
)

and

f
0
(��)�

1

1� exp�[E
0
(��)�E

30
]/kT�

(7.25c)

E
0
(��)��

m
�

m
0

(���E
�
)
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Fig. 7.2. These figures show the evolution of the absorption and gain curves as a function of
the position of the quasi-Fermi level. The grey (dark) curves correspond to a small (large)
displacement from equilibrium. In this case, the medium absorbs all photons having energies
in excess of the bandgap. Once the energy separation between the two quasi-Fermi levels
exceeds the bandgap, all photons possessing energies between E

�
and E

3
�E

30
are amplified

(the Bernard—Durrafourg condition).

Equation (7.24) indicates that the absorption in direct gap semiconductors, for
photons with energies greater than the bandgap, grows as �(���E

�
) (see Fig.

7.2). Equations (7.23)—(7.25) allow one to describe the optical behaviour of a
semiconductor away from thermodynamic equilibrium.

The condition for optical gain (i.e. �(�)� 0) is given by:

f

(��)� f

0
(��)� 0 (7.26a)

or again, given (7.25b) and (7.25c):
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E
3
�E

30
� �� (7.26b)

Bernard–Durrafourg condition

This last equation stipulates that only those photons with energy less than the
energy separation between the two quasi-Fermi levels will be amplified. These
quasi-Fermi levels are related to the non-equilibrium population N by the condi-
tion put forward in Section 5.6:

N�

�

�
�

�

(E)

1

1� exp[(E�E
3

)/kT]
dE (7.27)

for the electron quasi-Fermi level E
3

(and a similar formula for the holes). Under
positive gain conditions, the curve described by (7.23) is referred to as the semicon-
ductor gain curve. Figure 7.2 depicts the evolution of the gain curve as a function of
increasing deviation from thermodynamic equilibrium.

7.4 Absorption and spontaneous emission

We know from Chapter 3 that the approach founded on optical susceptibility does
not allow us to take into account spontaneous emission. A natural method for
dealing with this effect is to make use of the approach employed in Einstein’s rate
equations. We presented this theory in Section 3.6 for a broad spectrum electromag-
netic wave. We will rederive this approach here for the following reasons: (i) it is a
very subtle calculation (keep an eye on the dimensions!) of great practical import-
ance, (ii) the notations used for semiconductors vary for historical reasons, and
finally (iii) this context is fairly different: we are now dealing with a broadened
energy spectrum (we have, however, already mentioned in Complement 3.C the
equivalence between a broad spectrum wave and a broadened transition energy
spectrum).

We consider a semiconductor of volume V, a levelE
0
(k) in the valence band, and

a levelE

(k) in the conduction band for a specific k value (as we prepare the way for

pseudo-quantization . . .). As we saw in Section 3.6 for an electromagnetic wave
with a wide spectral distribution �

��
(��), the optical transition rate g

0
(in s��), over

the entire volume V and between the levels E
0

and E

, is proportional to the

probability that the state E
0

is occupied and that the state E


is empty.

g
0

(k)�B
0
f
0
(E
0
)[1� f


(E

)]�

��
(h�) (7.28)

where �
��

(in J��) is the photon density per unit energy in the volume V, andB
0

(in
J s��) is the transition rate per photon within the cavity, given by Fermi’s golden rule
(see (3.76)—(3.77)) in the form:
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�

�
2�

��%
�k
�W�%

0�k

���

�
2�
q�E�

�
x�
0

(7.29)

where E
�

is the electric field associated with one photon in volumeV (B
0

is given for
a single photon in the cavity!) given by (2.77):

���
1

2
n�
��
�
�
E�
�
V (7.30a)

or

E�
�
�

2��
�
�
n�
��

V
(7.30b)

from which:

B
0
�

�q�x�
0
�

�
�
n�
��

V
�

�q�E
<

3�
�
n�
��
m
�
�V

(7.31)

where we have made use of (7.11b). Note the presence of the term V in the
denominator: this results from the delocalized nature of the Bloch wavefunctions,
which requires that we take as an interaction region the entire volume V of the
crystal (see Complement 1.A). We recall that energy conservation requires that
��� ��

0
�E

0
(k)�E


(k)�E

0
(k). Two differences exist from the conditions as-

sumed in Section 3.6. First, the functions f


and f
0

given in (7.25a) and (7.25b) allow
the description of non-equilibrium situations in terms of quasi-Fermi levels, and
second, the Einstein coefficientB

0
is this time expressed in J s�� (we propose as an

exercise that the reader verify the dimensions of B
0

in (7.31)).
In a similar way, the stimulated emission rate is given by:

g
0

(k)�B
0
f

(E

)[1� f

0
(E
0
)]�

��
(h�) (7.32)

To this, we must clearly add the spontaneous emission rate g����
0

(in s��), which is
independent of the photon density in the semiconductor and given by:

g����
0

(k)�A
0
f

(E

)[1� f

0
(E
0
)] (7.33)

A
0

is the spontaneous transition rate in the volume V. To begin with, we will
concern ourselves with the case of thermodynamic equilibrium. The photon
density per unit energy in the volume V is given by the blackbody emission
spectrum in J s��m�� (Eq. (2.91)) divided by h� to obtain a numerical density (and
not an energy density) and again by h to bring it into units of energy and not
frequency, i.e:

�
��

(h�)�
8�n�

��
(h�)�

h�c�

1

exp(h�/kT)� 1
V (7.34)
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Similarly, at equilibrium, the Fermi—Dirac distributions are identical between the
two bands ( f


� f

0
� f and E

3
�E

30
�E

3
).

The stationary condition at thermodynamic equilibrium can be written in the
same fashion as in (3.C.4):

B
0
f (E

0
)[1� f (E


)]�

��
(E
0

)
(7.35a)

�B
0
f (E


)[1� f (E

0
)]�

��
(E
0

)�A
0
f (E


)[1�f (E

0
)]

or again:

8�n�
��
E�
0

V
h�c�[exp(E

0
/kT )�1]

�
A
0

B
0

exp(E
0

/kT )�B
0

(7.35b)

This can be true at all temperatures only if the Einstein coefficientsB
0

,B
0

, andA
0

are related by:

B
0
�B

0
(7.36a)

A
0
�

8�n�
��
E�
0

V
h�c�

B
0

(7.36b)

These equations are similar to those expressed in (3.77) and (3.78) with the
exception that B

0
and B

��
do not share the same units. We wish to emphasize the

concept that underlies Einstein’s approach: that although the relationships be-
tween the coefficients A and B are established under the umbrella of thermo-
dynamic equilibrium, being intrinsic to the system, they remain valid in all
instances, even in situations which place the system far from thermodynamic
equilibrium.

We can now replace B
0

in (7.36) by the expression given for it in (7.31), to find:

A
0
�

1

#
!

(7.37a)

where #
!

is the radiative lifetime given by:

1

#
!

�
q�x�

0
n
��
��
0

�c���
�

�
q�n

��
E
�
E
<

3�c����
�
m
�

(7.37b)

Radiative lifetime in a semiconductor

We note that the same tendency for radiative lifetimes exists in both semiconduc-
tors and atoms. The greater the magnitude of the forbidden gap, the shorter the
radiative lifetime, and the more difficult it will be to invert the carrier population in
the system. This behaviour is demonstrated, for instance, when moving from a
semiconductor possessing a near-infrared bandgap, such as GaAs, to a wide gap
semiconductor, such as GaN.
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We can now go ahead and calculate the absorption rate r
���

(k) (in s��) for an
arbitrary wavevector k, resulting from competition between the transitions c� v
and v� c:

r
���

(k)�B
0
f
0
(E
0
)[1� f


(E

)]�

��
(h�)�B

0
f

(E

)[1� f

0
(E
0
)]�

��
(h�) (7.38)

or

r
���

(k)�B
0

[ f
0
(E
0
)� f


(E

)]�

��
(h�) (7.39)

where E
0

and E


are the states joined by the photon h� given in (7.18) and (7.25).
We will now consider a radically different situation. We seek the absorption for

a monochromatic wave with frequency � incident upon a crystal (i.e. �
��

is a Dirac
delta function �(E� h�) — there is a single photon in the cavity volume V). The
absorption R

���
(h�) in the volume V is due to transitions over the entire Brillouin

zone and (see (7.15)) is given by:

R
���

(h�)� 2�
k
�

r
���

(k
�
)��

�

�

r
���

(k)d�k (7.40)

Given the requirement of energy conservation (7.18), and the transformation of
variables in (7.19), this leads to an absorption rate of:

R
���

(h�)��
�

�
�
(E)VB

0
[ f
0
(E
0
)� f


(E

)]�(E� h�)dE

(7.41)
� �

�
(h�)VB

0
[ f
0
(E
0
)� f


(E

)]

(Note that the volume term V will be eliminated by the 1/V term inB
0

, which is the
reward for pseudo-quantization).

The absorption coefficient �(h�) is obtained by examining the experiment de-
scribed in Fig. 7.3. In this case, a photon of energy �� impinges upon a semicon-
ductor slab with surface S and thickness �z. The energy absorbed during time �t is
R

���
���t (with volume V� S�z) and the energy crossing the surface is ��c/n

��
�t.

The ratio between these two quantities is simply �(h�)�z and may be written:

�(��)�
power absorbed per unit volume

power incident per unit surface
(7.42)

�
R

���
��

��c/n
��

or given (7.41) and (7.31) as:
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Fig. 7.3. Experimental geometry for the determination of absorption coefficient �.

�(�)�
�q�x�

0
�

�
�
n
��
c

�
�
(h�)[ f

0
(h�)� f


(h�)] (7.43)

which is exactly the equation obtained using density matrix formalism in (7.22)
recalling that the densities per unit frequency and energy are related by
�
�
(h�)��

�
(�)/�.

Clearly, we have not invested this effort solely to verify the correspondence
between density matrix formalism and Einstein’s rate equations. In addition, using
this approach we have gained a means of calculating the spontaneous emission
rate R

����
(h�) due to the distribution of carriers in quasi-thermodynamic equilib-

rium in a semiconductor. This rate is given by summation of (7.33) over the
Brillouin zone:

R
����

(h�)� 2�
k

r
����

(k)� 2�
k

1

#
!

(k)
f

(k)[1� f

0
(k)]�(E


�E

0
� h�) (7.44)

with this sum being carried out for all wavevectors k that verify the energy
conservation condition (expressed by the Dirac delta function �), i.e:

E

(k)�E

0
(k)� h��

��k�
2m

�

�E
�

(7.45)

Using the equivalence (7.15) and the relation in (7.19) we find:

R
����

(h�)�

�

�
�

r
����

(E)�
�
(E)�(E� h�)dE� r

����
(h�)�

�
(h�) (7.46)

from which:
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#
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�
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(h�)]�1� f

0
[E

0
(h�)]� (7.47)

Spectral distribution of the radiative recombination

rate in a semiconductor (s−1 cm−3 J−1)

where we recognize an expression of type n/#
!

obtained for atoms (see Chapter 4);
or again, by using (7.37b):

R
����

(��)�
q�x�

0
n
��
��

�c���
�

�
�
(��) f


[E


(��)]�1� f

0
[E

0
(��)]� (7.48)

Dividing expression (7.48) by the absorption formula (7.43), we obtain a relation-
ship between absorption and spontaneous emission which remains valid for all
quasi-thermodynamic equilibrium situations:

R
����

(h�)� �(h�)
8�n�

��
(h�)�

h�c�

1

e������ 1
(7.49)

Van Roosbroeck–Shockley equation

Equation (7.49) allows one to calculate the spontaneous emission spectrum
R

����
(h�) starting from the absorption spectrum, and expresses nothing more than

the state of micro-equilibrium that exists for each photon of energy h� between
spontaneous emission and absorption due to a blackbody spectrum.

We now seek to determine the spectral distribution R
����

(h�) for spontaneous
emission of a semiconductor close to thermodynamic equilibrium. The Fermi—
Dirac functions in (7.41) can be approximated by the Boltzmann functions:

f

(E

) � exp��

E

�E

3
kT �

(7.50)

1� f
0
(E
0
) � exp��

E
30
�E

0
kT �

whence:

f

[E


(h�)]�1� f

0
[E

0
(h�)]�� exp��

h�
kT
�

�E
3

kT � (7.51)

and where �E
3

is the difference between the quasi-Fermi levels �E
3
�E

3
�E

30
.

We thus arrive at the spectral distribution R
����

(h�):

R
����

(h�)�K
����

(h��E
�
)���exp��

h��E
�

kT � (7.52a)

Spectral distribution of the spontaneous

emission rate (s−1 cm−3 J−1)

and the constant K
����

is given by (7.47) to be:
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Fig. 7.4. Spectral distribution of the spontaneous emission rate. The width of the spectrum is
of the order of 2 kT.

K
����

�
(2m

�
)���

���#
!

exp�
�E

3
�E

�
kT � (7.52b)

Figure 7.4 depicts the behaviour of the spontaneous emission rate as a function of
energy of the emitted photons. We note that practically the entire emitted optical
power is distributed over an interval of 1.8kT above the absorption threshold.

Equation (7.52b) shows that the emitted optical power increases as exp(�E
3

), i.e.
the output power increases the further the semiconductor is driven from thermal
equilibrium.

Example
We will calculate the absorption coefficient �(E) and the spontaneous emission
rate #

!
for GaAs:

E
�
� 1.45 eV

m
0
� 0.46m

�
m

� 0.067m

�
x
0
� 3.2 Å

n
��
� 3.6

The absorption coefficient is then found by (7.25a) to be:

�(h�)�K
����

h��E
�

q �
���

(7.53)

with K
���
�
q���x�

0
(2m

�
)���

�
�
�
�
n
��

��

so that K
���
� (1.6� 10��C)���� (3.2� 10���m)�� (2� 0.058� 0.9�

10���)���/(0.8� 10��m� 8.85� 10���Fd m��� (1.05� 10���)�� 3.6) or K
���

� 12 000 cm�� eV����. Thus, for a photon with an energy which exceeds the GaAs
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bandgap by 0.01 eV, the absorption coefficient will be 1200 cm��.
The radiative lifetime is then given by:

1

#
!

�
q�x�

0
n
��

(��
0

/q)�

�c����
�

(7.54)

so

1/#
!
� (1.5 V)�� (1.6� 10��C)�� (3.2� 10���m)�� 3.6/(3.14�

(3 � 10	m s��)�� (1.05� 10��� J s)�� 8.85� 10���Fd m��) or #
!
� 0.7 ns.

Note that the x
0

value is not the one derived from Kane’s theory (Table 7.1). The value has been
chosen in order to fit the experimental absorption data. This reveals that the parabolic two-band
Kane theory is oversimplified since it does not take into account non-parabolicity, valence band
anisotropy, etc.

7.5 Bimolecular recombination coefficient

Equation (7.44), which was described in the last section, expresses the distribution
of the optical transition rate (in cm�� s�� J��) as a function of photon energy for
two non-equilibrium carrier distributions as described by their respective quasi-
Fermi levels. We will now seek the total radiative recombination rate for photons
of all energy, i.e. involving the integral of the distribution (7.44) taken over h�:

R
����

�
1

#
!

�

�
��

�
�
(h�) f


[E


(h�)]�1� f

0
[E

0
(h�)]�dh� (7.55)

where the product of the two Fermi—Dirac distributions is given by (7.51), or:

R
����

�
e��3��30����

#
!

�

�
��

�
�
(h�)e������dh� (7.56)

We will now utilize the expression for the joint density of states (7.19c) so that:

R
����

�
e��3��30����

#
!

1

2���
2m

�
�� �

���
�

�
��

(h��E
�
)���e������dh�

(7.57)

�
e���3��30��������

#
!

1

2���
2m

�
�� �

���
(kT )���

�

�
�

u���e��du

This equation can be greatly simplified once we recognize in the above expression
(7.57) the effective density of states given in (5.42) and (5.43):
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�
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1

4�
2m

�
kT

��� �
���

(7.58)

where we have replaced the effective mass in the conduction band by the reduced
effective mass m

�
so that:

R
����

�
1

#
!

N
�
e��3��30������� (7.59)

Taking into account expressions (5.42)—(5.45) for the effective state densities in the
two bands and the carrier density as a function of Fermi energy, Eq. (7.59)
becomes:

R
����

�
1

#
!

N
�

N

N
0

np (7.60)

This last equation is better known under the form:

R
����

�Bnp (7.61)

B�
1

#
!

N
�

N

N
0

�
1

#
!
N

�
m
�

m
0
�
���

(7.62)

Radiative recombination rate (cm−3 s−1) and the bimolecular radiative

recombination coefficient (cm3 s−1)

where B is the bimolecular recombination coefficient. Table 7.2 shows experimen-
tally determined values for B coefficients in some of the more important III—V
semiconductors.

Table 7.2. Bimolecular recombination coefficients for various direct gap
semiconductors (after V. P. Varshni, Phys. Stat. Sol. 19, 459 (1967)).

Material B (cm� s��)

GaAs 7.2� 10���
GaSb 2.4� 10���
InP 1.3� 10�
InAs 8.5� 10���
InSb 4.6� 10���

Example
For GaAs, the effective density of states in the conduction band is N


�

4.3� 10�� cm�� (Section 5.6.1) and the lifetime #
!

is 7� 10��� s. The reduced mass
is 1/(1/0.067)� (1/0.50)� 0.059. The bimolecular recombination coefficient B is
then 1/(7� 10��� s� 4.3� 10�� cm��)� (0.059/0.50)��� or 1.34� 10��� cm� s��,
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which is fairly close to the experimental result of ,10��� cm� s��.

More generally, the bimolecular recombination coefficient may be calculated
using the expression for B in (7.62) and completed using the expressions for
effective density of states N


given in (5.43) and effective masses m

�
and m

0
given in

(5.C.19) and (5.C.27) within the context of Kane’s theory. Taking the Kane energy
E
<

as being constant for III—Vs, and equal to ,20 eV, we can thus derive the value
of the B coefficient as a function of the III—V semiconductor bandgap. Figure 7.5
compares the results of this simple theory with the experimental results given in
Table 7.2. We conclude that the agreement is satisfactory. This theory therefore
affords a considerable degree of predictive capacity and can be further improved
by taking into account additional contributions from the spin-orbit band, etc.

Expression (7.61) constitutes a law of mass action: the electrons and holes
recombine individually with one another, and so the recombination rate of a
particular carrier type is clearly proportional to the density of the other type. We
will suppose that the commonly occurring situation consists of a small displace-
ment of the system from equilibrium. The equilibrium carrier densities are given by
n
�

and p
�

and are related to each other by the law of mass action n
�
p
�
� n�

�
, where

n
�

is the intrinsic carrier density (5.49). The non-equilibrium carrier densities are
then given by:

n� n
�
��n

(7.63)
p� p

�
��p

where �n and �p are assumed to be small in comparison with the majority carrier
density and (to maintain charge neutrality)�n��p. An additional recombination
rate is then given by:

�
����

�B(np� n
�
p
�
) �B(n

�
� p

�
)�n (7.64)

and the radiative recombination rate for non-equilibrium carriers is then:

R
��"
�

�n
t
��" (7.65)

t
��"
�

1

B(n
�
� p

�
)
�

1

BN
"��

Radiative recombination time in a semiconductor

whereN
"��

is the doping level in the semiconductor. The radiative recombination
time t

��"
may also be written:

t
��"
� #

!

N


N
"��
�
m
0
m
�
�
���

(7.66)

The radiative recombination time t
��"

is therefore generally rather close to the
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Fig. 7.5. Bimolecular recombination coefficients for different III—V semiconductors. The
continuous line represents results generated using (7.62) assuming a constant Kane energy E

<
of 20 eV for all semiconductors. The plotted points are experimentally determined values.

spontaneous lifetime #
!

, i.e. of the order of nanoseconds. These two concepts are
often confused with one another.

Example
For a 10�� cm�� GaAs doped crystal, the effective density of states in the conduc-
tion band is N


� 4.3� 10�� cm�� (Section 5.6.1), the spontaneous lifetime #

!
is

7� 10��� s, and the reduced effective mass is 1/(1/0.067)� (1/0.50)� 0.059. The
radiative lifetime is therefore:

t
��"
� 7� 10��� s� (4.3� 10�� cm��/10�� cm��)� (0.5/0.059)��� or t

��"
� 5 ns.

7.6 Conditions for optical amplification in semiconductors

The analysis in Section 7.3 has shown us that a semiconductor driven from
thermodynamic equilibrium can provide optical gain to photons with energies
satisfying the Bernard—Durrafourg condition (7.26b). It is therefore important to
uncover the experimental circumstances which will allow this condition to be
achieved.

Assume that a significant number of carriers (�n and �p) are introduced under
non-equilibrium conditions so that the quasi-Fermi levels are given by:

E
3
�E


� kTF�

����
n

N

�

(7.67)

E
30
�E

0
� kTF�

����
p

N
0
�
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where F�
���

is the inverse function of F
���

, the integral of the Fermi—Dirac function
of order 1/2 is defined (see Section 5.6) as:

F
���

(u)�
1

�(3/2)

�

�
�

x���

1� e�	���
dx (7.68)

We will suppose the semiconductor is lightly doped, and that n� p
 n
�

and p
�

.
The material will then no longer absorb photons with energy h��E

�
once the

non-equilibrium carrier density n
������

satisfies the following transparency condi-
tion (see (7.26b)):

F�
����

n
������
N

��F�

����
n
������
N
0
�� 0 (7.69)

Transparency condition for a bulk semiconductor

Figure 7.6 shows the difference E
3
�E

30
as a function of non-equilibrium carrier

density n. The transparency density is achieved when E
3
�E

30
�E

�
(equivalent

to the transparency condition in (7.69)).

Example
The MA THEMATICA program below gives an example of the behaviour of
quasi-Fermi levels in GaAs as a function of non-equilibrium carrier density. The
transparency condition is attained for n

������
� 1.2� 10�	 cm��.

gamm32=Sqrt[N[Pi]]/2
f[x—,u—]=Sqrt[x]/(1+Exp[x−u])
tifermi=Table[�NIntegrate[f[x,u],�x,0,Infinity�]/gamm32,u�,�u,-5,5,0.2�]
ifermi=Interpolation[tifermi]
Nc=4.7*10 ˆ 17 (*in cm-3*)
Nv=7 10 ˆ 18 (*in cm-3*)
efc[n—]=ifermi[n/Nc]
efv[p—]=ifermi[p/Nv]
deltaef[x—]= 25.9*(efc[x]+efv[x])
Plot[deltaef[x],�x,10 ˆ 16,2 10 ˆ18�]

Above this transparency threshold, the medium begins to amplify those photons
possessing energies which satisfy the Bernard—Durrafourg condition. The gain
spectrum is then given by:

�(h�)�K
���

(h��E
�
)���[ f


(h�)� f

0
(h�)] (7.70)

where K
���

is given by (7.52b), and the Fermi—Dirac functions f

(h�) and f

0
(h�) are

the occupation rates for the levels in the conduction and valence bands satisfying
E

�E

0
� h�, and given by (7.25a) and (7.25b). Figure 7.7 shows how the gain

curve evolves as a function of non-equilibrium carrier density in GaAs. The greater
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pairs. Above a concentration of 1.2� 10�	 cm��, the medium provides optical gain over the
range of photon energies satisfying the Bernard—Durrafourg condition.

the amount by which this density exceeds the transparency threshold, the broader
the corresponding gain curve becomes. Figure 7.8 shows how the maximum gain
varies as a function of non-equilibrium carrier density. Once transparency has
been achieved, the maximum gain increases linearly with charge density above
threshold. This purely phenomenological relationship is very useful in modelling
the behaviour of semiconductor lasers (see Chapter 13).
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Example
Below, we give a MATHEMATICA program which describes the behaviour of
amplification in a non-equilibrium semiconductor. We encourage the reader to try
out this program using numerical constants for the different semiconductors listed
in the table on p. xvii.

gamm32=Sqrt[N[Pi]]/2;
f[x—,u—]=Sqrt[x]/(1+Exp[x-u]);
tifermi=Table[�NIntegrate[f[x,u],�x,0,Infinity�]/gamm32,u�,�u,-5,5,0.2�]
ifermi=Interpolation[tifermi];
kb=8.63 10 ˆ -5;T=300;
Nc=4.7*10 ˆ 17 (*in cm-3*);Nv=7. 10 ˆ 18 (*in cm-3*);
Eg=1.5;mc=0.067;mv=0.46;Kabs=12000;
mr=1/(1/mc+1/mv);
n=1.2 10 ˆ18;
nc=n/Nc;efc= 25.9 10 ˆ -3 *ifermi[nc]
nv=n/Nv;efv=25.9 10 ˆ -3 *ifermi[nv]
Ec=mr/mc*(hnu-Eg);
Ev=-mr/mv*(hnu-Eg);
fc=1/(Exp[(Ec-efc)/(kb*T)]+1);
fv=1/(Exp[(Ev+efv)/(kb*T)]+1);
gain=Kabs*(hnu-Eg)(1/2)*(fc-fv);
plot12=Plot[gain,�hnu,1.5,1.6�]
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Complement to Chapter 7

7.A The Franz–Keldysh-effect electromodulator

When we apply a static electric field to a semiconductor, the Bloch wavefunctions
do not represent the stationary states of the crystal as the potential no longer
possesses the periodicity of the lattice spacing. This corresponding change in the
wavefunctions has a profound effect on optical absorption. The semiconductor
can now absorb photons possessing an energy �� inferior to bandgapE

�
. Further-

more, above the gap, the absorption spectrum displays oscillations superimposed
upon the usual spectral features in (���E

�
)��� obtained for F� 0. This is the

Franz—Keldysh effect. As we shall see later, this effect is successfully harnessed in
electromodulators. We will begin by presenting the formalism which will allow us
to describe this effect.

We will arbitrarily assume that the electric field is oriented in the z direction.
Schrödinger’s equation for an electron is then:

�
p�

2m
�

�V

(r)� eFz�	(r)�E	(r) (7.A.1)

We may expand the wavefunction 	 in terms of Bloch basis functions �nk
�
u
��k

(r)e�k�r (solutions to the electric field free equation) as:

	(r)�
1

�V
�
�k
a
�
(k)e�k�ru

�k
(r) (7.A.2)

and then project the resulting equation upon the basis functions �NK
, yielding:

�
+

(k)a
+

(k)� eF�
�k
�NK�z�nk
a

�
(k)�Ea

+
(k) (7.A.3)

the second term in this last equation (due to the field) may be transformed in the
following manner:

�
�k
�NK�z�nk
a

�
(k)�

1

V
�
�k
�dre��K�ru*

+K(r)za
�
(k)e�k�ru

�k
(r)
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��
�
�

dk

(2�)��dre��K�ru*
+K(r)

1

i

�
�k
�

[a
�
(k)e�k�ru

�k
(r)]

(7.A.4)

��
�
�

dk

(2�)��dre��K�ru*
+K(r)e�k�ru

�k
(r)

1

i

�a
�
(k)

�k
�

��
�
�

dk

(2�)��dre��K�ru*
+K(r)e�k�ra

�
(k)

1

i

�u
�k

(k)

�k
�

The first term cancels out as the integral over k
�

is a periodic function in k
�

having a
period of 2�/a

�
, where a

�
is the primitive cell spacing. The other terms give, using

the periodicity of u
�k

(r) in r and the orthogonality of the basis:

�
��k

�NK�z�nk
a
�
(k)

� i
�a
+

(K)

�k
�

��
�k

ia
�
(k)�Kk�dru*

+K(r)
�u
�k

(r)

�k
�

(7.A.5)

� i
�a
+

(K)

�k
�

��
�

a
�
(K)z

+�
(K)

with

z
+�

(K)�
i

V�dru*
+K(r)

�u
�K

(r)

�K
�

�
i

V
�	


�
�	



dru*
+K(r)zu

+K(r)

Schrödinger’s equation for the coefficients a
�
(k) then becomes:

�ieF
�a

+
(K)

�K
�

� eF�
�

z
+�

(K)a
�
(K)� [E� �

+
(K)]a

+
(K) (7.A.6)

Schrödinger’s equation for a crystal in the

presence of an electric field

This last equation turns up in all problems involving the application of an
electrostatic field superimposed upon a crystal potential, as in a tunnel effect
across a gap (or Zener effect).

Following a perturbative approach, we will seek a solution close to �
+

(0); we
may first neglect the influence of the terms contributed by the bands n�N (the
bands are then decoupled). The term in z

++
remaining in the sum could be moved

over to the right-hand side, but we will elect to neglect it, and hope that a
+

(K) will
only be important for K� 0 and z

++
(0)� 0 for an extremum in band N.

For E� �
+

(0), the solution to (7.A.6) is:
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a
+

(K)� a
+

(K
�

,K
�
)

� a
+

(K
�

, 0)exp�
i

eF

4�

�
�

[E� �
+

(K�)]dK�
�� (7.A.7)

� a
+

(K
�

, 0)exp�
i

eF��E� �
+

(0)�
��K�

�
2m

+
�K�

�
��K�

�
6m

+
��

where we have introduced the effective mass m
+

for the Nth band and
K

�
� (K

	
,K



). In fact, these approximations are those of the effective mass ap-

proximation, which we will study in a more general manner in Chapter 8. We are
now in a position to calculate the following function:

-
+4�

(z)�
1

L
�

�
4�

a
+

(K
�
)e�4����

dK
�

2�
a
+

(K
�
)e�4�� (7.A.8)

which is none other than the envelope function describing the variation in ampli-
tude of the wavefunction for a stationary state along the direction of the electric
field. For this, we will use the following formula (see Eq. (10.4.32) of Abramowitz
and Stegun):

(3a)�����Ai[(3a)����x]�

�

�
�

cos(at��xt)dt (7.A.9)

We thus obtain the following expression for the envelope function:

-
+4

(z)� a
+

(K
�

, 0)Ai��
2m

+
��e�F��

���

�E� �
+

(0)�
��K�

�
2m

+

� eFz�� (7.A.10)

Envelope function for an electron in a band N

In this expression, Ai(z) is the Airy function, which by definition is the solution to
the equation:

d�Ai

dz�
� zAi(z)� 0 (7.A.11)

and which tends towards zero as z��. Figure 7.A.1 shows the general form of
this function. We see that as z��, the function tends towards zero in an
essentially exponential fashion. In fact,

Ai(z) �
1

2��z���
exp��

2

3
z���� , z�� (7.A.12)

For z� 0, the function oscillates with a decreasing period:
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Fig. 7.A.1 The Airy function.

Ai(�z) �
1

2��z���
sin��

2

3
z����

�
4� , z�� (7.A.13)

The solution (7.A.10) may seem somewhat complicated at first. We will see,
however, that its behaviour can be easily understood. We note at first that the
argument of the Airy function in (7.A.10) is 0 for z

�
� (E� �

+
(0)� ��K�

�
/2m

+
)/eF.

For z� z
�

, the function decreases exponentially. Figure 7.A.2 shows that this
effect is similar to a tunnel effect wherein the wavefunction penetrates into the
semiconductor gap. For z� z

�
, the function oscillates more and more rapidly,

corresponding to a situation of increasing kinetic energy (see Fig. 7.A.1). Further-
more, the solutions for other energies are the same, except that they are translated
by �z

�
��E/eF. One consequence of this property is that the normalization

constant a
+

(0) does not depend on K
�

or E.
We are now able to understand the quantum effects associated with absorption

occurring in semiconductors under an applied electric field. Figure 7.A.2 shows
two electron wavefunctions in the conduction band, as well as two hole wavefunc-
tions in the valence band. The solutions for the holes in the valence band are
equivalent to those for the electrons: we need only replace m

�
by �m

�
, where m

�
is

the (positive) mass of the holes, which has as a consequence that the direction of
motion of the particles in the field changes. Also, we see how the electrons (and
holes) can travel across the forbidden gap by tunnelling. The probability of the
occurrence of this (Zener) effect is tied to the overlap integral between the exponen-
tial wavefunction and the valence band facing it.

Similarly, we may guess that it is possible to promote an electron from the
valence band to the conduction band by absorbing a photon, even if its energy ��
is less thanE

�
. All we need for this to happen is for the two wavefunctions to have a
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Fig. 7.A.2. In the presence of an electric field, the wavefunctions - for the electrons and holes
overlap even if they are separated in energy by an amount smaller than the size of the bandgap
E
�
. This permits optical absorption of photons with energy less than the forbidden gap.

non-zero overlap. For a fixed value of ��, this overlap decreases exponentially as
F� 0.

More precisely, the transition rate between a state �K
�

,E
�

 in the valence band

and a state �K
�

,E
�

 in the conduction band is given by Fermi’s golden rule to be:

S(1� 2)�
�
�
��2�eE� · r�1
���(E

�
�E

�
� ��) (7.A.14)

If we substitute into this last expression the wavefunctions obtained in (7.A.10), we
find in an analogous fashion to (7.10) the optical matrix element:

�2�eE� · r�1
��KK�
��u


�eE� · r�u

0

���

4�

a*


(K
�
)a
0
(K

�
) (7.A.15)

where the part which has changed with respect to the F� 0 case is the sum:

I
�
��

4�

a*


(K
�
)a
0
(K

�
)

(7.A.16)

��
dK

�
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(0)a
0
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eF ��E��E
�
�E

�
�

��K�
�

2m
�
�K�

�
��K�

�
6m

�
��

wherem
�

is the reduced mass. From (7.A.9) we obtain once again an Airy function:

I
�
� a*


(0)a

0
(0)�

2m
�
eF

�� �
���

Ai���
2m

�
��e�F��

���

�E��E
�
�E

�
�

��K�
�

2m
�
�� (7.A.17)

The essential point is that I
�

is different from 0 even whenE
�
�E

�
� �� is smaller

than E
�
. This is the term that is responsible for the Franz—Keldysh effect. To

calculate the total transition rate at a given frequency, we need to sum over all
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initial states, i.e. over K
�

andE
�

, the final energyE
�

being equal toE
�
� ��. To do

so, we will temporarily drop the constants and pick them up again later by forcing
a correspondence with the result for F� 0. Introducing the Franz—Keldysh
characteristic energy:

��
2m

�
��e�F��

����
(7.A.18a)

Franz–Keldysh characteristic energy

and the dimensionless variable:

(�
���E

�


(7.A.18b)

the sum over K
�

yields:

�
K�

�I
�
����

dK
�

(2�)�
�I
�
��	

�

�
�

Ai��
E

�

� (�dE

�
� 

�

�
��

Ai�(z)dz

� [Ai��(�()� (Ai�(�()]

This last integral may be verified by taking its derivative and by using the equation
for the definition of Ai(z): Ai�(z)� zAi(z).

For F� 0 the absorption as a function of �� must agree with the previously
obtained result (Eq. (7.24)):

�(��,F� 0)� �
$
����E

�
(7.A.19)

Taking F� 0 and ���E
�
, (���, (7.A.18) tends towards zero, as it must. For

F� 0, ���E
�
, (�� and we must use the asymptotic form (Eq. (7.A.13)), which

leads to:

�(��,F� 0)�A

�
(����A


�	

���E
�


, F� 0 (7.A.20)

which behaves essentially as Eq. (7.A.19). The comparison between (7.A.19) and
(7.A.20) therefore determines A, with the final result being:

�(��,F)� �
$
����[Ai��(�()� (Ai�(�()] (7.A.21)

Absorption in the presence of an electric field

Figure 7.A.3 shows the absorption in a semiconductor under an applied field. A
non-zero absorption coefficient is observed for photons possessing energies below
the bandgap, while oscillations in the absorption as a function of photon energy
are apparent for ���E

�
.
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Example
Under an applied field strength of F� 10 kV cm�� and m

�
�m

�
m
�
/(m

�
�

m
�
)� 0.059m

�
(for GaAs), we obtain a characteristic Franz—Keldysh energy of:

��
��e�F�

2m
�
�
���
��

(1.05� 10���)�(10�)�

2� 0.059� 9.1� 10���� 1.6� 10���
���

eV� 8.6 meV

The absorption at ���E
�
��8.6 meV is then (see Fig. 7.A.3) f (�1)� 0.022 or

2.2% of what it would be for ���E
�
��8.6 meV in the absence of an applied

field.

This effect is harnessed in Franz—Keldysh-effect modulators. The governing
principle is quite simple (see Fig. 7.A.4). On a semiconductor waveguide (with
bandgap E

�
), we deposit a metallic electrode to form a Schottky barrier with the

semiconductor (see Chapter 10). By applying a voltage V between this top elec-
trode and the ohmic contact on the back of the semiconductor, we introduce an
electric field F�V/d, where d is the separation between the upper and lower
contacts (the semiconductor doping level is kept sufficiently low to minimize any
potential drop due to space charge effects). Applying a 5 V potential across a 1 �m
contact separation leads to an electric field strength of 50 kV cm��, or a character-
istic energy  of 25 meV. As a result, waveguided photons with energy
E
�
� 25 meV will be absorbed by a factor of 100 times more than under zero-field

conditions. We may then easily see how we might use such a device to transform an
electrical (time-varying) signal into an optical one. Such a device is referred to as a
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Fig. 7.A.4. Operation of an electro-optic modulator based upon the Franz—Keldysh effect.

Franz—Keldysh electromodulator. This type of modulator is extremely rapid (with a
maximum operational frequency in the tens of GHz range) as it does not require
the bulk displacement of electrical charges to operate. This is not, for instance, the
case with SEED (self-electro-optic effect devices) modulators (see Complement
8.C).
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H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semicon-
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J. I. Pankove, Optical Processes in Semiconductors, Dover Publications, New York (1971).

7.B Optical index of semiconductors

Knowledge of the optical index of semiconductors turns out to be of fundamental
importance in the implementation of optoelectronic components. This is a fairly
complex subject as the models differ significantly depending upon the wavelength
ranges being considered. In particular, we distinguish on the basis of the behaviour
of two optical regions.
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7.B.1 Mid- and far-infrared regions

The interaction between a semiconductor and an electromagnetic wave in the mid-
and far-infrared regions brings into play the material’s optical phonons (see
Complement 6.B). The far-infrared regime is called the Reststrahlen region where
the material becomes overwhelmingly absorbent and dispersive. In GaAs, for
example, this region is situated around 30 �m.

In this range of wavelengths, the absorption and the optical index are well
described by a model employing harmonic oscillators with eigenfrequencies
equalling those of transverse optical phonons (�

#&
). This model requires four

parameters: the static dielectric constant �
�
, the dielectric constant at infinite

frequency �
�

, the resonant frequency �
#&

, and the damping coefficient �. A trivial
extension of the Lorentz model then gives for the dielectric constant:

�� �
�
� i�

�
� (n

��
� ik

��
)�� �

�
� (�

�
� �

�
)

��
#&

��
#&
� ��� i��

(7.B.1)

In GaAs, the optical phonon energy is h�
#&
� 33.25 meV, the relevant dielectric

constants are �
�
� 10.88, �

�
� �

�
� 1.97, and the damping coefficient is �� �

#&
/

133. Far from resonance (for photon energies in excess of 33 meV, relation (7.B.1)
may be simplified easily to yield:

n
��

���
�
����� (�

�
� �

�
)

1

[(�/�
#&

)�� 1]�
���

(7.B.2a)

Sellmeier’s equation

Table 7.B.1 gives the various parameters required to perform these calculations in
the GaAs/AlGaAs system.

Table 7.B.1. Dielectric constants and transverse optical phonon energies in
Al

�
Ga
���
As as a function of compositional fraction x

Static dielectric constant, �
�

13.18—3.12x
HF dielectric constant, �

�
10.89—2.73x

Optical phonon energy, h�
#&

33.29—0.64x—1.16x�

In fact, many phenomenological corrections to Sellmeier’s formula exist, with the
most precise for Al

	
Ga
��	

As being (with h� in eV):

n
��

��7.10�
3.78

1� 0.180(h�)�
�

1.97

[(30.08h�)�� 1]�
���
� 0.528x (7.B.2b)

Figure 7.B.1 shows the variation in optical index for GaAs between 5 and 12 �m.
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Fig. 7.B.1. Optical index in the mid-infrared region for GaAs obtained using Sellmeier’s
extended equation (7.B.2b).

7.B.2 Near gap regime

Clearly, the optical properties of a material in this wavelength range are
dominated by the absorption band of the semiconductor. The simplest approach
which takes this effect into account is the effective harmonic oscillator model
developed by Wemple and DiDomenico. This approach consists of combining the
ensemble of transitions between the valence and conduction bands into a single
effective oscillator transition with a resonant frequency �

	�
and oscillator strength

�E
�
/2 (for historical reasonsE

�
is called the dispersion energy). Sellmeier’s equation

may then be written:

n�
��
� 1�

E
	�
E
�

E�
	�
� (h�)�

(7.B.3)

This relationship holds surprisingly well for a large number of important semicon-
ducting and insulating materials. Nonetheless, agreement between theory and
experiment is insufficient for optoelectronics applications where precise control
over the optical indices is of crucial importance. We therefore return to a more
phenomenological approach.

To do so, we recall that the real �
�

and imaginary �
�

parts of the dielectric
constant are related through the Kramers—Kronig relation:

�
�

(E)� 1�
2

�
PV

�

�
�

E��
�

(E�)
E���E�

dE� (7.B.4)

The Kramers–Kronig relation

where PV signifies the ‘principal value’. We note that the integral in (7.B.4) shows
that although absorption only brings into play energies which couple to the
photon energy, the real portion of the dielectric constant �

�
is influenced by the
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entire band structure, rendering its calculation more difficult. Equation (7.B.4) can
be expanded as a limited series:

�
�

(E)� 1�
2

�

�

�
��

�
�

(E�)�
1

E�
�
E�

E��
�
E�

E��
� · · ·�dE� (7.B.5)

or again:

�
�

(E)� 1�M
��
�M

��
E��M

��
E�� · · · (7.B.6a)

where the momentsM
�

are given by:

M
�
�

2

�

�

�
��

�
�

(E)E�dE (7.B.6b)

We therefore seek an expression for �
�
(E) (which is nothing else but the absorption

in the material). Different models exist which all suffer a fair degree of arbitrariness
as they incorporate phenomenological adjustments to the semiconductor absorp-
tion curve (usually quite complex). We will content ourselves here with a presenta-
tion of the Afromowitz model as it is the one best suited to applications.

This model involves approximating �
�
(E) by the function:

�
�

(E)��
)E�,E

�
�E�E

�
0, elsewhere

(7.B.7)

We will see shortly how the parameters relate toE
	�

andE
�
. Figure 7.B.2 shows the

level of agreement with GaAs.
This last equation allows one to calculate the momentsM

��
andM

��
in (7.B.6b):

M
��
�

)
2�

(E�
�
�E�

�
)

(7.B.8)

M
��
�

)
�

(E�
�
�E�

�
)

Comparing (7.B.3) with (7.B.6), we see that the parameters ) and E
�

are tied to the
dispersion energy E

�
and to the effective oscillator energy E

	�
by:

E
�
� (2E�

	�
�E�

�
)���

(7.B.9)

)�
�
2

E
�

E�
	�

(E�
	�
�E�

�
)
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In fact, substituting the formula for �
�

(7.B.7) into the Kramers—Kronig relation,
we finally obtain:

�
�

(E)� 1�M
��
�M

��
E��

)
�

ln�
E�
�
�E�

E�
�
�E��E� (7.B.10)

The Afromowitz relation

The ensemble of Eqs. (7.B.8), (7.B.9), and (7.B.10) allows the calculation of refrac-
tion indices for different semiconductors (comparing well with experimental
values) once the values for E

�
, E

	�
, and E

�
have been determined. Table 7.B.2 gives

these values for three ternary semiconductor material systems: AlGaAs, GaAsP,
and GaInP. Figure 7.B.3 shows the calculated results for the optical indices across
a range of AlGaAs alloy compositions.

Table 7.B.2. Effective oscillator energies E
�*

, dispersion energies E
"
, and forbidden

gaps E
#
for different semiconductor alloys

Ga
��	

Al
	
As GaAs

��	
P
	

Ga
	
In
��	

P

E
	�

(eV) 3.65� 0.871x� 0.179x� 3.65� 0.721x� 0.139x� 3.391� 0.524x� 0.595x�
E
�

(eV) 36.1� 2.45x 36.1� 0.35x 28.91� 7.54x
E
�

(eV) 1.424� 1.266x� 0.26x� 1.441� 1.091x� 0.21x� 1.34� 0.668x� 0.758x�
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7.C Free-carrier absorption

One of the most astounding aspects of semiconductors is the capacity of their
constituent electrons to either absorb or emit light by shuttling between the
conduction and valence bands in what are referred to as interband transitions.
There exists yet another type of optical transition involving states within a single
band called intraband transitions. We will begin by giving a phenomenological
description before moving on to discuss the microscopic (and therefore quantum)
origin of these transitions.

We consider a semiconductor with an index of refraction n
��

(�
�
n�
��
� �). The

absorption due to free carriers is taken into account by an electrical conductivity �.
The semiconductor is then subjected to an electromagnetic wave E with frequency
�, propagating in the z direction and incident upon its surface at z� 0. This causes
an electric current j� �E to propagate within the bulk. We will suppose in this
first part that the electrical conductivity is independent of frequency �.

In the semiconductor, the electromagnetic wave is a solution to Maxwell’s
equations (see (2.1)):
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��B��
�
j��

�

dD

dt
(7.C.1)

��E��
dB

dt

where D is the displacement vector related to the electric field E and the polariz-
ation P by:

D� �
�
E�P� �

�
E� �

�
$���E� �E (7.C.2)

As seen in Chapter 2, the system of Eqs. (7.C.1) is enriched by � · B� 0 and,
assuming the medium to be neutral (�� 0), by Poisson’s law � · E� 0. Making use
of (7.C.1), (7.C.2), and these two null divergences, Maxwell’s equations lead to the
simple wave equation:

��E� �
�
�

dE

dt
� �

�
�

d�E

dt�
(7.C.3)

The dispersion relation �(k) relating the wavevector and the frequency may be
obtained by substituting the wave equation E�E

�
e�������� into (7.C.3) giving:

k�� �
�
���� i��

�
� (7.C.4)

We therefore find two distinct regimes dependent upon the relative magnitudes of
the real and imaginary parts of (7.C.4).

Strong conductivity (�
 ��)
In this case, the imaginary portion dominates (7.C.4) and the wavevector is given
by:

k���i��
�
� (7.C.5)

We also see that the wave amplitude decreases exponentially with an absorption
coefficient given by twice the square root of (7.C.5). The inverse of this coefficient
leads to a characteristic distance referred to as the skin depth � and essentially
reflects the distance over which the wave is absorbed by free carriers.

��
1

�2�
�
��

(7.C.6)

Skin depth

Example
We want to construct a plane radar wave reflector in silicon (�

"�
� 13) operating

in the X band, i.e. around 10 GHz (see Fig. 7.C.1). In the dark, the silicon layer
is highly resistive (�� 1000� cm). Under illumination its conductivity
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Fig. 7.C.1. An illuminated slab of silicon becomes highly conducting thereby screening an
incident microwave over a distance corresponding to the skin depth. A portion of the incident
microwave is absorbed over this region, with the remainder of the signal being reflected.

increases. The inequality �
 �� is satisfied as soon as the resistivity � gets smaller
than 1/(2�� 10�� s��� 13� 8.85� 10���Fd cm��) or 14� cm. This value is easy
to reach by illumination. To be specific, let us consider a silicon layer (mobility
�� 1000 cm�V�� s��, carrier lifetime #� 1 ms) of d� 1 �m thickness used as a
reflecting layer at 10 GHz. First, in order to reflect the radar wave effectively, the
skin depth given by (7.C.6) must be smaller than the silicon layer thickness, or
�� 1/(2� 1.2� 10��H m��� 2�� 10�� s��� 10���m�), i.e. 6.6� 10����m��.
This resistivity corresponds to a photocreated carrier density of n� �/q� or
4� 10�� electrons cm��. This requires an incident illumination power P(�ndh�/#)
of 6.4 W cm�� for photons of 1 eV energy.

Weak conductivity (�� ��)
In this case, (7.C.4) takes the form:

k���
�
���1� i

�
���

���
���

�
���1� i

�
2��� (7.C.7)

We see that the wave is absorbed (E
�

e���) and that the intensity I decreases with an
attenuation constant � (I

�
e����� I

�
e���):

��
Z
�

n
��

� (7.C.8)

where Z
�

is the vacuum impedance (Z
�
� (�

�
/�
�

)���� 377�). In fact, this last
expression is of little use as it ignores the dynamic behaviour of electrons, i.e. it
supposes that electrical conductivity is a function of the instantaneous value of the
electric field strength, which is generally not the case. We thus present a more
pertinent model, one which takes into account the response time of the electron
gas, known as the Drude model.

We consider a free electron gas of density n consisting of electrons with an
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effective mass m
	  

(see Chapter 5). We saw in Chapter 6 how the entire band
structure of a material can be taken into account by means of the simple notion of
an effective mass, and that the dynamic behaviour of the electron can be described
by the equation:

m
	  
v" �

m
	  
v

#
� qE(t) (7.C.9)

where v is the velocity of the electron and # is the mean time between collisions. If
the applied field is constant E(t)�E

�
, the velocity will also be a constant given by

v
�
� q#E

�
/m

	  
with the electrical current resulting from the general motion of

the gas being j
�
� nqv

�
��

�
E
�

. The electrical conductivity is therefore �
�
� nq�#/

m
	  

, which is what we found earlier in Section 6.2. If the field E is an electromag-
netic field Ee���, (7.C.9) then shows that the conductivity �(�) depends upon the
frequency:

�(�)�
�
�

1� i�#
(7.C.10)

The dispersion relation (7.C.4) describing the relationship between the wavevector
k and the frequency � remains valid by replacing � by the above expression for
�(�). We therefore immediately obtain a new expression for absorption (one more
exact than that given in (7.C.8)):

��
1

n
��

Z
�
�
�

1� (�#)�
(7.C.11)

The product Z
�
�
�

is indeed homologous to an inverse length. In crystalline
semiconductors, the collision time # is generally in the range 0.1—10 ps and the
product �# is therefore very large for optical frequencies. Expression (7.C.11) may
therefore be simplified to:

��
Z
�

4�c�n
��

nq���
�

m
	  
#

(7.C.12)

Drude model for free carrier absorption

Example
A slab of silicon (n

��
� 3.6, m

	  
� 0.321m

�
) is doped to a concentration of

10�� cm��, or 10��m��. At this impurity-concentration level, the mean collision
time # is 10��� s. This results in a conductivity of:

�
�
�
nq�#
m

	  

�
10��m��(1.6� 10��C)�10��� s

0.321� 0.9� 10��� kg
� 8.8� 10����m��

or a resistivity of the order of 1 m� cm��. The absorption coefficient for a 10 �m
(2� 10�� s��) wave is then given by (7.C.11) to be:

336 Complement to Chapter 7



E

k

Fig. 7.C.2. The absorption of a photon by a single band is only possible
with the assistance of a scattering mechanism which can provide the required
momentum to make up the difference between the initial and
final states.

��
Z
�
�
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n
��
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�
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3.6� 4
� 2.3� 10�m��

Infrared light is therefore absorbed over a distance of approximately 0.4 �m.

This very simple model has a number of drawbacks:
∑ It predicts a �� dependence of the absorption coefficient which is not borne out

by experiment. Generally, the absorption coefficient � is proportional to a
power of wavelength � other than 2 (�� constant� ��, where p varies anywhere
between 1.5 and 3).

∑ It says nothing concerning the microscopic origin of the free carrier absorption
process (interactions with impurities, acoustical phonons, . . .).

In order to resolve these problems, it is necessary to resort to a quantum mechan-
ical treatment. We must nonetheless recognize that a quantum mechanical analy-
sis will have to deal with a certain number of difficulties before it can offer a
satisfactory description of absorption by a free electron gas. Figure 7.C.2 explains
one such consideration.

As we saw at the beginning of this chapter, the matrix element describing the
coupling between a band electron and an electromagnetic wave is non-zero only
for nearly vertical transitions which conserve wavevector k. As the quasi-free
electrons are distributed across the parabolic conduction band of the semiconduc-
tor, there are no available states ‘above’ this band which may receive an excited
electron. In other words, we cannot satisfy both the momentum (k� k�) and
energy conditions (��k�/2m

	  
� h�� ��k�/2m

	  
). We therefore require another
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interaction to supply the additional momentum needed to bring the excited
electron back to the conduction band.

To do this, we have at our disposal all the mechanisms described in Chapter 6
(impurities, optical phonons, . . .). We will take as an example interaction with an
optical phonon described by the interaction Hamiltonian 1/2(H

��
e���� c.c.). Since

this transition requires the participation of two simultaneous perturbations, we
must appeal to second-order perturbation theory, as touched upon in Comple-
ment 3.B. In that case, Eq. (3.B.26) gave the transition rate per second between an
initial state �i
 and a final state � f 
 to be:

S(i� f )�
�
� ��

�

� f �H
�	�
�n
�n�H

�	�
�i


E
�
�E

�
�
�
�(E

���
) (7.C.13)

This formula was applied in the context of two-photon absorption. Here we have
H

�	�
�H

��
�H

��
, and the relevant terms are:

S(i� f )�
�
� ��

�

� f �H
��
�n
�n�H

��
�i


E
�
�E

�

�
� f �H

��
�n
�n�H

��
�i


E
�
�E

�
�
�
�(E

���
) (7.C.14)

The two other terms in the sum correspond to two-photon absorption (for terms of
type �i�H

��
�n
�n�H

��
� f 
) and to two-phonon scattering (for terms of type

�i�H
��
�n
�n�H

��
� f
). Such transitions clearly do not preserve energy and momen-

tum simultaneously. Total energy conservation during the various allowed sec-
ond-order transitions may be expressed as:

�(E
���

)� �(E
�
�E

�
� ��

��
� ��

��
) (7.C.15)

depending upon whether phonon emission or absorption is involved. While the
principle behind this calculation is clear, the summation over intermediate states
�n
 is rather involved in practice. This calculation can be examined in the work by
B. K. Ridley (1988).

Table 7.C.1. Coefficients required for (7.C.16) to calculate free electron absorption
in different semiconductors (H. Y. Fan, Semiconductors and Semimetals, vol. 3, R.
K. Willardson and A. C. Beer, eds, Academic Press, New York (1967), Ch. 9)

Material N (�10�� cm��) K p

GaAs 1—5 3 3
InP 0.4—4 4 2.5
GaSb 0.5 6 3.5
InAs 0.3—8 4.7 3
InSb 1—3 2.3 2
AlSb 0.4—4 15 2
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Given the complexity of these quantum models, use is often made of phenom-
enological formulas drawn from experiments. Free carrier absorption can be
expressed as:

��K��
N (cm��)

10�� ��
� (�m)

9 �
�

(7.C.16)

where K� is the material-dependent parameter given in Table 7.C.1 for different
semiconductors.

Figure 7.C.3 shows the absorption coefficients in several important semiconduc-
tors for optoelectronic applications (GaAs, InP, and GaSb) as a function of free
electron concentration at two commonly employed wavelengths: 1.55 �m for
telecommunications and 10 �m for optical defence applications. We see that
parasitic absorption can be significant and must be taken into account in semicon-
ductor laser threshold calculations.

Free carriers cause a change �� in the optical index of semiconductor materials.
To calculate the size of the effect, we need only introduce expression (7.C.10) into
the dispersion relation (7.C.4) and sum up the real portions of k�. We then find:

����
��
�

��
(7.C.17)

where �
�

is the plasma frequency of the electron gas given by:

��
�
�

nq�

�
�
m

	  

(7.C.18)

Plasma frequency

This variation in the optical index is harnessed in electro-optic modulators. As
shown in Fig. 7.C.4, the electromagnetic wave is guided (see Chapter 11) by a space
charge region (see Chapter 10) placed between two mirrors deposited on either
extremity of the guide. This guide of length L behaves as a Fabry—Pérot cavity,
with a transmittance given by (9.D.21). Intuitively, the last formula says that the
guide lets through light of wavenumber k when kL�m� (ON state) and blocks
light when kL� (2m� 1)�/2 (OFF state). Under the influence of an externally
applied voltage, electrons are injected into the space charge region and act to
modulate the effective guide index � according to (7.C.17) and allow the guide to
move from an ON state to an OFF state. The voltage required to switch the
modulator state is given by:

k(V
&--

)� k(V
&.

)�
�

2L
(7.C.19)
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or, given the dispersion relation k������/c� 2�n
��

/�
�

, where �
�

is the vacuum
wavelength:

���
n
��
2

�
�

L
(7.C.20)

Example
We consider an InP waveguide (n

��
� 3.5, m

	  
� 0.077). We wish to know the

guide length necessary to switch the modulator at �
�
� 1.55 �m by injecting a

space charge region with 10�� carriers cm��. The plasma frequency �
�

of the
electron gas is given by (7.C.18) to be:

�
�
�	

10��m��

8.86� 10���Fd m��� 0.077� 0.9� 10��� kg
1.6� 10��C

� 6.4� 10�� s��

At 1.55 �m, the frequency � is 1.2� 10�� s��, which leads to a variation �� of
�3� 10��. The length of the device given by (7.C.20) is then:

L� 3.5� 1.55� 10��mm/(2� 3� 10��)� 0.9 mm
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8 Semiconductor heterostructures and
quantum wells

8.1 Introduction

In Chapter 5 we saw that the principal characteristic of a semiconducting material
is the existence of forbidden energy bands, or gaps, acting to separate the electron-
rich valence band from the electron-poor conduction band. Both the bandgap and
the energy bands are determined by the bulk potential of the crystalline material.

At the basis of bandstructure engineering is the heterojunction, which is obtained
by growing one semiconductor layer onto another. For certain carefully selected
semiconductors possessing compatible crystal structures and lattice spacings, it is
possible to achieve epitaxial growth of one material onto another. In this case, the
atomic positions of the second material form a virtually perfect continuation of the
underlying substrate lattice. Under carefully controlled conditions, the composi-
tional transition between the two materials can be made almost perfectly abrupt
(i.e. with heterointerfaces in many instances being defined on a monolayer scale).

Away from the heterojunction, and deep within the bulk of the two materials,
the electrons are subject to volumetric potentials (bandgaps and band structures)
characteristic of each of the constituent bulk semiconductors. In the vicinity of the
heterojunction, the crystal potential changes abruptly from one material to the
other. A quantitative description of this change in potential requires that calcula-
tions be performed at the atomic level. These calculations (performed numerically
on computers) are extremely involved and lie outside the scope of this book. Such
calculations indicate, however, that over the scale of a few atomic layers near the
interface, there is a transfer of electrical charge. This transfer creates an interface
charge dipole and is responsible for an abrupt jump in the electrostatic potential
between both interfaces and is superimposed on the crystalline potential. On either
side of this transition region (extending over distances of the order of monolayers),
the electrons take on the characteristics of the constituent semiconductors (gaps,
effective masses, . . .). The relative positions of the valence bands, however, are
determined by this charge transfer process. From a macroscopic viewpoint, we can
consider the heterojunction as possessing a valence band discontinuity or offset
�E

0
. For our purposes, we will take �E

0
to be a parameter (determined either

through experiment or predicted by more comprehensive theories) that depends
uniquely on the pair of materials forming the heterojunction.
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Once the valence band offset has been determined, the conduction band offset
�E


may be trivially deduced from our knowledge of the bulk semiconductor

bandgaps. It is important to appreciate that given the chemical origin of the
interfacial charge dipole, its spatial influence is limited to the relatively small
number of chemical bonds that span the heterojunction interface.

Three types of structures are possible (see Fig. 8.1): in one case the entire gap of
the small bandgap semiconductor resides within the conduction and valence
bands of the large gap material (i.e. a type I heterostructure); alternatively, one of
the band offsets may be larger than the difference between the semiconductor
bandgaps, but smaller than the magnitude of the larger semiconductor bandgap
(type II); and, finally, one of the offsets may be larger than the gap of the largest
bandgap semiconductor (type III).

For an electron in the conduction band of a heterostructure, the offset repre-
sents in essence a discontinuity in the potential energy across the heterojunction.
For a given total energy E

���
, the electron will have a kinetic energy E

���
�E

�
in

semiconductor 1, and E
���
�E

�
in semiconductor 2, where E

�
is the energy at the

bottom of the conduction band of semiconductor i. As a result, by depositing
sequences of semiconductor layers (each of appropriate thickness and composi-
tion) it is possible to create any potential profile along the crystal growth direction
on demand. The possibilities are principally limited by the number of available
materials and by their capacity to be grown epitaxially. It is clear that the crystal
structures of the materials must have nearly identical lattice constants. If not, the
semiconductor deposited over the first will acquire a very large elastic deformation
energy which the crystal will only be able to accommodate as long as the thickness
of the deposited layer remains small. Beyond this critical thickness the strain in the
epilayers will relax, disrupting the near perfect crystallinity of the structure and
degrading the optoelectronic properties otherwise afforded by these materials. In
the case of InAs, for instance, only a little less than two monolayers can be
epitaxially deposited on GaAs before the film relaxes by forming three-dimen-
sional islands.

Figure 8.2 shows the bandgaps and lattice constants for various bulk semicon-
ductors. The requirement of closely matching lattice constants separates these
semiconductors into five distinct families in terms of compatible substrate ma-
terials. Of these families, GaAs/Al

	
Ga
��	

As is the best controlled, and all composi-
tional Al fractions x are accessible, as the lattice constant does not vary significant-
ly with x. Two other important systems include Ga

	
In
��	

As


P
��


and Al
	
In
��	

As,
which can be deposited onto an InP substrate, and InAs

��	
Sb and Al

	
Ga
��	

Sb for
GaSb. Finally, the lattice constants available to Hg

��	
Cd

	
Te are well suited to

deposition on CdTe substrates, and allow a large range of accessible bandgaps
extending from the visible region down to zero and even negative gaps (with
negative bandgaps indicating that the material behaves as a semimetal over this
range of compositions).
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Fig. 8.1. (a)—(c) The three heterojunction types which may exist between two semiconductors
possessing bandgaps E�

�
and E�

�
. E


and E

0
denote the conduction and valence bands,

respectively.

8.2 Envelope function formalism

The electron wavefunctions in a heterojunction can be described using envelope
function formalism. This approximation is formally identical to that used to
describe the propagation of an electromagnetic wave in an inhomogeneous me-
dium, as for instance in the case of a waveguide in (9.27), or in non-linear optics as
in (12.21). This section is fairly demanding, and the reader may simply wish to take
(8.17) on faith and move on to the next section.

We will now derive the envelope function approximation within the general
framework of a semiconductor possessing a periodic potential V


(r) reflecting the

crystal lattice, and a slowly varying potential V(r) with respect to the lattice
spacing. We will discuss the simple case of an electron inhabiting the conduction
band of a heterostructure — the more complex problem associated with valence
band degeneracy will be left to Complement 8.D.

We consider a slowly varying potential V(r) in r as shown in Fig. 8.3. The
Hamiltonian for an electron given this combination of potentials may then be
written:

H�
p�

2m
�

�V

(r)�V(r) (8.1)
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Fig. 8.2. Bandgaps and lattice constants for various bulk semiconductors.
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c

c

Fig. 8.3. The potential seen by an electron resulting from the superposition of a slowly
varying potential and the crystal potential.

For V(r)� 0 the solutions to Schrödinger’s equation H	�E	 are the Bloch
wavefunctions �n, k
 (see Chapter 5):

	
�k

(r)�
1

��
e�k�ru

�k
(r) (8.2)

where � is the crystal volume, n is the band index, and u
�k

(r) possesses the
periodicity of the lattice. The corresponding energy is �

�k
.
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For V� 0 we expand the solutions to Schrödinger’s equation in (8.1) in terms of
the basis set formed by the Bloch functions as:

	(r)�
1

��
�
�k
a
�k

e�k�ru
�k

(r) (8.3)

which must satisfy the equation:

�
p�

2m
�

�V

(r)��

�k
a
�k

e�k�ru
�k

(r)��
�k

V(r)a
�k

e�k�ru
�k

(r)�E�
�k
a
�k

e�k�ru
�k

(r) (8.4)

As each Bloch wavefunction is a solution to the ‘crystal�null potential’ problem,
this last expression may then be written:

�
�k
�
�k
a
�k

e�k�ru
�k

(r)��
�k

V(r)a
�k

e�k�ru
�k

(r)�E�
�k
a
�k

e�k�ru
�k

(r) (8.5)

We then project this expression onto the wave �NK
������e�k�ru
+K(r) and, using

the orthogonality of the Bloch wavefunctions, obtain an equivalent expression for
Schrödinger’s equation:

�
�k
a
�k�
�

e��K�ru*
+K(r)V(r)e�k�ru

�k
(r)dr� (E� �

+K)a
+K (8.6)

Up to this point, no shortcuts have been taken in the derivation. It is therefore
reasonable to ponder what approximations might be made to simplify this expres-
sion. As a guide, we note that if V(r) was constant, then the left term in (8.6) would
be the Fourier transform of the quantity u

�k
(r)u

+K(r), and would therefore depend
only on the crystal.

The fact that the potential V(r) varies slowly, implies that its Fourier transform
V� q given by:

V(r)��
q

V� qe�q�r

(8.7)

V� q�
1

��
�

V(r)e��q�rdr

is null except for very small q values with respect to the radius of the Brillouin zone.
Inserting the transform (8.7) into (8.6), the following term emerges:

�
�kq
a
�k

V� q
� �

�

e��k�q�K��ru*
+K(r)u

�k
(r)dr (8.8)
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which would be predominantly zero if V was constant. As the functions u
+K and u

�k

are periodic, we can set r�R
�
� r�, where R

�
designates the position of the ith cell,

and r� is restricted to the volume of the primitive cell, which results in the following
sum over i:

1

��
�

e��k�q�K��ru*
+K(r)u

�k
(r)dr

�
1

�
�
�

e��k�q�K��R� �
�	



e��k�q�K��r�u*
+K(r�)u

�k
(r�)dr� (8.9)

��k�q�K

1

�
�	


�
�	



u*
+K(r�)u

�K�q(r�)dr

where �
�	



indicates that the integral is taken over the primitive cell and �k is the
Kronecker delta. In this expression, we have supposed that k and K lie within the
interior of the Brillouin zone. If they were near the edge of the Brillouin zone, then
we would have to take into account Umklapp processes in which k� q�K�G,
where G is a reciprocal lattice vector (including these effects, however, would add
little in terms of novel content to the discussion).

We will again make use of the fact that only small vectors q contribute to the
potential, in expanding the overlap integral for the periodic portions of the Bloch
wavefunctions in terms of q:

1

�
�	


�
�	



u*
+K (r�)u

�K�q(r�)dr�

�
1

�
�	


�
�	



u*
+K (r�)u

�K
(r�)dr��

1

�
�	


�
�	



u*
+K(r�)q · �Ku�K

(r�)dr�� · · · (8.10)

��
+�
�

1

�
�	



q · �
�	



u*
+K(r�)�Ku�K

(r�)dr�

The orthogonality for the same wavevector K of the functions u
+K and u

�k
results

from the orthogonality of Bloch functions for different states. (Note! For different
wavevectors, the periodic portions are not orthogonal.) The simplest approxi-
mation consists in keeping only the first term, which allows one to decouple each
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of the different bands in Schrödinger’s equation in (8.6). Given (8.9) and (8.10),
Schrödinger’s equation in reciprocal space takes the form:

�
+Ka+K��

q

a
+K�qV� q�Ea

+K (8.11)

By introducing the envelope function:

-
+

(r)��
K

a
+Ke�K�r (8.12)

Definition of the envelope function

we may write (8.11) in real space as:

�
K

�
+Ka+Ke�K�r��

Kq

a
+K�qe�K�rV� q�E�

K

a
+Ke�K�r (8.13)

or again as:

�
K

�
+Ka+Ke�K�r��

q

V� qe��q�r�
K�

a
+K�

e�K��r�E�
K

a
+Ke�K�r

(8.14)

�
d�K

(2�)�
�
+Ka+Ke�K�r�V(r)-

+
(r)�E-

+
(r)

As only the components close to K are coupled by (8.11), we may expand the
dispersion relation for the band �

+K as a series about K. For the more important
case where K� 0, we introduce the effective mass m*

+
for the Nth band:

�
+K� �

+0�
��K�
2m*

+

(8.15)

which we will assume to be isotropic to simplify matters.
Substituting (8.15) into (8.14), we find:

�
d�K

(2�)���+0�
��K�
2m*

+
� a+Ke�K�r� �

+0-+(r)�
��

2m*
+

��r -+(r) (8.16)
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which leads us to the reward for our efforts — Schrödinger’s equation for the
envelope function:

�
p�

2m*
+

�V(r)� -+(r)� (E� �
+0)-+

(r) (8.17)

Schrödinger’s equation for the envelope function

This equation is the major finding of this chapter. It shows that the role of the
effective mass greatly exceeds that encountered in the context of the semiclassical
description in Chapters 5 and 6: in the case of a slowly varying potential V(r) with
respect to the crystal potential, the wavefunction for an electron in the Nth band is
therefore that for a particle possessing the effective mass associated with the Nth
band and subjected to a potential V(r). Every influence of the material is taken into
account through the effective massm*

+
and the energy �

+0 of theNth band at K� 0
in Schrödinger’s equation, (8.17).

In the case of the adopted approximation, the complete wavefunction is given
by:

	
+
� -

+
(r)u

+0(r) (8.18)

and the solution corresponding to a potential V� 0 is:

	
+k � e�k�ru

+0(r) (8.19)

which differs from the exact solution by the substitution of u
+k(r) by u

+0(r) in (8.3).
In the case of a heterojunction for which the external potential V(r) is discon-

tinuous over an atomic scale, the derivation we have just carried out is no longer
strictly valid. If, however, we seek states close in energy to the conduction band we
can approximate the solutions on either side of the heterojunction by (8.17) and
(8.18) along with the Bloch function u

+0(r) proper to each material. To obtain the
stationary state for an electron in the heterostructure, we must join the two
solutions at the interface (see Section 1.3.1). To begin, the wavefunctions must be
continuous:

-
+

(0�)u
+0(0�)� -

+
(0�)u

+0(0�) (8.20)

where the ‘�’ signs refer to the materials on the left and right of the interface at
z� 0. In this equation, the envelope function varies very little over the cell before
the interface, and if we take the average of (8.20) over this last cell, we find:

-
+

(0�)� -
+

(0�) (8.21)

The exact solution must conserve the probability flux which crosses the interface.
As demonstrated in Section 1.3, the probability current is given by:

j�
�
m*
+

i
[-*
+

(r)�-
+

(r)� -
+

(r)�-*
+

(r)] (8.22)
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and conservation of current across the interface leads to the continuity equation:

1

m�
+

�
�z

-
+

(0�)�
1

m�
+

�
�z

-
+

(0�) (8.23)

This last condition can be easily incorporated into the formalism by writing
Schrödinger’s equation for the envelope function as:

���
��

2m*
+

(r)
��V(r)� -+(r)� (E� �

+0)-+
(r) (8.24)

where m*
+

(r) takes into account the variation of the effective mass from one
material to another.

We must remark that this rather heuristic approach to the heterojunction hides
many important problems. Therefore, we have restricted the approximation to a
simple band, where the effective mass does not depend on K, i.e. a parabolic band
(see (8.15)). If the involved energies E and �V(r) are significant, this assumption is
not admissible. We have also supposed that the band N is non-degenerate at
K� 0, which is clearly not the case for the valence bands. These two aspects (band
parabolicity and degeneracy) are related. The derivation of envelope functions
requiring a multi-band treatment forms the (challenging!) topic of Complement
8.D. For the time being, we will proclaim without scruples that the approximation
for the envelope function in (8.18) along with its associated Schrödinger equation
in (8.24) are sufficient to describe the quantum behaviour of an electron in a
heterostructure.

8.3 The quantum well

By employing two heterojunctions, it now becomes possible to implement a
one-dimensional potential profile (along the growth direction) for electrons corre-
sponding to the quantum well studied in Chapter 1.

Figure 8.4 shows the most comprehensively studied quantum well structure to
date consisting of a well layer of GaAs inserted between two larger bandgap
Al
	
Ga
��	

As barrier layers. For x� 0.4 the conduction band offset is proportional
to the aluminium fraction x, so that �E


� x� 836 meV. By adjusting the Al

fraction x, and the thickness of the GaAs layer at the time of growth, we can create
a quantum well with electronic properties tailored to the user’s specifications — this
practice is referred to as quantum engineering.

For electrons in the conduction band, the AlGaAs layers form potential barriers
of height V

9
��E


. Schrödinger’s equation for the envelope function then be-

comes:
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Fig. 8.4. A potential well results when a GaAs well layer is grown between two larger
bandgap Al

	
Ga
��	

As barrier layers. When the width of the well layer is sufficiently small, the
motion of the electrons in the quantum well is quantized in the growth direction, and the
allowed energy levels corresponding to motion in this direction become discrete. In the plane
parallel to the interfaces, the motion of these electrons remains unrestricted. As a result, the
total electronic wavefunction is given by the product of the envelope function (solution to the
one-dimensional Schrödinger’s equation) with the periodic Bloch function u

�k
(contributed by

the periodicity of the crystal lattice), and the plane waves describing the free motion in the
plane parallel to the interfaces.

��
��

2m*(z)
�-(r)�V(z)-(r)�E-(r) (8.25)

where V(z) has value of zero in the well and V
9

in the barriers. Both the effective
mass and the potential depend only on z, while in the x and y directions (parallel to
the interfaces) the effective potentials do not vary. Consequently, -(r) can be
written in the form:

-(r)� -
�K

(z)exp(iK ·R) or R� (x, y) and K� (k
	
, k


) (8.26)

where the exponential envelope function represents the free motion of electrons
parallel to the interfaces, and -

�K
(z) is determined by Schrödinger’s equation in one

dimension:

�
d

dz

��
2m*(z)

d

dz
-
�K

(z)��V(z)�
��K�

2m*(z)� -�K(z)�E-
�K

(z) (8.27)

Labelling the effective mass in the well as m
:

and in the barrier as m
9

, we find:

351 8.3 The quantum well



�
d

dz

��
2m*(z)

d

dz
-
�K

(z)��V(z)�
��K�

2 �
1

m(z)
�

1

m
:
�� -�K(z)

(8.28)

��E�
��K�
2m

:
� -�K(z)

For small K, the correction to the ‘potential energy’ due to the variation in the
effective mass is negligible. In almost every case, this correction is dropped for the
good reason that the function -

�K
(z) then becomes independent of K obeying the

simple equation:

��
d

dz

��
2m*(z)

d

dz
�V(z)� -�(z)� �

�
-
�
(z)

(8.29)

�
�
�E

�
�

��K�
2m

:

If the effective mass did not depend on the different materials, this equation would
be same as that obtained for the quantum well studied in Chapter 1. As both the
effective masses and potentials are constant over the regions partitioned by the
heterojunctions, the solution to (8.29) is no more difficult to obtain.

Let us consider the interface at z�L/2 for ��V
9

in the well. The solution is a
combination of two plane waves:

-(z)� ae���������� be����������, z�L/2 (8.30)

with ��k�/2m
:
� �.

In the barrier region, for z�L/2, the admissible solution consists of a decaying
exponential:

-(z)� ce���������, z�L/2 (8.31)

with ����/2m
9
�V

9
� �.

Applying the continuity conditions at z�L/2, we obtain:

b

a
� e�����

(m
:

/m
9

)�� ik

(m
:

/m
9

)�� ik
(8.32)

Looking at expression (8.30), (8.32) tells us that the electronic wavefunction is
phase shifted by 2� as a result of its reflection by the z�L/2 interface. � is then
given by:

sin ��
k

�[(m
:

/m
9

)�]�� k�����
(8.33)

Considering the entire well starting from the z��L/2 interface, the phase of the
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Fig. 8.5. Graphical solution to (8.34). The solutions are given by the intersection points
between the sloping lines n� kL/� and the arcsine functions.

plane wave travelling from the left to the interface at the right increases by kL, with
the reflection adding 2� to the phase, and the return trip of the reflected wave to
�L/2 adding another kL. Finally, the reflection at z��L/2 contributes a second
phase shift of 2�. For a stationary state, the total phase after a complete round-trip
must equal 2n�, with n being an integer. The leads to the condition that 2��
n�� kL, or again:

2

�
arcsin

k

�[(m
:

/m
9
)�]�� k�����

� n�
k
�
L
�

k

k
�

(8.34)

with ��k�
�

/2m
:
�V

9
.

The graphical solution in Fig. 8.5 shows how this condition is met for several
values of m

9
/m

:
. For m

9
�m

:
, the solutions in Fig. 8.5 are equivalent to those in

Fig. 1.2.
The energy of a stationary state which we may designate by �nK
, is then

according to (8.29):

E
�K
� �

�
�

��K�
2m

:

(8.35)

where �
�

are discrete energies and solutions to (8.29), and K is continuous within
the (K

	
,K



) plane. The states are organized into subbands as depicted in Fig. 8.6.

Each subband comprises an ensemble of electronic states possessing the same state

353 8.3 The quantum well



E

1

2

K

1

(a) (b)

2

V(z)

z
Lw

V
B

Fig. 8.6. Quantum well structure (a) showing two subbands in the well along with their
corresponding envelope functions (perpendicular to the interfaces), and (b) energy spectra
E
�
(K).

of quantized motion perpendicular to the interfaces, and continuously varying
wavevectors K corresponding to their unhindered in-plane motion. The term
two-dimensional electron gas is used to refer to the population of electrons which
occupy such a subband structure.

It is important to note that the wavefunctions remain separable because the
potential depends only upon z. The shape of V(z) intervenes only in determining
the energy minima of the subbands �

�
. The energy �

�
is also referred to as the

confinement energy. So the concepts of subbands and confinement energies are
valid in many more systems than the simple symmetric quantum well treated here.

8.4 Density of states and statistics in a quantum well

In each subband, the electronic states contain a plane wave component in the
directions parallel to the interfaces. As done many times now for three-dimen-
sional continuums (see Complement 1.A, Section 5.3, . . .), we will enclose the
two-dimensional quantum well in the plane by a macroscopic rectangular bound-
ary with area A�L

	
L


. The limiting conditions at the edges of this rectangular

section (i.e. a two-dimensional ‘fictitious box’) introduce a pseudo-quantization of
the allowed momentum values �K. The Born—von Karman cyclic boundary
conditions (see Section 5.2) require that:

	(x,y, z)�	(x�L
	
, y, z)

(8.36)
	(x,y, z)�	(x,y�L



, z)

For the wavefunctions in (8.26), this condition implies that:

354 Semiconductor heterostructures and quantum wells



K
y

Kx

K0 

Fig. 8.7. The pseudo-quantized values for K� (2�n
	
/L
	
, 2�n



/L


) are represented by points

in a reciprocal space plane. The states possessing energies less than E
�

are enclosed by the
circle of radius K

�
(Eq. (8.39)).

K� (K
	
,K



)��

2�n
	

L
	

,
2�n



L


� (8.37)

where n
	

and n



are integers. If we represent the allowed values for K as points in a
plane (Fig. 8.7), each state then occupies an area (2�)�/L

	
L



and the density of
states in this two-dimensional K space is then constant, i.e. D(K)� g

#
A/(2�)�. (In

this last expression, the spin degeneracy g
#
� 2 has been taken into account as each

K state admits two solutions with opposing spins.)
We often need to calculate the sums of functions f which depend only on the

energies of the states:

�
K

f [E(K)] ��
Ag

#
(2�)�

d�K f [E(K)]�� f (E)D
�
(E)dE (8.38)

where D
�
(E) is the density of states in the nth subband. Assuming a parabolic

dispersion as in Eq. (8.35) the number of states N
�
(E
�

) having an energy less than
E
�

is equal to the number of states having a wavevector K lying within a circle of
radius K

�
� (2m

:
(E
�
� �

�
)/��)���, as indicated in Fig. 8.7, i.e. for E

�
��

�
:

N
�
(E
�

)�
Ag

#
(2�)�

�K�
�
�
Ag

#
m
:

(E
�
� �

�
)

���
(8.39)

The density of states in the subband is therefore constant:

D
�
(E)�

dN
�

dE
�
Ag

#
m
:

2���
"(E� �

�
) (8.40)

For E��
�
, there are no available states and D

�
(E)� 0, which is reflected by the

Heaviside function ".
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Fig. 8.8. Subbands and density of states for a two-dimensional structure.

The density of states for the system is then given by the sum of the density of
states from each subband.

D(E)��
�

D
�
(E)�

Ag
#
m
:

2���
�
�

"(E� �
�
) (8.41a)

and has the overall shape of a staircase (Fig. 8.8) with the step height being a
constant of the material. The position of the steps, however, depends on the
explicit values of �

�
and therefore on the potential which confines the electrons into

discrete subbands. Often one makes use of the two-dimensional density of states
�
�


per subband per unit area (in eV�� cm��), which is given by:

�
�

�
D
�
(E)

A
�
m
:

���
(8.41b)

Two-dimensional density of states

At thermodynamic equilibrium, the probability that an electron occupies a state
with energy E

�K
is still governed by Fermi statistics:

f (E
�K

)�
1

1� exp[(E
�K
�E

3
)/k

9
T]

(8.42)

where E
3

is the Fermi energy. The surface density n
�

of electrons in a subband n is
then:

n
�
��D�(E) f (E)dE� n


ln�1� exp�

E
3
� �

�
k
9
T ��

(8.43)

n

��

�

k
9
T�

m
:

���
k
9
T

Critical density
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where n


is the critical density of the subband. The total electron surface density in
the system is then given by:

n
#
��

�

n
�

(8.44)

Equations (8.43)—(8.44) give n
#

as a function of E
3

and T. They implicitly allow one
to determine the Fermi level if n

#
is known.

If the separation between the lowest levels is larger than the thermal energy (i.e.
�
�
� �

�

 k

9
T), and if the density n

#
is not too great, then only one subband will be

populated, and we may write for n
#

and E
3
:

n
#
� n


ln�1� exp�

E
3
� �

�
k
9
T ��

(8.45)

E
3
� �

�
� k

9
T ln�exp�

n
#
n

�� 1�

Equation (8.45) shows that there exists a transition between degenerate and
non-degenerate regimes for a two-dimensional electron gas. In the case where
n
#

 n


, we obtain a degenerate electron gas for which:

n
#
� �

�

(E
3
� �

�
)

(8.46)

E
3
� �

�
�

n
#

�
�


and non-degenerate if n
#
� n


, in which case:

n
#
� n


exp��

�
�
�E

3
k
9
T �

(8.47)

E
3
� �

�
� k

9
T ln�

n
#
n

�

In Fig. 8.9, we show both linear and logarithmic plots for n
#
(E
3

):

Example
We will calculate the density of states and the critical density for a GaAs quantum
well.

The effective mass m


in the GaAs well is 0.067m
�

resulting in a density �
�


of:

�
�

� 1.6� 10��C

0.067� 0.9� 10��� kg

3.14� (1.05� 10��� J s)�
� 2.78� 10�� eV�� cm��

The critical density n


is then n

� �

�

� 25.9 meV or 7.2� 10�� cm��.

A 10�� cm�� doped quantum well is therefore degenerate. The position of the

357 8.4 Density of states and statistics in a quantum well



10

8

6

4

2

0

n
s 

/ (
 2

D
 k

B
T

)

(a) (b)

-8 -4 0 4 8

(EF 1) / kBT

0.001

0.01

0.1

1

10

 

-8 -4 0 4 8

(EF 1) / kBT

Fig. 8.9. Density of states in a subband as a function of the position of the Fermi level
position E

3
. (a) Linear and (b) logarithmic plots.

Fermi level above the confinement energy is given by (8.46) or:

E
3
� �

�
� 10�� cm��/(2.78� 10�� eV�� cm��)� 36 meV

8.5 Optical interband transitions in a quantum well

8.5.1 Hole states in the valence bands

A pair of materials forming a type I heterostructure can be used to implement a
quantum well for electrons in the conduction band. In the valence band, the
potential profile seen by the electrons is an inverted well. If we make the (very)
simplifying approximation that the valence band may be represented by two
parabolic bands (one for the heavy holes with effect mass m

��
� 0, and one for the

light holes with m
��
� 0) we have, using the envelope approximation, the two

following Schrödinger equations:

��
d

dz

��
2m*

��
(z)

d

dz
�V(z)� -��� (z)� ���

�
-��
�

(z)

(8.48)

��
d

dz

��
2m*

��
(z)

d

dz
�V(z)� -��� (z)� ���

�
-��
�

(z)

with the potential:

V(z)� 0, �
L
2
� z�

L
2

(8.49)

V(z)��V
9
���E

0
,
L
2
��z�
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The three-dimensional solutions to these Schrödinger equations are then:

E��
�K
�E

0
� � ��

�
�

��K�
2m

��

E��
�K
�E

0
� � ��

�
�

��K�
2m

�� (8.50)

	��
�K

�
1

�A
-��
�

(z)exp(iK · R)u
��0

(r)

	��
�K

�
1

�A
-��
�

(z)exp(iK ·R)u
��0

(r)

where E
0

is the valence band maximum for the well material, and the masses and
eigenenergies �

�
are negative. Clearly (see Fig. 5.13) we may consider the problem

as involving positive masses by changing the signs of both the masses and the
energies. In Schrödinger’s equation, this corresponds to substituting V(z)��V(z)
and �

�
���

�
. The well potential is then recognized as a confining potential for

holes (the direction of the positive energies is then towards the bottom of Fig. 8.10)
and the dispersion of the corresponding subbands for the holes is convex as was
the case for conduction electrons in Fig. 8.6.

Using this model, the main effect of the quantum well is to lift the degeneracy
between the heavy hole and light hole bands at the zone centre due to their
effective mass differences (����

�
�� ����

�
�). In actuality, the subband structure is far

more complex (we shall return to this matter in Complement 8.D). The simple
model used here is analogous to that used in probing the optical properties of bulk
semiconductors where we neglected mass anisotropy in the valence band.

8.5.2 Optical transitions between the valence and conduction bands

We are now interested in transitions between different states in a quantum well
under the influence of a sinusoidally time-varying perturbation such as an elec-
tromagnetic wave. Three types of transitions can be imagined: (i) an interband
transition in which an electron in a valence subband may be excited to a conduc-
tion subband; (ii) an intersubband transition, in which an electron moves from one
subband to another while remaining in the same band; and (iii) an intrasubband
transition, in which an electron is promoted to a different K state within the same
subband n.

This last type of transition may result from a scattering process as discussed in
the context of free-carrier absorption in Complement 7.C. In this case, interaction
with a phonon or an impurity is required to furnish the necessary exchange of

359 8.5 Optical interband transitions in a quantum well



m* < 0

m* > 0

V(z)

-V(z)

K ||

Bulk Well

(a) (b)

Fig. 8.10. (a) The potential seen by an electron in the valence band is equivalently seen as an
attractive well by holes. (b) The well potential lifts the degeneracy of the heavy hole and light
hole bands as a result of the differences in the effective masses.
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Fig. 8.11. Optical transitions are vertical in K space. Interband and intersubband transitions
are represented (a) in reciprocal space and (b) in real space.

momentum between the lattice and the electron (see Fig. 7.C.2). The two other
transition types are depicted in Fig. 8.11 for the case involving an interaction with
an electromagnetic wave. The novel feature introduced by the two-dimensional
aspect of the quantum well system is that optical intersubband transitions are
allowed to first order. This process is evidently not allowed in a bulk system. We
will discuss this important mechanism in the following section.

For interband transitions, we can calculate the transition rate using Fermi’s
golden rule. We consider a wave travelling across the well:
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E(r, t)�Eqcos(q · r��t)�
1

2
Eqexp[i(q · r��t)]�

1

2
E*q exp[�i(q · r��t)] (8.51)

The electric dipole interaction potential (see Section 3.2 and Complement 3.D)
with a quantum well electron is:

Vq(r, t)��eE · r��
e

2
Eq · rexp[i(q · r��t)]� c.c. (8.52)

The transition rate from a state 	0
�K

in the valence band, to a state 	
�K�

in the
conduction band is given according to the golden rule as:

S(nK�mK�)�
�

2�
e���mK��Eq · r�nK
���(E

�K�
�E0

�K
� ��) (8.53)

The electric dipole matrix element has changed with respect to the bulk case (see
Eq. (7.10)):

�mK��Eq · r�nK

(8.54)

1

A� -*� (z)u*
�

(r)e��K��REq · re�q�r-0
�
(z)u

0�
(r)e�K�Rdr

Continuing with the recurring practice in this chapter, given that the envelope
function varies slowly in comparison with lattice spacing, we may separate out the
slow and rapid changing portions by posing r� r�� (R

�
, z
�
), where r� belongs to

the primitive cell, and r
�
� (R

�
, z
�
) denotes the position of the ith primitive cell. The

integral then becomes a sum over i:

�
��

-*
�

(z
�
)-0
�
(z
�
)

1

N
	
N

!

�
�	��


e��K�q�K���R�

�
a
�

�
�	


� �

�	



dr�u*
�

(r�)Eq · r�u
0�

(r�)e��K�q�K���r� (8.55)

�Eq · r
� �
�	



dr�u*
�

(r�)u
0�

(r�)e��K�q�K���r��
where a

�
is the lattice spacing in the z direction. This last equation would be

intractable were it not for our ability to make certain simplifying assumptions. To
begin, we note within the sum over R

�
a conservation rule for the parallel compo-

nent of the momentum K� q�K�� 0. As the wavevector of light is negligible in
comparison to the electronic wavevectors K and K� in the Brillouin zone, this
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momentum requirement is taken into account by the Kronecker delta �K�K�
and is

non-zero only for K�K�. For this same reason, the sum over z
�
can be replaced by

an integral, leading to the following expression for the first integral:

I
�
��K�K�

Eq · r
0� -*� (z)-0

�
(z)e����dz (8.56)

wherein we find the matrix element r
0

of r between the bulk valence and conduc-
tion bands.

Additionally, if the z extension of the wavefunctions (,the well thickness) is
very small in comparison to the wavelength �, then, simply, we have:

I
�
��K�K�

Eq · r
0
�m, c�n, v
 (8.57a)

with

�m, c�n, v
�� -*� (z)-0
�
(z)dz (8.57b)

In the second part of Eq. (8.55), the exponential inside the integral is practically a
constant since �
 a

�
and K and K� are far from the edge of the Brillouin zone

(otherwise the envelope function approximation is not valid) with the result being
that the orthogonality of the Bloch functions cancels the term out.

The transition rate is therefore:

S(nK�mK�)�
�e�
2�

�Eq · r
0
����m, c�n, v
���(E

#
� ��)�K�K�

(8.58a)

with

E
#
� �

�
�

��K�
2m



� ��0
�
��

��K�
2m

0

�E
�
�E

���	���
"
�

��K�
2m



�
��K�
2m

0

(8.58b)

Let us note first that the conservation of total energy introduces a threshold for
optical absorption ���E

���	���
"
�E

�
� �

�
� ��0

�
��E

�
. The optical absorption

threshold in a quantum well is therefore blueshifted, with respect to the absorption
which takes place in a bulk semiconductor, by an amount equal to the sum of the
confinement energies present in the conduction and valence bands. This blueshift
is used to characterize the physical parameters of a quantum well (barrier compo-
sition, well thickness, . . .). The generation rate of electron—hole pairs is equal to
the number of transitions per second:

G�
dn

dt
�

1

A
�

����K�K�

S(nK�mK�) f 0
�
(K)[1� f 

�
(K)] (8.59)

where the occupation probabilities assure the presence of an electron in an initial
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state �n, v
 and an unoccupied final state �m, c
. Conservation of energy and
parallel momentum determineK as a function of the photon energy:

��K�
2 �

1

m


�
1

�m
0
���

��K�
2m

�

� ���E
�
� �

�
� ��0

�
� (8.60)

where we recognize m
�

as the reduced mass. At thermodynamic equilibrium, we
have as a consequence:

f 0
�
(K)� f 0

�
(��)�

1

1� exp�
E
0
� ��0

�
�� �0

�
(��)�E

3
k
9
T �

(8.61)

�0
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(��)�
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(���E
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� �
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�

(K)� f 
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(��)�
1

1� exp�
E

� �

�
� �

�
(��)�E

3
k
9
T �

(8.62)
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(��)�
m
�
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(���E
�
� �

�
� ��0

�
�)

For transitions between a valence subband n and a conduction subbandm, we may
sum over K:

G
��
�

�e�
2�

�Eq · r
0
����n, v�m, c
���

1

A
�
K

f 0
�
(K)[1� f 

�
(K)]��

��K�
2m

�

�E
���	���
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� ���
�

�e�
2�

�Eq · r
0
����n, v�m, c
����

g
#
d�K

(2�)�
f 0
�
(��)[1� f 

�
(��)]��

��K�
2m

�

�E
���	���
"

� ���
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G
��
�

�
2�
e��Eq · r

0
����n, v�m, c
��

m
�

���
� "(���E

���	���
"
) f 0
�
(��)[1� f 

�
(��)]

(8.63a)
"���
	 ���	�� "	����! � ����	� ���������� �������
��!
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which we write again as:

G
��
�

�e�
2�

�Eq · r
0
����n, v�m, c
��

m
�

���
� "(���E

���	���
"
) f 0
�
(��)[1� f 

�
(��)] (8.63b)

Interband absorption rate for a quantum well (s−1 cm−2)

In this expression, we recognize the product of the dipole moment, with the
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2

Fig. 8.12. The generation rate in an intrinsic quantum well is a staircase-shaped function.
Each time a new subband transition becomes available at a given absorption energy, the
generation rate increases a step. The energy threshold for pair generation resides above the
bulk equivalent gap of the well material.
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overlap element �n, v�m, c
, the joint density of states in two dimensions, m
�
/���,

and the appropriate occupation statistics. The generation rate G
��

is therefore a
product of the statistical factors f

�
and f

�
which depend on the temperature, the

Fermi level, and the generation rate G��*G�
��

that would occur if f
�

(1� f
�
) was

equal to unity and dependent uniquely upon the structure. This is illustrated in
Fig. 8.12.

The overlap ��m, c�n, v
�� of the envelope functions can introduce selection rules.
For example, in a symmetric quantum well, transitions between subbands with
different parity are forbidden. For subbands lying deep within a well, the envelope
functions for the electrons and holes are almost identical so that only transitions
between states sharing identical indices (m� n) are possible.

The analysis carried out here for absorption induced transitions between the
valence and conduction bands yields exactly the same results for stimulated
emission (in this case involving transitions from the conduction to the valence
band) with the exception of the occupation statistics. The stimulated recombination
by the field is:

R� �
���

G�
��

[1� f 0
�
(��)] f 

�
(��) (8.64)

and the net rate of creation—recombination induced by the field is therefore:

�
dn

dt�
�	�

�
�e�
2�

�Eq · r
0
��
m
�

���
� �

���

��m, c�n, v
��"(���E
���	���
"

)[ f 0
�
(��)� f 

�
(��)]

(8.65)
Net optical generation–recombination rate

for a quantum well (s−1 cm−2)
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We recall finally that for two Bloch functions, with eigenstates sharing identical ks
in different bands, we have:

�u
k
�[H, r]�u

0k

� (E

k
�E

0k
)�u

k
�r�u

0k

��

i�
m
�

�u
k
�p�u

0k

 (8.66)

As indicated earlier in Chapter 7, the matrix element r
0

may therefore be expressed
by p

0
, the Kane matrix element used in Complement 5.C within the framework of

the k · p method.

r
0
��

i�
E
�
m
�

p
0

(8.67)

We may wonder whether we should replace the term E
�

in (8.67) by �� in the
expressions for the creation rate to take into account photons with energy in
excess of the gap. We must not, however, ask too much of the envelope function
approximation which can only be applied as long as ����E

�
�/E

�
� 1.

The fact that the degeneracy of the valence band leads to distinct heavy hole and
light hole subbands, has as a consequence that the matrix element r

0
depends

upon the type of transition. Using the hole wavefunctions in Complement 5.C, the
reader may convince himself/herself of the following selection rules given in Table
8.1.

Table 8.1. Varying the electric field orientation with respect to the quantum well
introduces selection rules for the transitions. r

��
in equation (8.65) is equal to r

��
in

the bulk material multiplied by the appropriate factor(s) appearing in the table

TM (E.z) TE (E�z)

hh� e 0 1/�2
lh� e �2/�3 1/�6

In particular, the heavy hole subband to electron subband transitions are forbid-
den in the TM configuration (i.e. for the electric field perpendicular to the well
interfaces — see Chapter 9).

8.6 Optical intersubband transitions in a quantum well

In an intersubband transition, the initial and final states of the electron belong to
the same band. This leads to completely different selection rules and behaviours
from those observed for interband transitions. To be specific, let us suppose that
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this band is the conduction band (see Fig. 8.11). The initial and final states are then:

	
�K

�
1

�A
-
�
(z)exp(iK · R)u

0
(r)

(8.68)

	
�K�

�
1

�A
-
�

(z)exp(iK� ·R)u
0

(r)

which share the same periodic Bloch functions u
�

(r).
Fermi’s golden rule again gives us the transition rate induced by the electromag-

netic field (Eq. (8.53)). For the matrix element, the only difference relative to Eqs.
(8.54) and (8.55) is that the initial state sits within the conduction band.

�mK��Eq · r�nK
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(z
�
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�
(z
�
)

1

N
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�
�	��


e��K�q�K���R�

(8.69)

�
a
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�
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dr�u*
�

(r�)Eq · r�u
�

(r�)e��K�q�K���r�

�Eq · r
� �
�	



dr�u*
�

(r�)�u
�

(r�)e��K�q�K���r��
where the sum over R

�
clearly relates to momentum conservation in the parallel

direction. For the first integral, the matrix element of r� is now zero, as u
�

(r)
transforms as 1 under the cubic symmetry operations of the crystal lattice.

The second integral in (8.69) this time yields �
�	



when the variation of the
exponential is negligible over the primitive cell. We are then left with the sum:

I
�
��

��

-*
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(z
�
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�
(z
�
)
a
�

N
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�
�	��


e��K�q�K���R�Eq · r
�

(8.70)

which we can turn into an integral in the z direction:

I
�
�

1

N
	
N



�
�	��


e��K�q�K���R�� -*
�

(z)Eq · r-
�
(z)dz (8.71)

As the envelope functions are orthogonal, this last integral introduces an intersub-
band selection rule indicating that only the E

��
component can induce a transition

(see Fig. 8.13).



Fig. 8.13. In intersubband transitions, only the component of the electric field normal to the
quantum wells can optically couple to the ‘quantum oscillators’ which result from
quantization of the allowed displacement. The parallel components are left to interact (weakly)
with a free two-dimensional electron gas.
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Integral (8.71) may then be written:

I
�
��K�K�

E
��� -*

�
(z)z-

�
(z)dz (8.72)

leading to the transition rate:

S(nK�mK�)�
�e�
2�

�E
��
����m�z�n
���(�

�
� �

�
� ��)�K�K�

(8.73a)

We note that for this last expression, the argument in the Dirac � no longer depends
on K since the subbands are parallel (Fig. 8.14). Therefore, even if the optical
transitions bring into play interactions between light and delocalized electronic
states within the medium (as indicated by the existence of the energy subband), this
interaction is nonetheless resonant as though the system displayed discrete levels!

The photon energies resonant with the levels in the quantum well are given by:

��� �
�
� �

�
(8.73b)

To obtain the electronic excitation rate from one subband to another, statistical
considerations must be applied, as was the case for interband transitions. As a
result, the excitation—relaxation rate can be obtained merely by summing over K:

G��
dn

�
dt �

�	�

�
1

A
�

��K�K�

S(nK�mK�)[ f
�
(K)� f

�
(K)] (8.74)

As S(nK�mK�) does not depend on K, the result is particularly simple:
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Fig. 8.14. A quantum well with two bound states (a), and (b) corresponding total energy
dispersion curves E, resulting in as many subbands. As the subbands are parallel, constant K
transitions give rise to energy resonances (i.e. constant energy transitions over a broad range
of K values between pairs of subbands).
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Optical intersubband generation–recombination rate (s−1 cm−2)

where n
�

and n
�

are electronic densities in the nth and mth subbands, respectively.
The dependence of G on the photon energy is depicted in Fig. 8.15 and is quite
different from that shown in Fig. 8.12 for interband transitions. We recognize as
well in (8.75), expressions (1.85b) and (3.63) established during the discussion of
atomic transitions between discrete levels. Such transitions between bound states
in a quantum well are referred to as bound-to-bound transitions.

Above the barrier, the subbands do not form a discrete spectrum. The envelope
functions in this case are extended and the energy levels are free. They can be
classified according to their component wavevector k

�
in the barrier:

	
��K�

�
1

��
-
��

(z)exp(iK� ·R)u
0
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(8.76)
��k�

�
2m

9

� �
��
�V

9

The theory for the excitation rate results from a simple generalization of (8.75) by
replacing the sum over m, by an integration over k

�
(see Complement 1.A):
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Fig. 8.15. Excitation rate from the fundamental subband as a function of photon energy.
The subbands in a quantum well give rise to discrete transitions (bound-to-bound transitions).
Above the barriers, the subbands form a continuum and may become implicated in
bound-to-continuum transitions.
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We have supposed that the population of states in the barrier n
��

is negligible. We
note that for all photon energies ��� V

9
� �

�
a transition from a subband n to a

continuum is clearly possible. This situation is analogous to the phenomenon of
photoionization which was touched upon in Complement 1.A, and to which we
will return in more detail in Chapter 11 during our study of quantum well
detectors.

8.7 Optical absorption and angle of incidence

Knowing the optical transition rates for the different mechanisms (interband,
intersubband), we can now go about calculating absorption coefficients for quan-
tum wells by applying the principle that each transition corresponds to the
absorption of a photon.

We will begin by offering a summary of the characteristics for each of these
transition types.

8.7.1 Summary for interband and intersubband transition rates

Figure 8.16 summarizes the qualitative characteristics of interband and inter-
subband transition rates derived in the two preceding sections. The essential point
is that the intersubband transitions lead to resonant absorption spectra for
photons with energies equal to the energy spacing between parallel subbands. On
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Fig. 8.16. Photon absorption spectra for interband and intersubband transitions are
qualitatively different. As electronic subbands are parallel, all transitions between the two
electron subbands occur at the same energy. In the case of interband transitions, the
absorption spectra take on a staircase appearance, with each step corresponding to the
transition energy due to a particular coupling of specific electron and hole subbands.
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the other hand, interband transitions lead to staircase like absorption spectra, with
each step corresponding to the transition threshold of a paired electron subband
and hole subband.

The dipole moments which determine the oscillator strengths for the transitions
are also of a different nature, as illustrated in Fig. 8.17. For interband transitions,
the dipole moment results from a series of atomic dipoles between Bloch functions
(see (8.57)). The effective dipolar matrix element, r

	  
� r

0
�m, c�n, v
, is of the order

of 0.6 nm in GaAs if �m, c�n, v
� 1. Alternatively, in intersubband transitions, the
dipole results from orthogonality of the envelope functions (see (8.75)). The effec-
tive dipolar matrix element, r

	  
�m�z�n
, is on the order of 5 nm for a very deep

8 nm GaAs/AlAs quantum well. For a given bulk semiconductor, the dipole matrix
elements for intersubband transitions can therefore be significantly larger than
those corresponding to interband transitions.

8.7.2 Influence of the angle of incidence

The principle behind this calculation is identical to that presented for the bulk
semiconductor case (see Eq. (7.42)) with a few more subtleties added to take into
account the two-dimensional nature of the quantum well system. We may well ask
how the absorption coefficient may be expected to change depending on whether
the light is normally or perpendicularly incident upon the quantum well. We will
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Fig. 8.17. The dipole moments for transitions result either from (a) dipoles between different
Bloch functions (interband transitions), or from (b) dipoles existing between different envelope
functions (intersubband transitions).
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now present a detailed description for the light absorption mechanisms occurring
in a quantum well.

The net transition rate G (in cm�� s��) corresponds to an absorbed power W
from the electromagnetic wave equal to:

W� ��G [W cm��] (8.78)

The material containing the quantum well is by essence not isotropic. To calculate
the absorption experienced by a wave travelling through the material, we must
therefore take into account the geometry and the spatial extent of the light ray (see
Fig. 8.18).

Figure 8.18 shows a general case. A plane wave with a flux distribution given by
�(r), encounters a quantum well which subtends an angle " to its direction of
propagation. The amplitude of the electric field is then given by:

�(r)�
1

2
�c�E

�
���

n(�)

2Z
�

�E
�
�� (8.79)

where n(�) is the index of refraction and Z
�
� (�

�
/�
�
)��� is the vacuum impedance.

The energy which traverses the structure per unit second is:

W
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�

�

�
��

�(r)dr�
1

2
�c

�

�
��

�E
�
(r)��dr (8.80)

The total absorption rate in a quantum well normalized by the incident energy W
��

becomes:
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Fig. 8.18. An electromagnetic wave with an intensity distribution �(r) travels
across a material and encounters a quantum well of length L oriented at an angle "
to the propagation direction.
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(8.81)
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where the geometry of the problem is contained in the ratio of the integrals. We
recall that both the generation rate and the intensity � are proportional to �E

�
��.

The prefactor therefore depends only upon the polarization of the field relative to
the well.

Two limiting cases emerge from this last expression (Fig. 8.19):
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Fig. 8.19. Two limiting geometries for absorption: (i) the absorption does not depend upon
the well thickness, (ii) the absorption depends on the length of the well section encountered,
and on the overlap of the electromagnetic wave with the well.
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1. If the waist of the light ray is small enough so that the entire flux traverses the
well, the two integrals are equal, and the absorption �

! 
is:

�
! 
�

W
W

��

�
��G[E

�
(0)]

�(0)cos"
[per well] (8.82)

We note that the width of the well does not explicitly appear in this expression
for the absorption. This absorption rate is independent of the well width and is
dimensionless (expressed as a percentage). On the other hand, the angle "
intervenes in (8.82) and also in the expression for the transition rate G, accord-
ing to the selection rules given in Table 8.1.

2. If the waist of the light ray is large, which, in particular, is the case for "��/2,
and the intensity does not vary in the well, the absorption is:

W
W

��

�
��G[E

�
(0)]

�(0)

�
d
! 

L (8.83)

where we have introduced the confinement factor:
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(8.84)

where d
! 

is the well thickness and � is the fraction of the wave which ‘sees’ the
absorbing medium.
In this geometry, it is natural to introduce the absorption coefficient through the

expression:
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Absorption coefficient for propagation parallel to the well

We have now only to calculate the absorption coefficient for the quantum well,
�
! 

, by using the expressions for the different optical transition rates G which we
found in (8.65) for the interband and in (8.75) for intersubband transitions.

Let us begin with the interband transitions. Given expressions (8.65), (8.79), and
(8.82), the absorption for a quantum well is given by the contributions from
transitions relating to each of the different pairs of subbands involved:
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(��)] (8.86a)

with the absorption coefficients for each transition (see Eq. (8.75)):
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Contribution from interband transitions n�m

to quantum well absorption (in %)

In the case of intersubband absorption, absorption also results from transitions
between each pair of subbands:
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(8.87a)

giving for each transition (see Eq. (8.75)):
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Contribution from intersubband transitions n�m

to quantum well absorption (%)

In this last expression, we recall that the � function is in J�� and that it can be
replaced by a Lorentzian if the transition is broadened for any particular reason.
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Furthermore, we note that )
�
�E

�
/�E

�
� is the polarization vector of the elec-

tromagnetic wave and )
��
� sin " its component along the growth axis of the

quantum well. For n� 1 and m� 2, (8.87b) becomes identical to (3.37) and (3.39)
for optical absorption in a two-level system obtained using density matrix formal-
ism. This underlines the profound similarity between intersubband transitions in
semiconductors and transition processes in atomic physics.

We see in (8.86b) and (8.87b) a very different angular behaviour between the two
types of mechanisms. Most notably, intersubband absorption reveals a character-
istic dependence on sin� ", and is therefore null at normal incidence ("� 0). As we
shall see later in Chapter 11, this has very important consequences for quantum-
well-based detectors.

Example
1. Interband absorption in a GaAs quantum well
For the fundamental transition hh

�
�e
�

in a GaAs quantum well, we may consider
the overlap of the envelope functions to be equal to unity. For an incident
electromagnetic wave normal to the well, the interband absorption is given by
(8.86b) and we find for ��� 1.5 eV:

�
! 
�

��e�m
�

��
Z
�

n(�)
�)
�

· r
0
��

�
1.5 eV� 0.059� 9.1� 10��� kg

(6.58� 10��� eV s)�

377�

�12 �
1

�2
6� 10���m�

�
� 0.55%

where we have used the selection rules in Table 8.1, and the r
0

value for bulk
absorption given in Table 7.1.

2. Intersubband absorption in a GaAs quantum well
We consider here a deep GaAs quantum well allowing us to approximate its low
lying states by those of an infinite square well of equal width. We will assume a
width of 10 nm, a doping level of 10�� cm��, and that the temperature is sufficiently
low so that only the fundamental level is occupied. The separation between the two
bottom levels is given by (1.49), or:

E
��
� (4� 1)

����
2m


a�
�

3

2

(�� 1.05� 10��� J s)�

0.067� 0.9� 10���kg� (10�	m)�
� 169 meV

The dipolar matrix element is given by (3.D.24) to be:

��1�z�2
��
2�

(3�)�
a� 0.18a� 1.8 nm

Finally, the intersubband absorption at resonance for a wave incident at 45° is
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given by (8.87b). Assuming a broadening �� of 10 meV we replace the � function by
1/(���) such that:
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2
10��m��� 8� 10��
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Complement to Chapter 8

8.A Quantum wires and boxes

We saw that semiconductors can be used to create quantum well structures which
act to confine the motion of carriers in the z (or growth) direction. If the motion of
the carriers is confined in an additional direction (x, for example) the motion of
electrons in the structure will remain free only in the single remaining y direction.
In this case we will have effectively fashioned an electronic waveguide.

In a technological sense, there are two general approaches for creating such
double confinement, see Fig. 8.A.1:
1. Lithography can be used to segment a quantum well laterally into wires.
2. A negative voltage applied to a metallic gate separated by a very short distance

can be used. By increasing the electronic potential below the contacts, we create
linear (parallel) depletion regions in the quantum well, except in the region lying
beneath the space separating the contacts. By increasing the magnitude of the
applied voltage, the lateral dimension of the electron waveguide can be de-
creased beyond pinch-off, in which case there is nothing left of the canal in the
well.

Schrödinger’s equation for the envelope function 	(r) describing the electronic
states in a quantum wire is clearly:

�
p�
	
� p�



� p�

�
2m*

�V(x, z)�	(x, y, z)�E	(x,y, z) (8.A.1)

The potential V(x, z) which reigns in such a quantum wire preserves translational
symmetry in the y direction. The envelope wavefunction 	(r) therefore remains
separable but with a plane wave in the y direction only, i.e:

	(x,y, z)�
1

�L



((x, z)e��

 (8.A.2)

The function -(x, z) satisfies the two-dimensional Schrödinger equation:
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Fig. 8.A.1. Two methods used to fabricate a quantum wire. (a) Definition of a fine mesa by
lithography, and (b) laterally symmetric depletion of carriers from a quantum well by a
potential applied to suitably patterned metal contacts.
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�
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� p�

�
2m*

�V(x, z)� -�(x, z)�E
�
-
�
(x, z) (8.A.3)

In general, these equations describe unidimensional subbands with discrete bound
states �i
 in two dimensions and free motion in the y direction. For a given
subband i, the energy of the state (i, k



) is:

E
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�E
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��k�



2m*
(8.A.4)

Generalizing the reasoning in Fig. 8.6, the density of states in a subband may be
calculated by posing periodic limits in the y direction:

D(k
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g
#
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2�
(8.A.5)

where we recall that g
#

is the spin degeneracy coefficient (g
#
� 2). The density of

states in energy may be easily found by writing the density dn
�
over an infinitesimal

energy element dE:
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(8.A.6a)

where the factor of 2 is included since at a given energy E, there are two possible
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Fig. 8.A.2. Density of states from 3 to 0 dimensions. The overall behaviour of D(E) is seen to
depend drastically upon the number of confined dimensions. Units for D(E) are [eV�� cm�)],
where D is the number of unconstrained dimensions.
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values for k



given by (8.A.4). The density of states in energy is then given by:
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(8.A.6b)

possessing a singularity at E�E
�

(see Fig. 8.A.2).
Solution of (8.A.3) generally entails numerical methods or approximations.

Nonetheless, if we choose to represent the potential as a rectangular wire with
dimensions of L

	
�L

�
possessing infinite barriers, the solution may be easily

obtained by separating the variables:
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(8.A.7)

where n
	
� 1, 2, 3, . . ., n

�
� 1, 2, 3, . . .. The quantum confinement energy corre-

sponding to the one-dimensional subband (n
	
, n


) is trivially:
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We see that if L
	

L

�
, the levels n

	
form a ladder with small steps inside the ladder

levels resulting from the well separated subbands in n
�
. Alternately, if L

	
�L

�
, the

two sets of levels cannot be resolved, and many of the levels are degenerate.
We may now extend this reasoning down to zero dimensions. A potential which

confines electrons in three dimensions will create completely bound states possess-
ing a discrete spectrum. In this case, we speak of a quantum box, a quantum dot, or
even of an artificial atom. Quantum dots can be fabricated with surprising ease by
depositing a semiconductor with a very different lattice spacing relative to a
substrate of different composition. The required mismatches in lattice constants
gives rise to extremely thin critical thicknesses as in the case of InAs deposited onto
GaAs. In this case, the InAs forms small islands on the GaAs substrate material
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leading to pyramidally shaped quantum boxes possessing heights and widths
defined on a nanometre scale. Figure 8.A.2 summarizes the results for the density
of states in 3, 2, 1, and 0 dimensions.

FURTHER READING

C. Weisbuch and B. Vinter, Quantum Semiconductor Structures, Academic Press, Boston (1991).

8.B Excitons

Our treatment of semiconductors up to this point has rested upon the single
electron approximation. A semiconductor actually consists of a colossal ensemble
of interacting atomic nuclei and electrons. As a result, the level of success encoun-
tered using this simple approximation can be viewed as nothing less than miracu-
lous. In fact, a semiconductor is a system which presents us with a certain
fundamental state. What we observe are excitations of this system away from this
baseline. What we have described as being ‘the energy of an electron’ actually
reflects the energy difference between a system possessing the extra electron and its
fundamental state (without the additional electron). Similarly, the ‘energy of a
hole’ corresponds to the energy difference between the system in its fundamental
state and the resulting system obtained by removing an electron.

The justification as to why such excitations can be satisfactorily approximated
by single particle Schrödinger equations is a problem best dealt with bymany body
theory. A large part of the success of this approximation results from the form of
the crystal potential, which we have only scarcely specified. It turns out that this
potential must make allowances for nuclear Coulomb potentials, and screening of
the nuclear potential by electrons by including what is known as the exchange—
correlation potential V

	
. This potential describes the energy that the system can

acquire through the correlated motion of its electrons. This correlation in motion
allows the mean separation between electrons to increase somewhat, leading to a
reduction in the Coulomb energy due to electron—electron interaction. The lesson
here is that for many types of excitation, the single electron approximation is
reasonable, provided the crystal potential has been well chosen.

Implicit in the absorption calculations we carried out in Chapters 7 and 8 for an
electromagnetic wave, was the approximation that an excitation of the system
which conserves the number of particles may be written as a sum of excitations
corresponding to the generation of electron—hole pairs in a system. In the ex-
change between an electromagnetic wave and a semiconductor, total energy is
conserved. A photon disappears and the electronic system is excited (generation of
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an electron—hole pair) into a state higher in energy by the amount contained in the
photon. In this excited state, however, the correlation between the electronic
motions differs from that in the fundamental state. This introduces qualitative
changes in the excited states going beyond the quantitative effects included in the
single electron description. Again, one must draw upon many body theory to show
that this correlation can be represented by the interaction between a hole with
positive charge and mass (�e and m

�
), and an electron with mass m

�
and negative

charge. The demonstration of this result, however, would require an enormous
investment, and is beyond the scope of this book.

8.B.1 Three-dimensional excitons

We seek to describe the state of an electron—hole pair by taking into account the
interaction between their opposite charges. Clearly, we require a two-particle
state, i.e. resulting from the tensor product (see Eq. (2.48)) between the electron and
hole states. The two-particle wavefunction may be expanded in terms of Bloch
functions for the electron and hole �k

�
, k
�

:
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The state of the two particles is then given by the solution to the two-body
Schrödinger equation:
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Let us substitute in this last equation, (8.B.1) and project the result onto �k�
�
, k�
�

,

yielding:
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Using the fact that the interaction potential varies slowly with respect to the
dimensions of the primitive cell, we make use of the reasoning employed in Section
.3 and (courageously!) introduce the envelope function to simplify the matrix
element:
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V� (q)�
1

��dre��q�rV(r) (8.B.5)

is the Fourier transform of the Coulomb interaction. To arrive at (8.B.4), we have
assumed that the periodic portions of the Bloch functions do not depend on k.

We may then write Schrödinger’s equation, (8.B.3):
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As k
�
�k

�
is conserved in the interaction term, it is in our interest to change the

variables k
�

and k
�

, into new variables K and k, where:
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. With these new variables we have:
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and Schrödinger’s equation becomes:
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The sum over q due to the interaction between the electron and the hole only
concerns the second argument for C. This signifies that C(K,k) is separable, and
may be written as C(K,k)� f (K)g(k), where g(k) must obey:
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V� (q)g(k� q)�Eg(k) (8.B.10)

We may now introduce the envelope function for the relative motion:

g(r)��
k

g(k)e�k�r (8.B.11)

where we recognize an equivalent definition to that given in (8.12). The operations
are the same as those performed on (8.14) in arriving at (8.17) and they lead to
Schrödinger’s equation, (8.B.10), in real space:

�
����r
2m

�

g(r)�V(r)g(r)��E�
��K�
2M

�E
�� g(r) (8.B.12)

We recognize in this last equation, Schrödinger’s equation for a hydrogen atom (or
for positronium better yet!). The allowed energies are then:

E
�K
�E

�
�

��K�
2M

�
Ry*

n�
, n� 1, 2, . . .

(8.B.13)

Ry*�
m
�

m
�

��
�
��

Ry

where Ry is the ionization energy of the s state of the hydrogen atom. This quantity
is known as the Rydberg and is equal to 13.6 eV. As we might have expected,
correlation between the electron and the hole creates discrete states below the gap
through which the electron and the hole become bound to one another (in terms of
their relative motion), while remaining free to move through the crystal as a pair.
The term ��K�/2M corresponds to the kinetic energy associated with the free
motion of the centre of mass of the two particles. Above E

�
� ��K�/2M, we have a

continuum of allowed energy states. This continuum corresponds to an excitation
of the system resulting effectively in release of the electron and hole from one other.
Figure 8.B.1 represents the excitation spectrum of a semiconductor.

Interaction of the system with an electromagnetic wave conserves total energy
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Fig. 8.B.1. The excitation spectrum for a semiconductor displays bound excitonic states
below the bandgap. The coupling between a photon with wavevector q conserves total
momentum and energy. The absorption spectrum therefore consists of a few discrete lines
followed by a continuum.
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and momentum. This implies that K� q� 0, where q is the photon wavevector.
The absorption spectrum therefore displays discrete lines below the bandgap and
a continuum for ���E

�
.

The electron—hole correlation has other consequences for the semiconductor
aside from apparition of discrete lines in the absorption spectra. The continuum
absorption also increases near the gap. As a result, the absorption as a function of
the photon energy shows a discontinuity instead of the more gentle dependence
(���E

�
)��� calculated in Chapter 7. This effect (described by the Sommerfeld

factor) is due to spatial overlap of the electron and hole wavefunctions due to
correlations which seek to draw these two particles to each other. Figure 8.B.2
compares the enhanced absorption resulting from the excitonic states with that
obtained using the single electron model.

Example
1. Excitons in GaAs
For GaAs, we havem

�
� 0.067m

�
,m

��
� 0.51m

�
, and �� 12�

�
. The binding energy

for the n� 1 exciton is then:
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Fig. 8.B.2. Excitonic correlation between an electron and a hole modifies the absorption
spectrum. With respect to the ‘non-correlated’ spectrum (fine line), the absorption shows sharp
excitonic resonances below the bandgap and an abrupt increase just above the bandgap.
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E
9
�
m
�

m
�
�
�
�
� �
�
Ry�

0.059

12�
13.6 eV� 5.6 meV

We see that E
9

is weak in comparison to k
9
T at room temperature. As a result, the

exciton can only remain bound at very low temperatures. The average separation
between an electron and a hole in a n� 1 exciton is (in analogy to the Bohr radius
for a hydrogen atom):

a*
9
�
m
�
m
�

�
�
�
a
9
�

12

0.059
0.052 nm� 10.6 nm

and is consistent with our supposition of a slowly varying envelope function in
comparison to the primitive cell dimensions.

2. Excitons in GaN
For GaN, a large-gap semiconductor, E

�
� 3.4 eV, m

�
� 0.22m

�
, m

��
�m

�
, and

�� 9.8�
�
. The reduced mass is then 0.18m

�
, E

9
� 26 meV, and a*

9
� 2.8 nm. As a

result, excitonic effects are much more important in large-gap semiconductors. At
room temperature a fraction, 1� exp(�26/25.9), or 64% of generated excitons
will remain bound.

8.B.2 Two-dimensional excitons

We saw that, in a quantum well, the motion of electrons can be confined over
distances of the order of a few nanometers, i.e. over distances significantly smaller
than the Bohr radius of the three-dimensional exciton. A consequence of this
confinement is that the bands are quantized into subbands separated in energy by
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a few tens of meV and greater than the binding energy of the three-dimensional
exciton. For correlations between electrons in the fundamental conduction sub-
band and holes in the fundamental valence band, the Coulomb attraction can only
occur along directions parallel to the interfaces. In comparison to the confinement
potential, the Coulombic potential does not play a significant role in the perpen-
dicular direction. In this case, the excitonic wavefunction is:

%(r
�

, r
�

)�
1

A�
�

K��K�

C(K
�

,K
�

)-
�
(z
�

)e�K��R�u
�

(r
�

)-0
�
(z
�

)e�K��R�u
0�

(r
�
) (8.B.14)

where the vectors R and K designate motion parallel to the interfaces. Using the
same transformations as in the preceding section, we obtain a Schrödinger equa-
tion which governs the motion in the plane:
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����R
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�

g(R)�V
	  

(R)g(R)��E�
��K�
2M

� �
�
� �0

�
�E

�� g(R) (8.B.15)

where the effective interaction potential is:
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(R)��dz
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�

e��-
�
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�
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�
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�
)��

4���R�� (z
�
� z

�
)�

�
e�

4��R
(8.B.16)

This last approximation is valid in the limiting case where the envelope functions
have a negligible extension in comparison to the excitonic radius. The solution of
this equation for a ‘two-dimensional hydrogenic atom’ yields the following
eigenenergies:

E
�K
�E

�
� �

�
� �0

�
�

��K�
2M

�
Ry*

(n� 1/2)�
, n� 1, 2, . . . (8.B.17)

using the same effective Rydberg constant as defined in the last section.
The two-dimensional exciton therefore has a fundamental binding energy four

times that of the equivalent three-dimensional exciton.

Example
We consider a 5 nm wide GaAs quantum well. In the preceding example we saw
that GaAs possesses a three-dimensional excitonic binding energy of 5.6 meV. In
this example, the well width is significantly less than the exciton’s Bohr radius
a*
9
� 10.6 nm, and the binding energy is 4�E

9
or 22.4 meV. As a result, a

significant fraction of excitons in an ensemble, (1� e��������� or 58%) will remain
bound at room temperature. Correspondingly, excitonic features are readily
apparent in the absorption and photoluminescence features from these wells (see
Fig. 8.B.3).

In the more realistic case where the spatial extent of the wavefunctions -(z) and
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Fig. 8.B.3. The absorption spectrum for a quantum well is modified by the correlation
between electrons and holes, i.e. by the presence of excitons. In comparison to the case
involving only free electron—hole pairs (fine lines), excitons cause the emergence of discrete
absorption lines below the effective quantum well bandgap, and each step resulting from
continuum absorption is deformed by a narrow absorption peak (a). This result is particularly
clear in experiments involving quantum wells with varying widths (b) (after S. Schmitt-Rink,
D. S. Chemla, and D. A. B. Miller, Adv. Phys. 38, 89 (1989), reprinted with permission of
Taylor & Francis Ltd, http://www.tandf.co.uk/journals).
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-0(z) are not entirely negligible in comparison to a*
9

, the effective interaction in
(8.B.16) is weakened with respect to the purely two-dimensional case, and the
excitonic binding energy diminishes gradually towards the three-dimensional
value as the well width increases beyond the effective Bohr radius. A quantitative
treatment of this effect requires that other subbands in addition to the fundamen-
tal be taken into account. Only numerical methods afford a reasonable description
of this intermediate regime between two and three dimensions.
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As in the three-dimensional case, correlation between the electron and the hole
profoundly modifies the interband absorption spectrum for quantum wells. Below
the effective gap E

�
� �

�
� �0

�
, the spectrum contains discrete lines. Above the gap,

there is an increase in the absorption relative to the free electron and hole case.
Figure 8.B.3 illustrates this qualitative modification to the absorption spectra.

FURTHER READING

R. J. Elliott, Phys. Rev. 108, 1384 (1957).
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8.C Quantum confined Stark effect and the SEED electromodulator

In Complement 1.C we saw how an electric field F applied perpendicularly to a
quantum well will displace the energy levels in the well (or levels which we now
know correspond to the bottoms of subbands). This quantum confined Stark effect
can be exploited in an electromodulator. In this case, an applied voltage is used to
modulate the intensity of a transmitted light beam.

For this, we choose a frequency for the light beam in such a manner so that at
F� 0, the photon energy h�

�
is situated just beneath the effective quantum well

bandgap:

h�
�
�E

�
� �

�
(0)� �0

�
(0) (8.C.1)

Under these conditions, light is not absorbed by the well (see Fig. 8.C.1).
Using the simple model in Complement 1.C, the level �

�
decreases according to

Eq. (1.C.2):

�
�

(F)� �
�

(0)� e�F�
�z
��
��

�
�

(0)� �
�
(0)

(8.C.2)

where, for a very deep well (Eq. (1.C.4)):
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3���
e�L�m

�
��

F� (8.C.3)

The fundamental hole level is displaced in the same fashion:

�0
�

(F)� �0
�

(0)�
2

3���
e�L�m

�
��

F� (8.C.4)

and the effective gap (Fig. 8.C.2) decreases (or redshifts) according to:
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Fig. 8.C.1. Operation of a modulator based on the quantum confined Stark effect.
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E
��	  

(F)�E
��	  

(0)�
2

3���
e�L�M

��
F� (8.C.5)

whereM�m
�
�m

�
. For a fixed h�

�
, the effective gap can become smaller than h�

�
and the well absorbs light from the beam. The absorption edge is extremely abrupt
(see Figs 8.10 or 8.B.3). As a result, a small modulation in electric field leads to
strong modulation in the intensity of the transmitted light. The modulation
amplitude can also be increased by adding several quantum wells in series.

Example
For a GaAs quantum well of width L� 200 Å, and an applied field strength of
F� 10 kV cm��, we find:

��E
��	  

��
2

3���
1.6� 10��C(2� 10�	m)�(0.067� 0.57)9.1� 10��� kg

(1.05� 10��� J s)�

�(10�V m��)�e� 2.7 meV

For wavelengths of the order of 1.5 �m, this corresponds to a redshift in the
wavelength of the absorption edge of ��/���E/E, or ��� 5 nm.

We note from Eq. (8.C.5), that the confined Stark effect exhibits a very strong
dependence on the quantum well width L. While this effect favours large well
widths, the magnitude of the effect cannot be arbitrarily increased by increasing
the well width. This limitation occurs because the overlap of the electron and hole
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Fig. 8.C.2. Under the effect of an electric field F, the effective quantum well bandgap and the
associated absorption edge decrease in energy. As a result, photons with energies lying initially
below the effective bandgap at zero field (a), will be absorbed by the quantum well when a field
is applied (b).
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wavefunctions (localized at opposing interfaces under the influence of the applied
field), become increasingly separated from one another as the well width is
increased. This effect leads to a decrease in the absorption (Eq. (8.63b)).

In the large well limit, the subbands in a given band approach one another until
they can no longer be differentiated from one another, and the quantum confined
Stark effect tends towards the Franz—Keldysh effect studied in Complement 7.A.
One might ask then which of the two mechanisms may be expected to lead to
superior modulator performance. The advantage gained by quantum wells is that
a high level of absorption is guaranteed by the absorbing state as both the
electrons and holes are localized within the same well. Alternatively, the Franz—
Keldysh effect leads to relatively weak absorption in the ‘light blocking’ state. This
is because exponential tailing of the bandgap always remains quite small (see Fig.
7.A.3). Another advantage afforded by the quantum confined Stark effect is that
the well thickness can be optimized (at the time of growth) for the specific
wavelength of light we wish to modulate.

An additional phenomenon contributed by the confined Stark effect is that the
quantum well behaves as a photoconductor under the influence of the electric field.
The electrons and holes photogenerated during absorption can escape the well
either by thermionic emission above the barriers or by tunnelling through the
potential barriers (see Fig. 8.C.3a). The electric field then sweeps the carriers out of
the structure creating a photocurrent which is to a first approximation propor-
tional to the product of the absorption by the light flux. The combined use of the
quantum confined Stark effect and photoconductivity effect leads to a bistable
device referred to by the acronym ‘SEED’, i.e. Self-Electro-optic-Effect Device.
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Fig. 8.C.3. The operation of a SEED device. (a) Under the effect of an electric field, carriers
are released from the quantum well by (for example) tunnelling. (b) The structure containing
the quantum wells is polarized by a circuit possessing a series resistance R. (c) In response to
the electric circuit, the light output intensity exhibits an abrupt decrease when the input power
rises above a certain threshold value.

391 8.C Quantum confined Stark effect and the SEED electromodulator

The operation of a SEED is illustrated in Fig. 8.C.3. We introduce the elec-
tromodulator into a biasing circuit possessing a series resistanceR. The modulator
is then polarized by the voltage so that the photon energy exceeds the excitonic
peak associated with the fundamental transition leading to strong absorption. The
SEED is therefore in a strong absorption state (see Fig. 8.C.1). For a low incident
power level P

��
, the photocurrent I remains weak as well. As the incident optical

power is increased, however, so does the photocurrent, leading to a potential drop
across the resistanceR. As a result, the voltage on the modulator V

"((

decreases,

leading to a reduction in the field strength F
"((


across the well, and a decrease in
the absorption (as the reduced field leads to a blueshift of the absorption edge).
Once the voltage across the SEED drops sufficiently, the device switches to a weak
absorption state. This, however, leads to a decrease in the photocurrent and tends
to re-establish the strong absorption state in the SEED. This cycle is summarized
below.

�
��#�

� I�� V
"((


��F
"((


�� blueshift � �

�$

� I�� V
"((


��F
"((


�� redshift

Therefore, the SEED possesses two accessible stable states for a given incident
power level whose occupation depends upon the history of previous incident
power levels. The bistability regime over which the SEED manifests this behaviour
can be used, for example, as an optical memory element.

Additionally, by replacing the external resistance by a second SEED, it is
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possible to assemble ensembles of such elements into circuits capable of executing
logical operations on combined light beams.

FURTHER READING

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Adv. Phys. 38, 89 (1989).

8.D Valence subbands

We saw in Section 8.3 how electron confinement by a potential well creates a shift
in the conduction band minima and leads to a quantum confinement energy. In
the valence band, we cannot use the same type of approximation. The levels at the
top of the valence band are degenerate with respect to the heavy and light hole
bands at the Brillouin zone centre. We saw in Complement 1.B that a perturbation
can lift degenerate levels. In that case, we were able to solve the problem by
establishing the vector subspace spanned by the degenerate states, and by studying
the effect of the perturbation on this subspace. We will now show how to extend
this approach to include the envelope function approximation for several bands.

The fundamental idea behind this approximation is to suppose that the hole
wavefunction can be expanded as:

	(r)��-
�
(r)u

�0
(r) (8.D.1)

where u
�0

are the wavefunctions at the Brillouin zone centre for the different hole
bands (e.g. n� 1 for heavy holes, n� 2 for light holes) and where -

�
is an envelope

function which varies over a significantly greater length scale than the lattice
spacing. Over many primitive cells, Eq. (8.D.1) specifies that we find ourselves in a
vector subspace generated by the degenerate hole bands. Schrödinger’s equation
for 	, which can always be expressed in the form:

�
p�

2m
�

�V

(r)�V(r)�	(r)�E	(r) (8.D.2)

where V


is the crystal potential and V(r) is the external potential, then becomes:
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�

u
�0
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where we have used the fact that u
��0

are stationary states of the crystal for k� 0
with energy �

�0
. As was common practice over the course of this chapter, we project

this equation onto a known basis. To do so, we multiply this equation by u*
+0 and
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integrate over all space. The variation of -
�

over the distance of a lattice constant
being negligible, we may reduce the integrals following the method employed in
(8.55). The orthogonality of the Bloch functions over each cell leads to the
following equation for -

�
:

�
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2m
�

�V(r)� -+(r)��
�

P
+�
m
�

· [p-
�
(r)]� (E� �

+�
)-
+

(r) (8.D.4)

where P
+�
� �u

+�
�p�u

��

 is the matrix element which couples the Nth and nth

bands in k · p theory (see Complement 5.C).
We see that (8.D.4) is the same as the matrix equation obtained over the course

of k · p theory (see (5.C.10)) if we replace k by the p operator and add the external
potential to the matrix diagonal. For a potential V(z) which varies in only one
direction, K

�
will remain a good quantum number, and the envelope function may

be put into the form -
�
(r)� (1/�A)-

�K
(z)exp(iK

�
·R) which reduces the equation to

a series of coupled differential equations for -
�K

(z):
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(z) (8.D.5)

where we have used the fact that the plane wave in the direction perpendicular to z
diagonalizes the k · p matrix with eigenenergies �

+
(K

�
0).

In a square quantum well (see Fig. 8.D.1), P
+�

and �
+

(K
�

, 0) are constant within
each material. The effect of the potential V(z) is to introduce band offsets which we
take into account by imposing the continuity conditions on the wavefunction and
on the probability flux at the interfaces (see Section 8.2). In each material, we see
that the solution to (8.D.5) corresponding to an energy E is of the form:

-
�
� �

�
e�����

�
e����� (8.D.6)

where k
�

is a complex number and is one of the two solutions to the equation:

�
�
(K

�
, k
�
)�E (8.D.7)

i.e. k
�

is the transverse wavevector at which band n has energy E.
It is worth noting that for an energy within the bandgap and above the top of the

valence bands, Eq. (8.D.7) has a purely imaginary solution k
�
� i�

�
(see, for

example, Eq. (5.C.25)). In bulk, such a solution is not admissible as it diverges
towards infinity. In the case of the tunnel effect, however, such a solution can
emerge as an evanescent wave over a finite, or semi-infinite region of space. Figure
8.D.2 shows the principle for the two-hole bands in two materials for an energy
close to the valence band.

In the barrier material, E���$�
+

(K
�

, 0) for the two valence bands and only an
evanescent solution is possible. If the small bandgap material is situated between
�L/2� z�L/2, the solution for z��L/2 must have ����

�
� 0 in the expansion of



Fig. 8.D.1. Valence bands in a quantum well.
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(8.D.6). For z�L/2, only ���
�
� 0 yields a possible solution. Alternatively, in the

well material, E���:�
+

(K
�

, 0) without any restrictions on the coefficients. At the
interfaces, the continuity conditions from (8.D.5) are, for example, at z�
z
�
��L/2:

����
+

e�+��� ����
+

e��+������
+

e��+�� (8.D.8)
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for the continuity of the wavefunction and:
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for the continuity condition on the wavefunction’s derivative. We see in (8.D.9)
that the effect of the interface is to mix the heavy hole and light hole components,
even though the components are independent in each material. The four relation-
ships (8.D.8)—(8.D.9) for N� 1 (heavy hole) and N� 2 (light hole) determine the
four coefficients in the quantum well material as a function of the two coefficients
in the barrier material for z�L/2. The limiting conditions at the interface at
z
�
�L/2 determine the four coefficients for the evanescent waves in the barrier

material. We must then seek the energies and the coefficients ����
�

which cancel out
the coefficients ����

�
. After this, we need only determine a global factor by normaliz-

ing the wavefunction.
While the methodology for the calculation is clear, it must be performed

numerically. We show a few illustrative results in Fig. 8.D.3. It is evident (but not
surprising) that the subband dispersion curves deviate significantly from simple
parabolas.



9 Waveguides

9.1 Introduction

One of the main goals of optoelectronics is to use photons as elementary bits for
information transport and processing. Before electrons can be usurped from their
privileged role in integrated electronic circuits, however, a means must be develop-
ed which will allow photons to be routed to specific locations where they can
participate in logical or analogue operations. Waveguides provide a method of
trapping light in conduits which can act as optical interconnections. A second
advantage of waveguides is that they provide a means of intensifying light—matter
interactions by concentrating the light energy density into narrow channels. This
is of primary concern in the operation of devices based on non-linear optical
interactions with matter (e.g. electro-optic modulators, frequency conversion op-
tics, . . .) and in maximizing laser diode efficiencies.

Example
Ten milliwatts of continuous-wave light can easily be guided in a 3 �m wide by
0.2 �m thick waveguide. This results in a power per unit surface of:

P� 10��W/(3� 10��� 2� 10�� cm�)� 1.6 MW cm��

which is a significant power density. We can compare this value with the maximum
electrical power levels which can be transported in electron-based circuits. This
typically corresponds to a current density of 1 MA cm�� (this limit arises due to
electromigration of atoms in the metallic interconnects) under a voltage of 1 V,
leading to a power density of 1 MW cm��. It is also worth noting that the peak
optical density carried by waveguides can increase up to 1 GW cm�� under pulsed
conditions.

9.2 A geometrical approach to waveguides

We will begin by interpreting light waveguiding in terms of propagating light rays.
This approach will allow us to develop an intuitive grasp of the concepts involved
in this phenomenon quickly. We consider a core layer formed by a dielectric
material of thickness d, with an index of refraction n

�
, sandwiched between two

very thick (and ideally infinite) confining layers with an index of refraction n
�
. A
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Fig. 9.1. (a) Light ray representation of conditions leading to the optical confinement of light
by a waveguide. (b) The numerical aperture of a waveguide is given by the sine of the
maximum acceptance angle for light incident from air.

light ray inside medium 1 makes an angle "�
�

to the normal of the plane which
separates the layers. This ray is then transmitted by refraction into medium 2
making an angle "�

�
with the normal (see the left-hand side of Fig. 9.1a). Recalling

the principal results from the theories of Descartes—Snell and Fresnel:
∑ the angles "�

�
and "�

�
are related by:

n
�

sin "�
�
� n

�
sin"�

�
(9.1)

∑ if n
�
� n

�
, the lightwave in medium 1 is totally reflected if it is incident at a

critical angle "�


(total internal reflection) given by:

"�

� arcsin�

n
�
n
�
� (9.2)

∑ if the polarization of the wave is transverse electric (TE), i.e. if the polarization of
the electric field is parallel to the layer planes, the wave is reflected and its phase
shifts relative to the incident wave by an angle �

�
lying between 0 and �:

tan
�
�

2
�

(sin� "�
�
� sin� "�


)���

cos "�
�

��
sin� "


sin� "

�

� 1�
���

(9.3)

where "
�
��/2� "�

�
. We note that as a general rule, we reserve the prime

symbol � to label the complement of an angle ", i.e. "�� �/2� ".
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The right-hand side of Fig. 9.1a depicts the situation corresponding to total
internal reflection, where the wave becomes guided once "�

�
�"�


. We must not

believe, however, that any electromagnetic wave satisfying the latter condition will
be guided. In fact, each reflection at the interface between the two different media
will dephase the wave causing it to interfere with itself destructively unless the
reflected wave remains in phase with waves produced by preceding reflections. This
last condition is apparent in Fig. 9.1a. We follow two successive reflections over
two interfaces and three impact points I

�
, I
�

, and I
�

. The wave at I
�

clearly results
from at least two other waves: the wave which has not been reflected and which
corresponds to the displacement I

�
M, and the other which has experienced

two reflections and has travelled I
�
I
�
� I

�
I
�

in addition to receiving a phase
shift of (2�

�
) from the two reflections. These two contributions have a path

difference of I
�
I
�
� I

�
M� I

�
I
�
� I

�
I
�

cos 2"
�
� 2 sin� "

�
I
�
I
�
� 2 sin� "

�
� d/

cos "�
�
� 2d sin "

�
and a phase shift of 2�

�
leading to a total dephasing of

2kd sin "
�
� 2�

�
, where k is the wavevector 2�n

�
/�
�

and �
�

is the vacuum
wavelength of the electromagnetic wave. The phase shifts resulting from multiple
reflections will tend to interfere destructively unless they are multiples of 2�,
whereby we obtain the self-consistent condition for a confined wave:

2�n
�

�
�

2d sin "
�
� 2�

�
� 2�m (9.4)

We need now only substitute this last condition into Fresnel’s relation, (9.3), to
obtain:

tan�
�n
�
d

�
�

sin"
�
�
m�
2 ���

sin� "


sin� "
�

� 1�
���

(9.5)

Equation (9.5) with the unknown sin "
�

allows one to calculate the different angles
"
�

that lead to guided waves in the waveguide, without forgetting that the phase
shift �

�
has a value between 0 and �. Figure 9.2 shows a graphical method of

obtaining the allowed solutions to this equation. When sin"
�

sweeps the interval
0� sin "


, the right-hand term periodically sweeps through��� 0, whereas the

left-hand term periodically sweeps through 0��� every �
�

/2n
�
d. Figure 9.2 also

allows one to calculate the number N
�

of guided modes allowed in the guide.
There will be as many as the number of periods in the interval 0� sin "


or

sin "

/(�
�
/2n
�
d). We find therefore:

N
�
� Int�2

d

�
�

NA�� 1 (9.6)

Number of allowed TE modes in a symmetric waveguide
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Fig. 9.2. Graphical solution to Eq. (9.5) for conditions given in the example below.

where Int is the integer function and NA is the numerical aperture of the guide
given using (9.2), by:

NA� (n�
�
� n�

�
)��� (9.7)

Numerical aperture for a waveguide

Figure 9.1b shows that the numerical aperture is the sine of the acceptance angle of
the guide for incident rays originating in air. If the numerical aperture is greater
than 1, the acceptance angle is �/2. Equations (9.6) and (9.7) show that, in analogy
to the one-dimensional well which always possesses a bound state, a symmetric
waveguide always has at least one allowed TE mode. Expression (9.6) also allows
one to obtain a simple requirement for a single mode waveguide:

d

�
�

�
1

2NA
(9.8)

An identical line of reasoning can be followed for the TM modes (along with the
appropriate set of Fresnel equations) and can be generalized to asymmetric
waveguides. We prefer, however, to present the more powerful approach founded
on Maxwell’s equations.

Example
A waveguide has been fabricated out of a layer of InGaAs (n

�
� 3.9) sandwiched

between two layers of AlGaAs (n
�
� 3.0). The numerical aperture of the guide

NA� (3.9�� 3.0�)���� 2.49. If the InGaAs layer thickness is 1 �m, there would
be five allowed modes at 0.9 �m.
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9.3 An oscillatory approach to waveguides

We recall that the electric field of an electromagnetic wave in a neutral medium
(j� 0 and �� 0) possessing an index of refraction n(r) is a solution to the wave
equation obtained from Maxwell’s equations (see Chapter 2):

��E(r, t)� �
�
�
�
n�(r)

��
�t�

E(r, t)� 0 (9.9)

We suppose that the wave possesses a radial frequency �, i.e. that the field E is
given by:

E(r, t)�Re[E(r)e���] (9.10)

which leads to the Helmholtz equation for the amplitude E(r):

��E(r)� k�n�(r)E(r)� 0 (9.11)

where k is the norm of the wavevector k and relates to � through the vacuum
dispersion relation k��/c. We consider the particular geometry (see Fig. 9.3)
where the wave travels along the Oz axis. We may then decompose the field as
E(r, t)�E(x, y)e����; and Eq. (9.11) can then be written:

�
��
�x�

�
��
�y��E(x, y)� [k�n�(r)��]E(x,y)� 0 (9.12)

We note that taking the propagation constant  to be the same in media 1 and 2
corresponds to the self-consistency condition set forth in Section 9.2. Finally, we
will suppose that the wave does not vary along the y direction, i.e. �/�y� 0.
Equation (9.12) can then be separated into three:

��
�x�

E(x)� (k�n�
�
� �)E(x)� 0, for x� 0

��
�x�

E(x)� (k�n�
�
� �)E(x)� 0, for �d�x� 0 (9.13)

��
�x�

E(x)� (k�n�
�
� �)E(x)� 0, for x��d

where we recall that n
�
� n

�
. We may at this point analyse the different types of

solutions to (9.13) by examining the effect of different values for kn
�

and  (see Fig.
9.4).
∑ If � kn

�
, k�n�

�
�� is negative regardless of the value of x, and the solutions to

(9.13) diverge exponentially (clearly an unphysical solution).
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Fig. 9.3. Geometry for a planar waveguide.

n1

n2

kn1

kn 2

Continuum

(a) (b)

Forbidden

Guided 
modes

Fig. 9.4. The various electromagnetic regimes in a wave guide are analogous to the different
electronic states in a quantum well: (a) shows the spatial variation of the index of refraction
n(r) as well as the variations in the field amplitude; (b) shows the allowed values for the
propagation constant .

∑ If kn
�
�� kn

�
, then the amplitude E(x) is sinusoidal within the guide and

decreases exponentially outside. These are the guided modes, which we will
determine later on by introducing the relevant boundary conditions.

∑ Lastly, if � kn
�
, the solutions are sinusoidal everywhere and the waves escape

from the guide. These are referred to as leaky modes and correspond to the
situation where the incident light beam enters the waveguide in such a manner
that the effective angle within the waveguide exceeds the critical angle for total
internal reflection. We will ignore for the time being these leaky modes, which in
fact allow a certain number of interesting applications. Rather, we will examine
in more detail the solutions to (9.12) for the case of TE and TM waves.
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Transverse electric (TE) waves
In this case, the electric field is oriented along theOy axis. We denote its amplitude
as E



(x), i.e. E(x, z)�Re[E



(x)e��������]. The magnetic field B is then determined by

the Lenz—Maxwell equation (��E���B/�t), which gives:

B
	
(x)��


�
E


(x)

(9.14)

B
�
(x)�

i

�
�
�x
E


(x)

From Maxwell’s equations we know that the electric field E


(x) and the magnetic

fieldB
�
(x) (i.e. the first derivative ofE



) are continuous at both interfaces x� 0 and

x��d. We note that these propagation equations, derived from (9.12) together
with these boundary conditions, are formally identical to Schrödinger’s equations
which lead to the quantization of electronic energy states in quantum wells
described by a potential V(x) (Section 1.4). The correspondences to be drawn are
then:

��c�n(r)���
2m
�

��
V(r)

���
2m
�

��
E

E(r) �	(r)

Figure 9.4 illustrates this parallel between a quantum well and a waveguide. The
leaky modes correspond to the continuum of unbound states above a quantum
well, whereas the guided modes are conceptually equivalent to the bound states in
a quantum well. We note, however, that the shape (depth) of the well depends on
the frequency � as shown in the correspondence relations above.

The solution to (9.13) given the boundary conditions:

E


(x), continuous at x� 0 and x��d

(9.15)
�
�x
E


(x), continuous at x� 0 and x��d

follows in a similar fashion to the quantum well case (Section 1.4). Anticipating the
spatial dependence of the wave amplitude, we pose:

E


��

Aexp(��x), for x� 0

B cos(�x)�C sin(�x), for �d�x� 0

Dexp[�(x� d)], for x��d

(9.16)
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where � is the optical attenuation constant outside of the guide. This is equivalent to
the tunnelling attenuation length in quantum mechanics. We will begin by intro-
ducing the self-consistency condition represented in (9.13), which gives:

�� ��� n�
�
k�

�� ��� n�
�
k� (9.17a—c)

k��/c

We still need to write the boundary conditions (9.15):
At x� 0:

A�B

C��
�
�

At x��d:

D�A�cos(�d)�
�
�

sin(�d)�
� sin(�d)�� cos(�d)� ��cos(�d)�

�
�

sin(�d)�
The last condition furnishes the parameters for the guided wave:

tan(�d)�
2��

�����

�� ��� n�
�
k�

(9.18)
�� ��� n�

�
k�

k��/c
System of equations governing the TE modes in a symmetric waveguide

The problem is therefore to find, for a given radial frequency � and waveguide
thickness d, the propagation constant  which simultaneously satisfies all condi-
tions (9.18) and leads to an implicit equation in  completely equivalent to (9.5).
This approach can be generalized to any shape of waveguide. We list below, a
MATHEMATICA program that can be used to obtain the solutions for an
asymmetric waveguide.

Example
The generalization of (9.18) for the case involving an asymmetric waveguide
immediately leads to:

tan(�d)�
�
�
��

�
�[1� (�

�
�
�

/��)]
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�� ��� n�
�
k�

����
�
� n�

�
k�

����
�
� n�

�
k�

using the usual notation. So we consider a waveguide consisting of a GaAs core
layer 0.3 �m thick (n

�
� 3.3) sandwiched between a confining AlAs layer (n

�
� 2.7)

on one side and air (n
�
� 1) on the other. We will neglect the intrinsic dispersion in

these materials.
Lambda=0.9;t=.3;Bet=.;
n3=1;n1=3.3;n2=2.7;
k=2*N[Pi]/Lambda;
kt=k*t;
Bett=Bet*t;
ht= Sqrt[(n1 ˆ 2*kt ˆ 2-Bett ˆ 2)];
qt= Sqrt[(-n3 ˆ 2*kt ˆ 2+Bett ˆ 2)];
pt= Sqrt[(-n2 ˆ 2*kt ˆ 2+Bett ˆ 2)];
f[Bet—]:=Tan[ht]-(qt+pt)/(ht-pt*qt/ht);
Plot[f[Bet],�Bet,10,50�];
sol=FindRoot[f[Bet]==0,�Bet,21�];
neff=Bet*Lambda/(2*N[Pi])/.sol
from which we obtain a propagation constant of 21.3 �m�� and an effective index
of refraction n

	  
� 3.1267.

It is interesting in the particular case of the symmetric guide to relate the
geometrical approach in Section 9.1 to the oscillatory approach used in this
section. To do so, it is sufficient to note that the propagation vector in the
waveguide is (0,�n

�
k cos "

�
, n
�
k sin "

�
). Then, taking (9.18) into account, we have:


�
� n

�
k cos "

�

�
�
� n

�
k sin "

�
(9.19)

�
�
� n

�
k(cos� "

�
� cos� "


)���

Equivalence between the geometric and oscillatory approaches

which is nothing else than (9.5). Equation (9.19) is well suited to graphical interpre-
tation, as shown in Fig. 9.5. We see that the 0th order (minimum "

�
) leads to a

maximum attenuation coefficient �
�

, i.e. the most heavily confined mode.
We now need to normalize the amplitude of the electromagnetic wave in the

guide, i.e. to find a value for the constantA in (9.16). There exists a certain degree of
arbitrariness in this determination as the lateral dimension Oy has not been
specified. The custom is to choose A in such a fashion that the normalized field E



corresponds to a power of 1 W over 1 m of guide length (along Oy). The normaliz-
ation condition may then be written:
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Fig. 9.5. Graphical representation of conditions leading to waveguiding.

S�
1

�
�

��

�
��

E�Bdx ��
1

2�
�

��

�
��

E


B
	
dx

(9.20)

�

�

2��
�

��

�
��

[E�



(x)]�dx� p
�

where in this last equation, we utilized relation (9.14) (the horizontal bar indicates
that the quantity is time averaged; p

�
is the unit normalized power corresponding to

1 W m�� andm is the TE mode index in the guide). We recommend the use of p
�

to
keep the equations homogeneous, which is of prime importance when one deals
with non-linear optics, for instance (see Complement 9.C)! Using expression (9.16)
for the field and the continuity conditions, Eq. (9.20) leads to:

A
�
� 2�

��
��
�

�
�
��d�

2

�
�
� (��

�
� ��

�
)�
���

�p
�

(9.21)

As a concluding remark, since the functions E�



(x) are solutions to linear differen-
tial equations (i.e. eigenvectors of the differential operator (9.12)), they are orthog-

405 9.3 An oscillatory approach to waveguides



onal to each other. More precisely, taking into account the normalization condi-
tion (9.20), the functions E�



(x) satisfy:

��

�
��

E�



(x)E�


(x)dx�

2��
�
p
�


�

�
���

(9.22)

Therefore, if the guide is infinitely confining (i.e. if n
�

/n
�
��), the modes may be

written:

E�



(x)� 2	
��
�

d
�

p
�

sin
m�x
d

(9.23a)

m th mode in an infinitely confining waveguide

Let us note for this case some very useful approximations for the coefficients � and
� (m� 1):

��
�
d

(9.23b)

�� (n�
�
� n�

�
)���

2�
�
�

Transverse magnetic (TM) waves
This time, the components of the electromagnetic field are in part

B


(x, z, t)�Re[B



(x)e��������] (9.24)

for the transverse magnetic field; and the electric field E given by ��B� 1/
(n
�
c)��E/�t, is:

E
	
(x, z, t)�

c�
n�
�
�
B


(x, z, t)

(9.25)

E
�
(x, z, t)��

ic�

n�
�
�

�
�x
B


(x, z, t)

where n
�

is the optical index of medium i. The TM eigenmodes in the guide are
obtained by imposing the continuity conditions for the fields B



and E

�
at each of

the two interfaces (we leave this as an exercise to the reader). This yields:
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tan(�d)�
2�
��
��

��� (�
��
�)�

�� ��� n�
�
k�

(9.26)
�� ��� n�

�
k�

k��/c and �
��
��

n
�
n
�
�
�

System of equations which determine the TM modes in a symmetric waveguide

For each combination of values for the frequency � and the guide thickness d, we
obtain multiple values for the allowed propagation constant  for the guide modes.
A commonly used representation for the various modes in a waveguide consists in
plotting the dispersion curve n

	  
(�
�

), where n
	  

is the effective optical index for the
guide given by n

	  
� c/�.

Figure 9.6 shows this dispersion curve for a theoretical waveguide with n
�
� 2,

n
�
� 1.5, and n

�
� 1 as a function of d/�

�
. As is apparent from the figure, there are

several possible solutions, i.e. several modes are possible, and waveguides are
therefore, in general, multimode in nature. We will see later on that single mode
guides are preferred in most applications. In this case, single mode waveguiding is
guaranteed when condition (9.8) is satisfied, i.e. when the ratio d/�

�
is less than

NA/2. We can also conclude from Fig. 9.6 that a waveguide will naturally induce a
dispersion as there is a variation in the effective optical index between the extrema
n
�

and n
�

. This is referred to as the modal dispersion of the waveguide. This
dispersion adds to the natural dispersion contributed by the materials comprising
the guide. Figure 9.7 shows the result of a complete calculation for the GaAs/
AlGaAs system using Afromowitz’ dispersion relations given in Complement 7.B.
We will see that this dispersion leads to negative effects in non-linear waveguides.

9.4 Optical confinement

It is interesting to estimate the quantity of energy which is effectively guided or
trapped within the guide between 0 and �d. This is described by a confinement
factor �, which is defined as:

��

�

�
��

�E(x)��dx

��

�
��

�E(x)��dx

(9.27)
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Fig. 9.6. Dispersion curves for a waveguide in a non-dispersive medium with n
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3.60

3.56

3.52

3.48

3.44

3.40

E
ffe

ct
iv

e 
in

de
x

1.501.401.301.201.101.000.90

Wavelength  ( m)

nGaAs(   )

nAlGaAs  ( )

nTE( )

Fig. 9.7. Dispersion in a waveguide consisting of a 0.5 �m thick core layer sandwiched
between two 1.0 �m Al
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Ga
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As layers. The naturally occurring dispersion in the constituent
materials adds to that resulting from the waveguide geometry. (Courtesy of A. Fiore
@LCR/THALES.)

So that we can familiarize ourselves with the concept, we will calculate the
confinement factor for the mth mode of a symmetric waveguide. By symmetry,
(9.27) can be written:

�
�
� 1�

2

�

�
�

�E
�

(x)��dx

��

�
��

�E
�

(x)��dx

(9.28)
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or, given (9.16) and (9.22):

�
�
� 1�

A�
�

�

2�
�
��
� (9.29)

� 1��
�
�

kNA�
� 1

(1��
�

d/2)

We then substitute into (9.29) the various trigonometric expressions for A
�

, 
�

,
and �

�
obtained in (9.19) and (9.21), to find:

�
�
� 1�

sin� "
�

sin� "


1

1� �
d

�
�

/n
�

(sin� "

� sin� "

�
)���

(9.30a)

� 1�
X�

1�
�
2
N
�
�1�X�

where X is the ratio sin "
�

/sin "


and we recall that N
�

is the number of allowed
modes in the guide. Figure 9.8 represents the variation in the confinement factor
for a typical waveguide as a function of sin "

�
/sin "


. This latter quantity increases

as the mode index m increases. We note in this figure that the confinement is at a
maximum when the order is at a minimum. The TE

�
and TM

�
modes of a

waveguide therefore experience maximum electromagnetic waveguiding. This fact is
incorporated into the design of many optoelectronic devices (e.g. laser diodes,
modulators, . . .).

A waveguide designer will therefore prefer to make use of single mode wavegu-
ides. A limited expansion of (9.30a) leads to an extremely useful approximation for
TE
�
:

�
�
�

D�

2�D�
with D�

2�d
�
�

�n�
�
� n�

�
(9.30b)

A demonstration of this is left as an exercise to the reader. The example below
illustrates the use of this formula.

Example
We consider a waveguide consisting of a 0.2 �m thick core layer of GaSb and
confining AlGaSb layers. We will neglect the natural dispersion of the materials,
and take n

�
� 3.837 for the optical index of GaSb and n

�
� 3.589 for AlGaSb. The

numerical aperture NA of the guide is therefore 1.36. The number of modes at
1.55 �m is given by (9.6) or N� Int(2� 0.2� 1.36/1.55)� 1� 1. The guide is
therefore single mode. We can therefore apply expression (9.30b) to obtain the
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Waveguide modes with weak indices (sin"
�

small) offer better optical confinement.

confinement factor for the TE
�

mode in the waveguide. We obtain D� 1.10 and
�
�
� 0.38.

The MATHEMATICA program below compares the values obtained for the
confinement factors using the exact method (9.30a) and the approximation (9.30b)
for the system described above. The results are shown in Fig. 9.9 and confirm the
validity of the approximation (9.30b).
Lambda=1.55;t=.
n1=3.837;n2=3.589;ON=Sqrt[n1ˆ 2-n2 ˆ 2];
ninit=(n1+n2)/2;
k= 2*N[Pi]/Lambda;
Bet=2*N[Pi]*neff/Lambda;
alpha= Sqrt[(n1 ˆ 2*k ˆ 2-Bet ˆ 2)];
kapa= Sqrt[(-n2 ˆ 2*k ˆ 2+Bet ˆ 2)];
fct=Tan[alpha*t]-2*kapa*alpha/(alpha ˆ 2-kapa ˆ 2);
tab=Table[�t,sol=FindRoot[fct,�neff,ninit�];
gamma= Abs[1-(n1 ˆ 2-neff ˆ 2)/(n1 ˆ 2-n2 ˆ 2)/
(1+k*t/2*Sqrt[neff ˆ 2-n2 ˆ 2])]/.sol�,�t,.01,.4,.01�];
plot1=ListPlot[tab]
dis= 2*N[Pi]*t*ON/Lambda;
plot2=Plot[dis ˆ 2/(2+dis ˆ 2),�t,0,.4�]
Show[plot1,plot2]

9.5 Coupling between guided modes: coupled mode theory

Guided modes are eigenstates of the electromagnetic field in the waveguide. They
form a complete basis (along with the radiative states which can propagate outside
the guide and which we shall continue to ignore for the present) in which any

410 Waveguides



0.8

0.6

0.4

0.2

0.0
0.40.30.20.10.0

Thickness ( m)

 Exact (9.30a)
 Approximation (9.30b)

Fig. 9.9. Comparison between the confinement factor � obtained using the exact method in
(9.30a) and the approximation in (9.30b) for the 1.55 �m GaSb/AlGaSb waveguide described in
the example.

perturbation can be expanded. Such perturbations can originate from many
possible sources: corrugation of the guide (random or periodic), non-linear inter-
actions (second harmonic generation, for example), or possibly from the presence
of another waveguide close enough to allow coupling by photon tunnelling. All
these perturbations are treated within the framework of a very powerful formalism
known as coupled mode theory. This theory is quite similar to perturbation theory
in quantum mechanics.

We will begin with Maxwell’s equations in matter:

��E(r, t)��
�
�t

B(r, t)

(9.31)

��B(r, t)��
�

�
�t

D(r, t)

where D is the displacement vector:

D(r, t)� �
�
E(r, t)� �

�
$
�

(r)E(r, t)�P
�	�

(r, t)
(9.32)

� �(r)E(r, t)�P
�	�

(r, t)

In this last definition, �(r)� n�(r) is the dielectric constant for the different ma-
terials composing the guide (1, 2, . . .) and P

�	�
is the perturbative polarization,

which excludes the dielectric response of the different layers (as they are included in
�(r)). Equations (9.31) then become:

��E(r)��
�
�(r)

��
�t�

E(r)� �
�

��
�t�

P
�	�

(r, t) (9.33)

Propagation equation with a perturbative polarization source
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This equation forms the basis for all perturbative treatments of propagation effects
in guides (scattering, diffraction, . . .) and plays a central role in optoelectronics
(see, for example, Chapter 12). To keep the required notation manageable, we will
not consider variations in y, but will interest ourselves with the amplitude of the
electric field over ey (which we will label as E(r, t)). The differential operator �� is
then ��/�x�� ��/�z�. The field E(r, t) can be expanded in the basis of the guided
modes, Em(r, t)� eyE�

(x)e���������, or:

E(r, t)�
1

2
�
�

A
�

(z)E
�

(x)e���������� c.c. (9.34)

where we recall that each mode must satisfy:

��
�x�

E
�

(x)� [k��(r)��
�

]E
�

(x)� 0 (9.35)

The terms A
�

are the amplitudes of the guided wave varying along z owing to the
perturbation. Taking into account the normalization (9.20), the square of the norm
�A
�
�� is the optical power per unit width of the waveguide due to the mth mode.

Without perturbations, the terms A
�

are independent of z. Substituting (9.34) into
(9.33), we obtain:

�
�
�
A
�

(z)

2 �
��
�x�

E
�

(x)� �
�
E
�

(x)��
�
�(r)��E

�
(x)�

(9.36)

�
1

2�
��
�z�

A
�

(z)� 2i
�

�
�z
A
�

(z)�E�(x)� e���������� c.c.� �
�

��
�t�
P


�	�
(r, t)

where P

�	�

is the component of the perturbing polarization vector in the Oy
direction. We note that the first sum is null given (9.36). Also, we make the
approximation that the amplitude of the wave is slowly varying (the envelope
function approximation). This allows us to write:

�
��
�z�

A
� ��

� �
�
�z
A
� � (9.37)

The envelope function approximation

Equation (9.36) then becomes:

�
�

� i
�

�
�z
A
�

(z)E
�

(x)e����������� c.c.��
�

��
�t�
P


�	�
(r, t) (9.38)

We then multiply by a mode E
�
(z) and take the integral which is equivalent to

projecting (9.33) onto the eigenmode basis of the guide. Making use of the
orthonormality conditions (9.22), we obtain after grouping similar terms:
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�
�z
A�
�

e����������
�
�z
A�
�

e���������� c.c.

(9.39)

��
i

2�p
�

��
�t�

��

�
��

[P

�	�

(x, t)E
�
(x)]dx

Coupled mode equation for a perturbing polarization

where we recall that p
�

is a normalization constant (p
�
� 1 W m��). In this last

equation, A�
�

and A�
�

are the amplitudes for the lth mode propagating in the �z
and�z directions, respectively. Equation (9.39) describes how a perturbing polar-
ization P

�	�
(r, t) can induce a transfer of energy between different cavity eigen-

modes. Often, the perturbing polarization is a function of other perturbed modes
and (9.39) (i.e. the coupled mode equation) acts to couple all these modes. This is a
very powerful formalism with a broad range of applicability. We will use it to
describe the function of optical couplers (Complement 9.A), Bragg waveguides
(Complement 9.B), distributed feedback lasers (Complement 13.A), and optical
frequency conversion in non-linear waveguides (Complement 9.C).

FURTHER READING

S. L. Chuang, Physics of Optoelectronic Devices, Wiley Interscience, New York (1995).
D. Marcuse, Theory of Dielectric Optical Waveguides, Academic Press, New York (1974).
B. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Interscience, New York (1991).
A. Yariv, Quantum Electronics, Wiley, New York (1989).
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Complement to Chapter 9

9.A Optical coupling between guides: electro-optic switches

We saw in Section 9.3 that an electromagnetic wave trapped in the core layer of a
waveguide possesses an evanescent component in the confining layer (see Fig. 9.4).
If a second guide capable of confining a wave of the same frequency is placed close
enough to the first waveguide so that the overlap with the evanescent portion of
the wave is significant, the confined wave will move from the first waveguide
through the confining layer to the second waveguide. This phenomenon is analog-
ous to electronic tunnelling through barriers in quantum mechanics. Coupled
mode formalism is particularly well suited to describing this form of coupling
between optical waveguides.

We will consider two waveguides (see Fig. 9.A.1). The first, the right waveguide,
consists of a core layer with an index n

!
placed between two confining layers

having an index n. The second waveguide, situated a distance D to the left of the
first, possesses a core layer with index n

�
and is placed between the same barrier

material as the right waveguide. The two guides were fabricated so that if they were
separated from one another by an infinite distance, they would each possess a
single fundamental eigenmode possessing electric field components alongOy, with
E
!

(x, z, t) and E
�

(x, z, t), each, respectively, being solutions to equations of type
(9.13) and of the form:

E
!

(x, z, t)�
1

2
[E

!
(x)e������!��� c.c.]

(9.A.1)

E
�
(x, z, t)�

1

2
[E

�
(x)e���������� c.c.]

When brought into close proximity, each waveguide acts on the other to produce a
perturbation.

Following the principles set forth in Section 9.4, identical to those obtained
within the framework of time-independent perturbation theory in quantum mech-
anics (see, for example, Complement 1.B), we may write the new eigenmodes for
the coupled system as linear combinations of the fundamental eigenmodes of each
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Fig. 9.A.1. (a) Geometry for coupled waveguides. (b) Wave confined in the left waveguide only.
(c) Wave confined in the right waveguide only. (d) Wave coupled between both waveguides.

isolated guide (as was the case with quantum wells, we will neglect the superior
modes):

E(x, z, t)�
1

2
[A

!
(z)E

!
(x)e������!���A

�
(z)E

�
(x)e���������� c.c.] (9.A.2)

If the guides are infinitely far apart, the amplitudes A
!

(z) and A
�
(z) are constants.

Bringing both guides into proximity will induce energy transfer between the
waveguides causing variations in the amplitudes A

!
(z) and A

�
(z).

For the waveguide on the right, the perturbation P!
�	�

is the polarization in the
left guide due to the synchronous excitation of the new field E(x, z, t) given by
(9.A.2), or:

P!
�	�

(x, z, t)� �
�

[n�
�

(x)� n�]E(x, z, t) (9.A.3)

where n
�

(x) is a function which equals n
�

in the left guide and is n everywhere else.
Considering the problem for a single wave propagation direction, the coupled

wave equation, (9.39), may be written:

�
�
�z
A
!

e������!���
i��

�
4p
�
� �


	 �
#��"	

[n�
�

(x)� n�][A
!

(z)E�
!

(x)e������!��]dx

(9.A.4)

� �

	 �

#��"	

[n�
�
(x)� n�][A

�
(z)E

�
(x)E

!
(x)e���������]dx
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In (9.A.4), the first term in the integral on the right-hand side has no important
effect. It acts only as a small correction to the propagation constant 

!
. The second

term, however, acts to couple the two waveguides. Equation (9.A.4) and its
equivalent for the left guide then become:

�
�z
A
!
��ig

�!
A
�
e�����

(9.A.5)
�
�z
A
�
��ig

!�
A
!

e����

where we have introduced the phase mismatch � between the two waveguides
given by:

��
�
�

!
(9.A.6)

and the overlap integrals for the two waves are given by:

g
�!
�

��
�

4p
�
�

	 �

#��"	

[n�
�
(x)� n�]E

�
(x)E

!
(x)dx

(9.A.7)

g
!�
�

��
�

4p
�
�

��#��
#��"	

[n�
!

(x)� n�]E
�

(x)E
!

(x)dx

Equations (9.A.5) are the classic equations for coupled pendulums and are entirely
equivalent to the Rabi equations discussed in Complement 1.E. These equations
may be solved by introducing trial functions of the type e���. We assume that the
amplitudes at the entrance of each waveguide are A

�
(0)�A

�
and A

!
(0)� 0.

Anticipating symmetric waveguides we will suppose that g
!�
� g

�!
� g. The

solutions (9.A.5) may be written:

A
!

(z)�A
�

g

i�
e�������� sin �z

(9.A.8)

A
�

(z)�A
�

e����������cos �z� i
�
2�

sin �z�
with:
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��� g���
�
2 �

�
(9.A.9)

The optical power levels in the guides are then:

I
!

(z)�P
�

g�

��
sin�(�z)

(9.A.10)
I
�

(z)�P
�
�P

!
(z)

where P
�

is the incident power at the entrance of the left waveguide. Equation
(9.A.10) is rich in information. First, it indicates that the wave energy oscillates
between the two guides over the entire distance of travel with a spatial period of
�
�����

referred to as the transfer distance (see Fig. 9.A.2) given by:

�
�����

�
2�

	g���
�
2 �

�
(9.A.11)

Additionally, the maximum fraction of power which can be transferred from one
guide to the next is:

I���
!
I
�

�
g�

g�� (�/2)�
(9.A.12)

As was the case with Rabi oscillations, we are not surprised to find that power can
be completely transferred between the waveguides over the course of an oscillation
as long as the phases are in agreement, i.e. as soon as:

�� 
�
� 

!
� 0 (9.A.13)

Condition for phase matching between two waveguides

Waveguides can therefore act as optical switches (all the more so if they are
identical). Let us calculate the transfer constant � for two TE

�
waves for the case

where n
!
� n

�
� n

�
. The fields E

�
(x) and E

!
(x) are given by (9.16). The overlap

integrals (9.A.7) can be easily calculated:

g�
��
�

(n�
�
� n�

�
)

4p
�

���

�
����

B
�

cos(�x)A
!

e���)�	�dx (9.A.14)

B
�

is the wave amplitude in the left guide, where the guide centre has been taken as
the origin (explaining the integral over�d/2 to d/2), andA

!
is the amplitude of the

evanescent wave stemming from the right guide. We recall that the electric fields
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Fig. 9.A.2. The power contained by the wave oscillates between the two coupled guides. The
distance required for this oscillation to complete a full cycle is referred to as the transfer
distance �

�����
.

E(x) vary as cos(�x) in the two guides and as e��	 in the confining layers. These
amplitudes are given in (9.21) yielding:

g�
�
�

�n
	  

��
�����

�
d� 2/�

e��) (9.A.15)

The variation in e��) justifies the interpretation of the constant � in terms of a
photonic tunnelling constant between the two guides.

Example
We consider two guides with InGaAs core layers (n

�
� 3.5) and confining InAlAs

barrier layers (n
�
� 3.3). The width of the guides is 0.6 �m. The coefficients � and �

are obtained using the MATHEMATICA program listed below:
Lambda=1.55;t=0.6;(*micron*)
n1=3.5;n2=3.3;
k= 2*N[Pi]/Lambda;
Bet=2*N[Pi]*neff/Lambda;
alpha= Sqrt[(n1 ˆ 2*k ˆ 2-Bet ˆ 2)];
kapa= Sqrt[(-n2 ˆ 2*k ˆ 2+Bet ˆ 2)];
fct=Tan[alpha*t]-2*kapa*alpha/(alpha ˆ 2-kapa ˆ 2);
Plot[fct,�neff,n2,n1�]
sol=FindRoot[fct==0,�neff,3.43�]
alpha/.sol(*micron ˆ -1*)
kapa/.sol(*micron ˆ -1*)
from which we obtain �� 2.97 �m�� and �� 3.67 �m��. If the two guides are
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Fig. 9.A.3. Schematic for an electro-optic switch based on coupled waveguides.

spaced apart by a distance of 1 �m, the coupling coefficient g is given by (9.A.16) to
be 4.6� 10�� �m��. The transfer length �

�����
is therefore of the order of 2�/

g� 1.3 mm.

This energy transfer mechanism between coupled waveguides is put to use
in electro-optic switches, illustrated in Fig. 9.A.3. In this case, two identical wave-
guides are fabricated with electro-optic cores having as a result optical indices n
which vary as a function of the applied field F according to:

�n� n�rF (9.A.16)

where r is the electro-optical index and is typically equal to a few pm V�� in
semiconductors (r� 1.6 pm V�� and n�r� 59 pm V�� for GaAs), with the result
being that a variation �n of 5� 10�� is easily obtained for a field modulation of
100 kV cm��. The guide lengths are selected so that under a null electric field (the
two guides are identical and �� 0) all the energy in the left guide is transferred
into the right guide at the end of the guides, i.e. gL��/2. A metallic electrode is
deposited on the left waveguide so that when an electric fieldF is applied, the index
of the left guide is altered along with the propagation constant 

�
. This leads to a

phase difference between the two guides of �(F). The output power at the exit of
the right waveguide is then a function of the electric field given by (9.A.10), or:

I
!

(L)

I
�

(L)
� sin��

�
2 �1��

L�(F)

� �
�

�
���

� (9.A.17)

The optical power will be almost completely transferred to the left guide
(I
!

(L)� 0) when a sufficiently strong electric field F has been applied so that:

419 9.A Optical coupling between guides



Fig. 9.A.4. Implementation of a coupled waveguide switch. The schematic view shows a
2� 2 switch integrated monolithically with an optical amplifier. (Courtesy of N. Vodjdani
@LCR/THALES.)

L�(F)��3� (9.A.18)

To estimate the required field strengths, we may crudely assume that a variation in
the index �n

�
(given by (9.A.16)) affects the propagation constant as 

�
� 2�n

	  
/�
�

(we recall that �
�

is the vacuum wavelength and that n
	  

is the effective optical
index in the guide) so that �� 2��n/�

�
. Condition (9.A.18) then implies a

switching voltage given by the condition that �n
	  

(F)� (�3/2)(�
�
/L). For a guide

length of 2 mm and a wavelength of 1 �m, we need to be able to impart a change �n
of 4� 10��, i.e. corresponding to a switching field of 100 kV cm�� or 10 V for a
1 �m thick guide. Figure 9.A.4 shows an actual implementation of such an electro-
optical modulator. As no bulk displacement of charges is necessary to operate this
device, capacitive effects are virtually null and the switching times are extremely
short. Maximum modulation frequencies for these types of modulators are in
excess of 10 GHz.

FURTHER READING

A. Yariv, Quantum Electronics, Wiley, New York (1989).
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9.B Bragg waveguides

We will see how the coupled mode equation, (9.39), allows us to study the
behaviour of a guided wave in a corrugated optical guide with a spatial period of L
(see Fig. 9.B.1). When the grating period equals the wavelength of the propagating
light (i.e. 2�/), the grating portion of the guide acts as a Bragg reflector (see
Complement 9.D). This situation with respect to photon propagation is similar to
that encountered in Chapter 5 for the case of electrons in crystalline solids (and
which led to the formation of allowed energy bands). The Bragg grating can be
represented by a periodic modulation in the relative permittivity. To begin, we
shall assume that this modulation varies sinusoidally as:

��(r)� �
5

(x)sin�
2�
/
z� (9.B.1)

The perturbative polarization contributed by this modulation is then given by:

P
�	��

� �
�
��(r)E(r, t) (9.B.2)

The electromagnetic field E(r, t) in the guide can be decomposed into the basis of
the waveguide eigenmodes as described in (9.34). Employing (9.B.1) and (9.B.2), the
perturbative polarization may be written:

P
�	��

�
�
�
�
5

4p
�

e����
�

A
�

(z)E
�

(x)e�����%���� ���� c.c. (9.B.3)

We then substitute (9.B.3) into the coupled mode equation (9.39), by replacing the
derivative ��/�t� by ��� to obtain:

�
�z
A�
�

e�����
�
�z
A�
�

e������ c.c.

��
i��

�
8p
�

�
�

A�
�

(z)e�����%���� ���
��

�
��

�
5

(x)[E
�

(x)E
�
(x)]dx (9.B.4)

�
i��

�
8p
�

�
�

A�
�

(z)e����%���� ���
��

�
��

�
5

(x)[E
�

(x)E
�
(x)]dx� c.c.

We took care to preserve the two counterpropagative modes A� and A�, as we
anticipate their coupling by the grating. Equation (9.B.4) couples the different
amplitudesA

�
(z) through the coupled differential equations. We can avoid a lot of
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Fig. 9.B.1. Geometry for a Bragg waveguide.

needless work by inspecting this equation. Two types of propagation constants are
introduced into (9.B.4):


�
� 

�
�

2�
/

which couples �A�
�

/�z to A�
�

and:


�
� 

�
�

2�
/

which couples �A�
�

/�z to A�
�

.
The first case does not interest us but does provide a means of dealing with

near-field Fraunhofer-type diffraction problems. We are concerned, however, with
the second case which couples an incident wave with index l from the right to a
second with indexm on the left. More specifically, we will deal with the special case
l�m, i.e. corresponding to reflection. We keep in (9.B.4) only those terms in which
the phase mismatch 2� is close to zero, since only those terms will eventually
interfere constructively. This mismatch is given by:

��
�
�

�
/

(9.B.5)

Phase mismatch in a Bragg waveguide
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Fig. 9.B.2. Interpretation of the phase matching condition in a Bragg waveguide in terms of
wavevector conservation.

This last condition can be interpreted in terms of the conservation of total
wavevector. The periodic lattice supplies a wavevector �2�//, which subtracts
from the wavevector of the incident wave �

�
and generates the wavevector

corresponding to the reflected wave �
�

(see Fig. 9.B.2). Equation (9.B.4) can then
be separated into two coupled equations:

d

dz
A�
�

(z)��igA�
�

(z)e������

(9.B.6a)
d

dz
A�
�

(z)��igA�
�

(z)e�����

Equations for coupled modes in a Bragg waveguide

where the coupling constant g is given by:

g�
��
�

8p
�

��

�
��

�
5

(x)E
�
(x)�dx (9.B.6b)

Starting from (9.B.6), it can readily be shown that:

d

dz
(�A�

�
��� �A�

�
��)� 0 (9.B.7)

which implies that combined optical power from the two modes remains constant.
The coupled equations, (9.B.6), can be solved in standard fashion: i.e. we sub-

stitute one of the two equations into the other giving, for example:

d�

dz�
A�
�
� 2i�

d

dz
A�
�
� g�A�

�
� 0 (9.B.8)

The amplitudes A�
�

and A�
�

are therefore linear combinations of the exponentials
of the arguments:

�� i�� � (9.B.9a)

where � is the discriminant of (9.B.8):
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���g���� (9.B.9b)

To obtain the complete solution, we impose boundary conditions upon the
amplitudes in the guide. The wave is incident from the left with an amplitudeA

�
at

the grating entrance (z� 0) (see Fig. 9.B.1), whereas no wave from the left is
incident upon guide exit at z�L. The two boundary conditions are then that
A�
�

(0)�A
�

and A�
�

(L)� 0, and the solutions to (9.B.6) are easily found to be�:

A�
�

(z)�A
�

g

i�sh(�L)� �ch(�L)
e�����sh[�(z�L)]

(9.B.10a)

A�
�

(z)�A
�

e�����
i�sh(�L)� �ch(�L)

��ch[�(z�L)]� i�sh[�(z�L)]�

The behaviour of the two waves is particularly simple when the Bragg condition is
satisfied (�� 0), i.e. when the wavevector �// of the grating equals that of the
guided wave 

�
. The solutions (9.B.10a) then take the simple form:

A�
�

(z)�A
�

sh[�(z�L)]

ch(�L)
(9.B.10b)

A�
�

(z)�A
�

ch[�(z�L)]

ch(�L)

Figure 9.B.1 shows in this last case the behaviour of the square of the amplitudes
(i.e. the optical power per unit width in the guide) as a function of distance. The
incident wave A�

�
decays exponentially in the grating region giving rise to a

reflected wave A�
�

. If the product �L is sufficiently large, i.e. if the grating is
sufficiently effective,A�

�
(0) is of the order ofA

�
, whereasA�

�
(L) � 0. The transfer of

energy between the two waves is then complete and the grating region behaves as a
Bragg reflector.

This Bragg reflector possesses an associated spectral bandwidth which is set by
the requirement that � be real, i.e. by taking into account (9.B.9b):

�
/
� g�

�
(�)�

�
/
� g (9.B.11)

Bandwidth of a Bragg reflector

or a bandwidth of 2g in wavenumber. Figure 9.B.3 shows a typical example for
transmission in a Bragg waveguide as described by:

T�
�A�
�

(L)��
�A�
�

(0)��
� �

�
�ch(�L)� i�sh(�L) �

�
(9.B.12a)

� Where sh� sinh, ch� cosh.
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Fig. 9.B.3. Transmission and reflection coefficients for a Bragg waveguide as a function of
normalized phase mismatch �/g for gL� 2.

Condition (9.B.11), as well as the expression for the transmission in the waveguide
(9.B.12a), shows that the product gL controls the maximum efficiency of the Bragg
guide. At resonance, �� 0 and the transmission is given by:

T
�	�
� �

1

ch(�L) �
�
� e���� (9.B.12b)

If the coupling coefficient g is weak, the Bragg guide must be long enough to keep
gL
 1. In order to understand the roles of the various parameters (and how they
should be combined to yield an efficient Bragg waveguide) we will seek to derive an
expression for the efficiency of a highly confined waveguide.

We consider a waveguide of thickness d, with optical indices��
�

and ��
�

for the
core and confinement layers, respectively (see Fig. 9.B.1). Assuming TE

�
wave

propagation in a highly confining guide, (9.13) yields for the transverse wavelength
� and the tunnelling penetration depth � the following approximations (see
(9.23b)):

��
�
d

(9.B.13)
�
�

� (�
�
� �

�
)���

2d

�
�

and the normalization coefficient of the guided wave (9.21) is then:

A�� 4p
��

�
��
� �

�
c

n
	  
d

(9.B.14)
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If the grating is created at a distanceD from the core, with a modulation amplitude
h (see Fig. 9.B.1), the coupling constant g is then (according to (9.B.6b)):

g�
��
�
�
5

8p
�

)��

�
)

A�e���	dx (9.B.15)

or, given (9.B.13) and (9.B.14):

g�
�
4

�
5

n
	  

(�
�
� �

�
)�

�
�
h

d� �
e���)
d

(9.B.16)

This last expression shows that the efficiency of a Bragg waveguide is dominated
by the photon tunnelling effect (i.e. 	 e���)).

Example
We seek the product gL for a GaAs/AlGaAs waveguide having the following
parameters:

n
�
� 3.3, n

�
� 3, and �

5
� 3

�
�
� 1 �m, d� 0.5 �m, D� 0.2 �m, and h� 0.1 �m

The transverse wavenumber � is �/d, or 6.28 �m��, and the photon tunnelling
constant � is given by (9.B.13) to be (3.3�� 3�)����� 8.63 �m��. The product gL is
then found using (9.B.16) or:

gL�
�
4

3

3(3.3�� 3�)�
1� 0.1

0.5� � e���	������
L
d
� 5� 10��

L
d

To obtain a value of gL of the order of 1, we would need a guide length of 200d or
100 �m.

FURTHER READING

S. L. Chuang, Physics of Optoelectronic Devices, Wiley Interscience, New York (1995).
A. Yariv, Quantum Electronics, Wiley, New York (1989).
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9.C Frequency conversion in non-linear waveguides

As we shall see in Chapter 12, semiconductors possess second-order non-linear
susceptibilities which are larger than most other materials. We recall that in such a
medium, a non-linear second harmonic polarization P�� is generated by the
interaction of two waves of frequency � according to:

P��
�
� �

�
$��
���
E�
�
E�
�

(9.C.1)

This formula can be understood as follows: an electromagnetic field polarized
along the i direction interacts with a second wave polarized along the j axis
resulting in a non-linear polarization along the k axis. $ is therefore a tensor
quantity. Furthermore, the real physical polarization is obtained by taking the real
part of (9.C.1).

As we shall see in this complement, there is significant interest in using wavegu-
ides to perform optical frequency conversion by exploiting the optical non-
linearities in semiconductors. The first reason for doing so is that the optical
confinement in waveguides leads to significant electromagnetic field amplitudes
even for relatively modest optical power levels. The second reason is that it is
possible to manage problems associated with phase mismatch with the help of
current microfabrication technology.

Utilizing both the geometry and the notation used for waveguides in Chapter 9
(see Fig. 9.3), we will examine the two following cases:

9.C.1 TE mode in–TE mode out

In this case, we will suppose that a single guided TE wave interacts with itself, so
that the amplitude is given by:

E�
#(

(x, z, t)�
1

2
[A�



(z)E�



(x)e���������#(��� c.c.] (9.C.2)

where E�



is a solution to the waveguide equation (9.13), A�



(z) anticipates the
variation of the amplitude of the pump beam (with frequency �) along the guide,
and ��#( is the propagation constant of the TE wave with frequency� in the guide
given by the solution to (9.13). Eliminating the terms in ��� (which correspond
to optical rectification), the non-linear polarization at 2� in (9.C.1) becomes:

P��





(x, z, t)�
1

2
[P��





(x, z)e�����������#(��� c.c.] (9.C.3a)

and using (9.C.2):
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Fig. 9.C.1. Configuration leading to second harmonic generation TE—TE.

P��





(x, z)� �
�
$��





[A�



(z)E�



(x)]� (9.C.3b)

Inspecting the consequences associated with the introduction of non-linear polar-
ization in the coupled mode equation, (9.23), we see that this 2� source term will
act to generate waves with a frequency of 2�. Equation (9.39) allows one to
calculate the variation in amplitude of the 2� wave in the guide. Considering only
those waves which propagate towards the right, (9.39) becomes:

�
d

dz
A��



e����������#(��� c.c.

(9.C.4)

��
i

2�p
�

��
�t�

��

�
��

1

2
��
�
$��




f (x)[A�



(z)E�



(x)]�e����������#(��� c.c.�E��



(x)dx


���#( is the propagation constant of the 2� wave within the guide. Using the

notation for the effective index, we see that 
���#(� n

	  
(2�)2�/c. E��



(x) is the

guided mode at a frequency of 2�. The function f (x) represents the variation in
non-linear susceptibility throughout the waveguide. For example, if only the core
material is non-linear, then f (x) is a boxcar function. Equation (9.C.4) then takes
the simplified form:

�
�
�z
A��



(z)�
i��

�
p
�

$��




S




(A�



)�e���� (9.C.5)

where S




is the overlap integral of the modes E



with themselves, given by:

S



�

��

�
��

f (x)[E�



(x)]�E��



(x)dx (9.C.6)

and � is the phase mismatch:

�� 
���#(� 2��#(�

4�
�
�

[n
	  

(2�)� n
	  

(�)] (9.C.7)
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Equation (9.C.5) describes the energy transfer between the fundamental and the
harmonic waves. To simplify the upcoming discussion, we will assume that the
conversion efficiency is low. The amplitude A�



(z) can then be assumed to be

constant across the guide, and equal to its value at the guide entrance (A�
�

).
Equation (9.C.5) can then be integrated:

A��



(L)��
��
�

p
�

$��




S




L(A�
�

)��
e����� 1

�L � (9.C.8)

Recalling that the normalization conditions (9.20)—(9.22) stipulate that the square
of the norm of the amplitude �A�� of the modes in the waveguide is the power
injected into this mode per unit width in the guide, we obtain a conversion
efficiency in the guide of:

P��



(L)

(P�
�

)�
�

1

4
(��

�
$��




S




L)�sinc��
�L

2 � (9.C.9)

In this last formula, the power levels P



are in W per unit guide width. Let us
observe for a moment the change in the conversion efficiency as a function of guide
length L. The non-linear medium draws energy from the pump beam and transfers
it into the second harmonic, with the inverse process occurring periodically along
the length of the guide. As a result, the maximum efficiency that can be obtained
occurs at the end of an interaction length, which is referred to (however improper-
ly) as a coherence length, and which we shall call a phase matching length

�
��
�

�
�

4[n
	  

(2�)� n
	  

(�)]
(9.C.10)

Phase matching length in a waveguide

This length increases (as does the maximum efficiency) as the dispersion in the
guide decreases. We will see later that certain strategies can be used to obtain
phase matching artificially. In this case, the sinus-cardinal (sinc) function in (9.C.9)
equals unity, and frequency conversion can take place constructively over the
entire length of the guide leading to a parabolic dependence (in L�) of the
conversion efficiency.

We will now give a more physical expression for (9.C.9). To do so, we must
calculate the overlap integral S




. We will make the following simplifying approxi-

mations:
∑ Only the core material is non-linear and the function f (x) is a boxcar function.
∑ The guides are infinitely confining and the modes are sinusoidal as in (9.23), i.e:

E�



(x)� 2	
��
�

d�
p
�

sin
�x
d

(9.C.11)
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The overlap integral can then be written:

S



� 8�2�

��
�
p
�

d �
��� 1

������

�

�
�

sin��
�x
d �dx

(9.C.12a)
�
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3�
1

�d
(��

�
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�

)���

������
or:

S�



��

32

3��
� 1

d

����
�
p�
�

n�
	  

(9.C.12b)

supposing n
	  

(�) � n
	  

(2�). Substituting this last equation into (9.C.9), we finally
obtain the value for the frequency conversion efficiency for an infinitely confining
non-linear waveguide without pump depletion (i.e. with A�� constant):

P��



(L)

P�
�

��
16

3��
�
Z�
�

(��
�
$��





L)�

n�
	  

�
P�
�
dl � sinc��

�L
2 � (9.C.13a)

Conversion efficiency for a non-linear waveguide

where Z
�

is the vacuum impedance of 377�. Caution! In this last equation, the
power levels P are in watts (and no longer in W m�� of guide width), and l is then
the width of the guide. In the phase matching case, the conversion efficiency is
given by:

P��



(L)

P�
�

� 4.3� 10����
L
�
�
�
� ($��





)�
�� /��
n�
	  

�
P�
�

dl�
 �

��
(9.C.13b)

This equation reveals a significant barrier (of the order of 10��� for typical $��s
and power levels) to obtaining reasonable efficiencies and explains the attraction
of waveguides for use in frequency conversion. Thanks to optical confinement in
waveguides, electromagnetic fields can be significant even for relatively low inci-
dent power levels resulting in sizeable conversion efficiencies.

Example
Supposing that the phase matching problem has been resolved, we consider a
GaAs waveguide ($�� 100 pm V�� and n

	  
� 3) 2 mm in length, 0.5 �m thick,

and 2 �m wide. If we couple 10 mW of optical power at �
�
� 2 �m into the

guide, the conversion efficiency would be 4.3� 10���(2� 10���m/
2�m)�(10�pm V��)�(10��W/(0.5� 10��� 2� 10��m�))/3�, i.e. 16%.

Quasi-phase matching
We saw that the phase matching conditions are fulfilled when the dispersion
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between the pump wave at � and the harmonic at 2� is null (i.e. �� 
��). We

know that in semiconductors, however, the band structure induces a significant
amount of dispersion, and that this dispersion is enhanced in guides (see Fig. 9.7).
Phase matching, it would seem, is inherently impossible in a bulk semiconductor.
It is, however, possible to make astute use of technology to modulate the proper-
ties of these materials spatially to achieve a state referred to as quasi-phase
matching.

In a first intuitive approach, we will suppose that we can modulate the value of
the non-linear susceptibility in a periodic fashion along the waveguide as:

$��





(z)� $��





sin�
2�
/
z� (9.C.14)

In this case, the coupled mode equation, (9.C.4), changes only slightly: the term in
the exponential under the integral becomes i(2�t� (2��#(� 2�//)z). All the
theoretical derivations for the conversion efficiency remain as before except that
the phase mismatch term becomes:

��
���#(� 2��#(�

2�
/

(9.C.15)

The conditions leading to quasi-phase matching may then be written as:


���#(� 2��#(�

2�
/

(9.C.16)

Quasi-phase matching condition

Figure 9.C.2 offers an interpretation for this condition. The wavevector of the
lattice (2�//) adds to that of the pump wave leading to equivalence with the
wavevector of the harmonic wave.

Technologically, this can be carried out by spatially destroying the optical
non-linearity in a periodic fashion using ion implantation, growth techniques,
impurity diffusion, etc. In this case, the non-linearity can be written:

$��





(z)�
$��




2
� �

� �""

2$��




n�

sin�
2n�
/
z� (9.C.17)

In the coupled mode equation, (9.C.4), only the term corresponding to the quasi-
phase matched condition will yield a non-zero contribution:


���#(� 2��#(�

2n�
/

(9.C.18)

Thus, phase matching may be obtained for a corrugation length equal to / (n� 1,
first order), 3/ (n� 3, third order), etc. A very simple calculation shows that for
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Fig. 9.C.2. Graphical interpretation of the quasi-phase matching condition in terms of
wavevectors.

first-order phase matching the frequency conversion efficiency remains the same as
that given by (9.C.13a) but with a slightly diminished effective non-linear suscepti-
bility with respect to $�� given by:

$��
	  
�

$��




�

(9.C.19)

Higher-order phase matching corrugations lead to even smaller effective non-
linear susceptibilities.

Figure 9.C.3 illustrates the physical principle behind quasi-phase matching.
Over successive intervals each spanning �

��
, the non-linear dipoles are eradicated

and the mechanism responsible for destructive interference along the waveguide is
disabled.

9.C.2 TE mode in–TM mode out

In this case, non-linear polarization of the guide is written:

P��
	



(x, z)� �
�
$��
	



[A�



(z)E�



(x)]� (9.C.20)

This term is non-zero only if the non-linear tensor element is non-zero (determined
by the symmetry of the semiconductor crystal). Figure 9.C.4 shows how non-linear
interaction occurs. The calculation can be carried out exactly as in the preceding
section allowing us to write:

P��
#0

(L)

P�
#(

��
16

3��
�
Z�
�

(��
�
$��
	



L)�

n�
	  

�
P�
#(
dl � sinc��

�L
2 � (9.C.21)

This time the phase mismatch is given by:

�� 
���#0� 2��#(�

4�
�
�

[n#0
	  

(2�)� n#(
	  

(�)] (9.C.22)
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Fig. 9.C.3. Quasi-phase matching technique for optical frequency conversion in a non-linear
waveguide. The optical non-linearity is alternately destroyed or left unchanged over successive
intervals (with each of these spanning one coherence length).
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Fig. 9.C.4. Configuration for TE—TM second harmonic generation.
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Equation (9.C.22) shows another scenario based upon the birefringence in the
guide. In this case, it is sufficient to achieve in the guide:

n#0
	  

(2�)� n#(
	  

(�) (9.C.23)
Modal phase matching condition in a non-linear waveguide

Figure 9.C.5 shows such a phase matched waveguide implemented using a GaAs/
AlGaAs/Al

�
O
�

heterostructure.

FURTHER READING
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S. Someckh and A. Yariv, Appl. Phys. Lett. 21, 140 (1972).
J. P. van der Ziel, Appl. Phys. Lett. 26, 60 (1975).

9.D Fabry–Pérot cavities and Bragg reflectors

The optical feedback provided by mirrors is an indispensable ingredient in estab-
lishing laser oscillations within an optical cavity. We saw that two conditions are
required before a cavity can achieve laser threshold: one on the gain (4.21a) and
another on the phase (4.24). This latter condition meant that the laser modes had
to be eigenmodes of the optical cavity. Two types of mirrors can be used to define
the cavity — metallic mirrors and dielectric mirrors. Dielectric mirrors are particu-
larly important for semiconductor lasers — most notably in the case of vertical
cavity surface emitting lasers (VCSELs). The formalism used in describing wave
propagation in a laminar medium is identical to that describing wave propagation
in a laminar guide. This complement is therefore well situated in a chapter devoted
to waveguides.

We will first consider an electromagnetic wave �� 2�� propagating in two
media (1 and 2) which share a common interface at z� 0 (see Fig. 9.D.1). The wave
amplitudes in each of the media are given by the real part of:

E
�
(z)�E

!�
e������E

��
e����� (9.D.1)

The real waves are certainly of the form Re(E
�
(z)e���). The indexR indicates that the

amplitude corresponds to the wave moving towards the right (e��������), whereas
the index L corresponds to a wave moving towards the left (e��������). We then write
the Fresnel equations, which state that the electric and magnetic fields must be
continuous at the interfaces. As B� k�E/� (see (2.17a—d)) and k

�
� 2�n

�
/�
�

,
where �

�
is the wavelength in the vacuum and n

�
is the optical index in medium i,

these two conditions may be written at z� 0:
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Fig. 9.D.1. Wave propagation across an interface.
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We will assume that the wave is incident from the left, i.e. that E
��
� 0, and the

system (9.D.2) can be immediately solved to obtain:

E
!�
� #

��
E
!�

(9.D.3)E
��
��

��
E
!�

with:

#
��
�

2n
�

n
�
� n

�

(9.D.4)
�
��
�
n
�
� n

�
n
�
� n

�

The interpretation of (9.D.3) is very simple. #
��

is the transmission coefficient of the
wave from medium 1 to medium 2, whereas �

��
is the reflection coefficient of the

wave of medium 1 off medium 2. We note several important points. First,
#
��

� #
��

, whereas �
��
���

��
. Also, we notice immediately that:

#
��
#
��
� ��

��
� 1 (9.D.5)

which is none other than a statement of the conservation of the Poynting vector
flux across the interface.

We will now generalize our notation to the description of two interfaces i� 1,
and i present in a multilayered dielectric stack with the interfaces being located at
z
�
. We will label as E

!��
and E

���
the amplitudes just to the right of the interface

i� 1/i, and E�
!��

and E�
���

the amplitudes just to the left of the i/i� 1 interface (see
Fig. 9.D.2). The continuity equations, (9.D.2), can be placed in matrix form:
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Fig. 9.D.2. Formalism for the propagation matrix S.
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���
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with the transfer matrix P given by:

P
�����

�
1

#
�����
�

1

�
�����

�
�����
1 � (9.D.7)

We remark that, given (9.D.4) and (9.D.5), the determinant of P
�����

� n
�
/n
���

. The
wave propagation in the ith layer is taken into account by using the propagation
constant k

�
or:

�
E�
���
E�
!��
��D

��
E
���
E
!��
� (9.D.8)

where D
�

is the dephasing matrix:

D
�
��

e����

0

0

e����� (9.D.9)

and where �
�
� k

�
l
�
� 2�n

�
l
�
/�
�

is the dephasing of the wave in the ith layer with
thickness l

�
.

Therefore, for a series ofN arbitrary dielectric layers, the electric fields in media
1 andN are related through:

[E�
�

]�P
��
D
�
P
��

· · ·D
+��
P
+���+

[E
+

]�S
��+

[E
+

] (9.D.10)
Propagation matrix S

The matrix S
��+

is the propagation matrix. This representation is also referred to
as the S matrix formalism. As it is a product of a series of matrices, the determinant
of the S matrix is the product of their determinants and is found to be n

+
/n
�
. The

determinant is therefore independent of the different media separating medium 1
from medium N. The notation in (9.D.10) is also interesting as it allows one to
‘propagate’ the boundary conditions through the structure. This formalism is
identical with that developed in Chapter 1 to obtain the eigenstates for a quantum
well.
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If we seek the transmission coefficient #
�+

and the reflection coefficient �
�+

for
the entire structure, as well as the transmittance T

�+
and the reflectance R

�+
, we

need only impose the boundary condition E
��+
� 0, which signifies that no other

wave comes from the left, which leads to:

�
�+
�
S
��
S
��

and R
�+
� ��

�+
�� (9.D.11)

#
�+
�

1

S
��

and T
�+
�
n
+
n
�

�#
�+
�� (9.D.12)

We note that R
�+
�T

�+
� (�S

��
��� n

+
/n
�

)/ � S
��
��� 1, since det(S)� n

+
/n
�
. This

last equality specifies that light flux is conserved, and this is rather reassuring!

9.D.1 The Fabry–Pérot cavity

We will now apply this formalism to the simple problem involving a Fabry—Pérot
cavity (see Fig. 9.D.3). It consists of a dielectric film of thickness l

���
coated with

two thin metallic layers. Rigorously, this system is composed of five media (vac-
uum�metal�dielectric�metal� vacuum). This problem could be solved
in its entirety by introducing a complex index of refraction for the metal and
by making its real portion tend towards ��. This will be left as an exercise to
the reader. Rather, we will consider the system to consist of three media
(vacuum� 1� dielectric� 2� vacuum� 3) with the metallic layers being taken
into account by the transfer matrices P

��
and P

��
given by:

P
��
�

1

#
���

1 �
�

e��
�
�
e�� 1 � and P

��
�

1

#
���

1 �
�

e���
�
�
e��� 1 � (9.D.13)

One of the numerous properties of metallic films that the reader can derive as an
exercise is that (contrary to the case of an interface between dielectrics) the
coefficients #

��
and #

��
are equal. The term e�� represents the dephasing contrib-

uted by the metallic mirror ("�� in the case of a perfect mirror) and the reflection
coefficient �

�
is close to unity and takes into account the high reflectivity of the

mirrors. The propagation matrix S
��
�P

��
D
�
P
��

can be easily calculated:

S
��
�

1

#
��
#
���

e������
�

e�� �
�

[e�������� e������]
�
�

[e�������� e������] e�����
�

e��� � (9.D.14)

which leads to the transmittance T
-+

for the Fabry—Pérot cavity (see (9.D.12)):

T
-+
�

�#
��
#
��
��

�1� ��
�

e����������
(9.D.15)
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Fig. 9.D.3. A Fabry—Pérot cavity.

We thus introduce the total dephasing coefficient �� 2(�� "), the mirror trans-
mittance (T� �#

��
��), and reflectance (R� ��

�
). The total cavity transmittance, i.e.

the portion of the light intensity incident from the left which crosses the cavity, is
therefore:

T
-+
�

T�
1�R�� 2R cos �

(9.D.16)

where we recall that phase � is given by:

�� 2�
2�n

��
l
���

�
�

� "� (9.D.17)

When the wavelength of the incident light upon the cavity is varied, the transmit-
tance oscillates between the minimum T

���
and maximum T

���
values given by

(9.D.16):

T
���
�

T�
(1�R)�

(9.D.18)
T

���
�

T�
(1�R)�

If the mirrors were perfect (R�T�A� 1 with the mirror absorption coefficient
A� 0), we would have T

���
� 1, i.e. all the energy would be transmitted across the

cavity. This might seem surprising as if one approaches two mirrors possessing a
weak transmittance T, the total transmittance of the combined mirrors (when
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separated by the proper distance) turns out to be 1 instead of the T�we might have
simply expected! This results from a constructive interference effect typical of wave
phenomena. A similar phenomenon exists in the case of resonant tunnelling of
electrons across double quantum barriers.

Substituting (9.D.18) into the expression for cavity transmittance (9.D.16), we
obtain:

T
-+
�T

���

1

1�C sin� (�/2)
(9.D.19)

where C is the cavity contrast given by:

C�
T

���
T

���

� 1�
4R

(1�R)�
(9.D.20)

Near the cavity resonance (�� 2m�, wherem is an integer), (9.D.19) takes the form
of a Lorentzian:

T
-+

� T
���

1

1� (2F/�)���2n
��

l
���
�
�

�m��� "�
�

(9.D.21)
� T

���

1

1� (2F/�)���
�
��
�m��� "�

�

Fabry–Pérot cavity transmittance

where �� is the separation between the optical modes and F is the finesse of the
cavity given by:

F��
�R

1�R
(9.D.22)

Cavity finesse

which is of the order of �/T forR� 1. Figure 9.D.4 shows T
-+

as a function of light
frequency. The cavity displays transmission maxima separated by:

���
c

2n
��
l
���

(9.D.23)

which is the cavity mode spacing (or free spectral range) with a full width at half
maximum given by:

���
��
F

(9.D.24)

from which the quantity F derives its interpretation as a measure of finesse. For a
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Fig. 9.D.4. Transmission spectrum for a Fabry—Pérot cavity with a finesse, F� 10.

perfect mirror ("��), the cavity resonances occur for cavity thicknesses of:

l
���
�m

�
�

2n
��

(9.D.25)

where m is an integer. A resonant Fabry—Pérot cavity is therefore a half-wave type
cavity. An interpretation of Fabry—Pérot resonance is given in Fig. 9.D.5. In this
diagram, the magnitudes and relative phases of the various propagating electric
fields are represented as Fresnel vectors, or phasors. Off resonance, the vectors
corresponding to the reflected waves add together (in a circular fashion) to zero.
Everything takes place as though the two metallic mirrors behaved independently
of one another, with each mirror possessing a transmittance T and the total
transmittance for the pair being T�.

On the other hand, as the dielectric film thickness approaches the ‘half-wave’
criterion, the phase difference between the individual phasors are multiples of 2�
(i.e. they are aligned), and they sum (interfere) constructively.

We will now calculate the complex amplitude of the electric field inside a cavity
assuming perfect mirrors. This is obtained by using [E

�
]�P

��
[E
�

] along with
(9.D.1), i.e:

E
�
(z)

E
!�

�
#
��

1� ��
�

e����
[e������ �

�
e�����e����] (9.D.26a)

The field amplitude inside the cavity is the norm of (9.D.26a) (this is not a trivial
result and is left to the reader as an exercise). Figure 9.D.6 shows the distribution of
the electric field inside the cavity. We notice a resonance effect which acts to
increase the maximum field strength inside the cavity. We can easily find the
maximum field strength by supposing that at resonance (i.e. �� � and �

�
� 1), the

electric field (9.D.26a) approaches a sinusoidal stationary wave which drops to
zero at the mirrors at z� 0 and z� l

���
, with k

�
��/l

���
. The maximum field
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Fig. 9.D.5. (a) When the Fabry—Pérot cavity is off resonance, the phasors add together in a
circular fashion. (b) When the cavity approaches resonance, the phase difference between each
phasor is a multiple of 2� and the individual phasors align with one another to produce a
transmittance which approaches unity. (c) This latter condition occurs in a half-wave cavity.
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Fig. 9.D.6. Increase in the internal cavity field resulting from a decreased transmission
coefficient T.

strength then occurs when z� l
���

/2, or:

E
�����
E
!�

�
#

1� ��
�

(e��������������
�

e�����������)�
#

1��
�

(9.D.26b)

i.e. taking (9.D.5) and (9.D.21) into account:

E
�����
E
!�

� 2	
F

�
�

2

�T
(9.D.26c)

The light intensity in the middle of the cavity is therefore enhanced by a factor 4/T
compared with the incoming flux; the factor 1/T stemming from the mirror
reflectivity and the factor 4 from the constructive interference of the two counter-
propagating waves. The energy stored in the cavity is obtained by integrating over
the sinusoidal distribution, i.e:

E
���

�
1

2
�
�
n�
�
S �

2

�T
E
!� �

�
����

�
�

sin� k
�
zdz� �

�
n�
�
Sl

���

�E
!�
��

T
(9.D.27)
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where S is the surface of the cavity. This is to be compared with the energy lost per
cycle, which corresponds to the integrated photon flux per cycle. The ratio
between the two quantities, the cavity quality factor Q, given (9.D.27) and (9.D.23)
may be written as:

Q�
energy stored

energy lost per cycle
�F

�
��

(9.D.28)

Quality factor and finesse of a cavity for a wave of frequency �

This quantity relates to the photon lifetime through:

Q� 2��#


(9.D.29)

which fixes the relationship between #


and F.

Example
1. We consider a Fabry—Pérot cavity assembled using a dielectric rod 50 cm long

with an index of refraction of 1.5. Metallic mirrors are deposited at either end
possessing reflectances R� 99.9% and transmittances T� 1�R� 10��. The
cavity finesse is then F��R/T� 3140. The mode spacing is 3� 10	m s��/
(3� 0.5 m) or 2� 10	Hz. For a wavelength of 1 �m (�� 3� 10��Hz), the
quality factor Q� 3.14� 10�� 3� 10��Hz/2� 10	Hz, or Q� 5� 10!
Such values are in reality difficult to obtain as it is difficult to achieve the degree
of parallelism required between both mirrors given the large separation dis-
tance.

2. This time we consider a cavity implemented using a 0.25 �m thick layer of
AlGaAs with n� 3. The wavelength of the resonant wave in this cavity is then
�
�
� 2n

��
l
���

or 1.5 �m. Two metallic mirrors are deposited on either side of the
AlGaAs layer possessing a reflectance R� 99.9% and a transmittance
T� 1�R� 10��. The cavity finesse is then as obtained in the preceding
example, F��R/T� 3140. This time, the mode spacing is however,
3� 10	m s��/(2� 3� 0.25� 10��m), or 1.5� 10��Hz. The quality factor is
then 3.14� 10�� 2� 10��Hz/1.5� 10��Hz, or Q� 4200.

9.D.2 Bragg mirrors

We now consider a succession of bilayers formed by alternating layers of media 1
and 2. We will interest ourselves for the time being in the propagation matrix S
defined between the right edges of medium 1 over two successive bilayers (see Fig.
9.D.7).

S�P
��
D
�
P
��
D
�

(9.D.30)

with:
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Fig. 9.D.7. Geometry and the associated elementary propagation matrix for a Bragg mirror.
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(9.D.31)

D
�
��

e���� 0

0 e���� ; D
�
��

e���� 0

0 e����
where #

��
, #
��

, and �
��
���

��
are as defined in (9.D.4). The Smatrix is then easily

found to be:

S�
1

#��
e����(e�������e���) 2i sin �

�
�e����

�2i sin �
�
�e��� e���(e���� ��e����)� (9.D.32)

with #�� #
��
#
��

. This Smatrix takes a particularly simple form when layers 1 and
2 are of the ‘quarter-wave’ type, i.e. when �

�
��

�
��/2 or alternately

l
�����

�m��/4n
�
, where m is an integer:

S��
1

#��
1� �� 2�

2� 1� ��� (9.D.33)

This matrix possesses the eigenvalues:

X
�
� (1� �)�

(9.D.34)X
�
� (1��)�

and eigenvectors:

V
�
�

1

�2�
1

1� and V
�
�

1

�2�
1

�1� (9.D.35)

which readily leads to the diagonalization of (9.D.33):

S�T��MT, with M�
1

#��
(1��)� 0

0 (1��)�� and T�
1

�2�
1 1

�1 1� (9.D.36)
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A series of N successive bilayers then yields a propagation matrix given by:

S+�T��M+T�
1

#�+
T���

(1��)�+ 0

0 (1� �)�+�T (9.D.37)

with a reflectance given by (9.D.12):

R
+
� �

(1��)�+� (1��)�+

(1��)�+� (1��)�+ �
�

(9.D.38)

or, given (9.D.4):

R
+
��

1��
n
�
n
�
�
�+

1��
n
�
n
�
�
�+�

�

(9.D.39)

Reflectance for a sequence of N dielectric quarter-wave bilayers

where we have arbitrarily taken n
�
� n

�
. We see that as the number of layers grows

in size, the reflectance of the system tends towards 1 resulting in a Bragg mirror.
We are well within our rights to imagine that such a Bragg reflection constitutes

a highly resonant phenomenon, and that the conditions on wavelength for obtain-
ingR� 1 must have to be Draconian at best. Nothing in fact could be further from
the truth! In fact, forbidden bands (or stop bands) for light propagation form in
complete analogy with the band structure results obtained in Chapter 5 for
electrons in crystalline solids.

We may generalize the approach used above to describe conditions outside of
resonance (albeit a considerable task). We will only indicate the number of
required bilayersN to obtain a stop band �� such that 1�R� 10��:

��
�
��

8 ln 10

��
n
�
� n

�
n
�
� n

�
�2 Log

n
�
n
�

�
n�Log 4

N ��
���

(9.D.40)

When the number of bilayers N tends towards infinity, the stop band tends
towards the limit given by:

��
�
�

4

��
n
�
� n

�
n
�
� n

�

ln
n
�
n
�
�
���

(9.D.41)

Width of a stop band

Example
We wish to create a Bragg mirror out of GaAs/AlAs bilayers, which reflects at a
peak wavelength of �� 1 �m. The optical indices for GaAs and AlAs are 3.30 and
2.9, respectively. The ‘�/4’ thicknesses required are then l

1�*�
� 757 Å and
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Fig. 9.D.8. Reflectance spectrum for the Bragg mirror specified in the example.

l
*
*�

� 862 Å for the two materials. For a series of 20 bilayers, the mirror reflectiv-
ity will be:

R
��
� [(1� 0.878��)/(1� 0.878��)]�� 97.8%

This would require a total epitaxial deposition of 20� 1578 Å, or 3.1 �m. Assum-
ing typically epitaxial deposition rates of �1 �m h��, growing such a layer would
require a little over 3 hours.

The width of the stop band that would be obtained is given by (9.D.41) to be:

��/�� 4/�[0.44/6.36 ln(3.40/2.96)]���, or ��� 0.116 �m.

Figure 9.D.8 shows the reflectance spectrum R(�) calculated using the MATH-
EMATICA program below for this 20 bilayer mirror. We see that the width of
the stop band is close to the value calculated above.
x=.;l=1. (*�m*)
n1=3.3;n2=2.9;l1=l/(4*n1);l2=l/(4*n2);
r12=(n1-n2)/(n1+n2);t12=2n1/(n1+n2);
r21=(n2-n1)/(n1+n2);t21=2n2/(n1+n2);
A=Array[a,�2,2�];a[1,1]=1.;a[1,2]=r12;a[2,1]=r12;a[2,2]=1.;M12=A/t12;
B=Array[b,�2,2�];b[1,1]=1.;b[1,2]=r21;b[2,1]=r21;b[2,2]=1.;M21=B/t21;
R = Table[�x,D1=Array[d1,�2,2�];D2=Array[d2,�2,2�];
d1[1,2]=0;d1[2,1]=0;d1[1,1]=N[Exp[-I*2*Pi*n1*l1/x]];d1[2,2]=N[Exp[I*2*Pi*n1*l1/x]];
d2[1,2]=0;d2[2,1]=0;d2[1,1]=N[Exp[-I*2*Pi*n2*l2/x]];d2[2,2]=N[Exp[I*2*Pi*n2*l2/x]];
S = D2.M21.D1.M12;Sp=MatrixPower[S,20];Spp= M12.Sp;
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r=Abs[Spp[[1,2]]/Spp[[2,2]]]�,�x,.85,1.15,.001�];
ListPlot[R]

FURTHER READING

G. Bruhat, Optique, 6th Edn, Masson, Paris (1992).
M. V. Klein and T. E. Furtak, Optics, John Wiley, New York (1986).
P. Yeh, OpticalWaves in Layered Media, Wiley Interscience, New York (1988).
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10 Elements of device physics

10.1 Introduction

Semiconductors are materials that are extremely sensitive to external perturba-
tions (e.g. illumination, electric fields, thermal gradients, . . .). This characteristic is
put to use in a variety of semiconductor devices. The typical response of a
semiconductor to such a perturbation will be to screen it out. Up to this point, we
have derived two characteristic screening lengths. One of these was the depletion
length (6.68):

L�	
2�V
eN

)

(10.1)

which measures the distance over which a potential V is screened by a fixed space
charge of density N

)
(typically consisting of the ionized dopant atoms) and the

Debye length (6.25):

l
)
�	

�k
9
T

e�n
�

(10.2)

which measures the distance over which a potential is screened by mobile charges
with density n

�
. We recall that e is the electron charge, � is the permittivity of the

semiconductor, k
9

is Boltzmann’s constant, and T the temperature. The range of
accessible doping concentrations in semiconductors is limited at the low end by
the background density of electrically active impurities introduced during sample
growth and processing (for Si and GaAs these lower limits are nowadays
,10	 cm�� and ,10�� cm��, respectively). The upper doping limits are set by the
metallic threshold for N

)
�N


or N

0
depending on whether the material is n or p

type (see Chapter 5). We see that these screening length scales range from 0.1 to
10 �m for doping levels which vary between 10�	 cm�� and 10�� cm��, respectively.
This lower limit of 0.1 �m determines the typical dimensions for microelectronic
components. In this chapter, we will study the electronic behaviour of a few
structures which, in addition to their relevance to optoelectronics, form the basic
building blocks of modern electronics.
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10.2 Surface phenomena

At the surface of a semiconductor, the periodicity of the crystal potential is broken.
Each atom at the surface is bound on the semiconductor side to underlying atoms
within the bulk, whereas the electronic wavefunctions on the vacuum side of the
interface are unterminated and free to spill out into empty space. Such unter-
minated surface states are referred to as dangling bonds. These two phenomena
lead to the formation of electronic states within the forbidden gap of the bulk
material near the surface (see Complement 5.D). In fact, these localized surface
states are distributed in a continuous fashion across the gap and form a continuum
within the bandgap. To characterize this continuum, we introduce a characteristic
level �

�
above the valence band which possesses the following property: when the

surface states are occupied up to the level �
�
, the surface is electrically neutral. In

the language of semiconductors, the states below �
�

behave as donors (as they are
neutral when occupied by electrons) whereas the states above �

�
behave as

acceptors (as they are negative when occupied by electrons). In practice, the
surface is generally exposed to the ambient atmosphere and it is highly probable
that impurities adsorbed at the surface will contribute to the population of
localized states within the gap. This contribution can, however, be incorporated
into the definition of �

�
.

At the surface of an n-type semiconductor, for example, the Fermi level is
determined by the dopant concentration inside the material. At thermodynamic
equilibrium, the Fermi level is constant throughout the structure. At the surface,
the surface states must be occupied up to the Fermi level thereby creating a surface
charge:

���eN
��

[E
3
��

�
�E

0
(0)] (10.3)

where N
��

(cm�� eV��) is the density of surface states (for simplicity assumed
constant in the gap here) andE

0
(0) is the position of the valence band at the surface

(see Fig. 10.1).
As the system is globally neutral, this surface charge must be compensated by a

space charge in the semiconductor distributed over the depletion region (see Fig.
10.1). In contrast to the surface charge (which has a thickness of the order of an
atomic monolayer), the depletion depth L is macroscopic. The drop in the electro-
static potential in this space charge region was described in Chapter 6 and is given
by Eq. (6.69) to be:

V
�
�

1

2

e

�
N
)

L��
1

2�
�L (10.4)

where � is the charge in the depletion layer. The position of the conduction band at
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Fig. 10.1. The surface states between the Fermi level and �
�

create a surface charge which is
compensated by the space charge in the depletion region.

the surface is therefore E

(0)�E


(�)� eV

�
, and represents an internal potential

barrier against electron escape from the bulk semiconductor. The potential drop
V
�

is obtained by substituting (10.4) into (10.3):

V
�
�

1

2

e

�
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��
[E
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��

�
� eV

�
�E
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(�)] (10.5)

or

V
��1�

1

2

e�

�
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����
1
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�
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��
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3
��

�
�E

0
(�)] (10.6)

In the limit of very large surface state densities, V
�

no longer depends on N
��

. The
Fermi level at the surface therefore remains pinned at E

0
(0)��

�
, and the position

of the Fermi level is determined by:

E

(0)�E

3
� eV

�
�E


(�)�E

3
�E

�
��

�
(10.7)

and the thickness of the depletion region is equal to the corresponding depletion
length for a potential V

�
.

We will now analyse the electronic behaviour of a metal layer deposited on a
semiconductor. First we note that before an electron can escape the semiconductor
and move into the vacuum, an electron at the bottom of the conduction band at
the surface must overcome a barrier $

#
. This is the electronic affinity of the

semiconductor, and it represents the energy which holds the electrons in the
material (see Fig. 10.2).
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Fig. 10.2. Between a metal and a semiconductor in equilibrium, a transfer of charge takes
place allowing the Fermi levels to become aligned. The distribution of this charge determines
the height of the Schottky barrier �

9
.

As a thought experiment, we will bring the metal nearer to the semiconductor
surface. As the metal does not have a gap, its affinity is equal to the work function
�
�

of the metal (i.e. the energy difference between its Fermi level and the vacuum).
If we short the two materials by an external conducting wire, the Fermi levels will
become aligned. This results from a charge transfer between the semiconductor
and the metal thereby creating a potential energy difference �

�
� $

#
�

(E

(�)�E

3
) between the internal volumes of these two materials. In a metal,

which possesses a colossal number of free electrons (10��—10�� cm��), the transfer-
red charges are confined to a surface layer with a thickness given by the Debye
length (referred to as the Thomas—Fermi length in metals). As this quantity is
extremely small in metals, this charge layer can be represented as a surface charge.

On the side of the semiconductor, the transferred charge will distribute itself
according to two possible models.

1. The Schottky model. If there are no surface states, the charge is created only
within the depletion layer. As the separation between the two materials tends
towards 0, the conduction band is then fixed by:

E

(0)��

�
� $

#
(10.8)

This equation makes explicit that there are no charges at the interface. The
potential drop across the depletion layer is:
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(�) (10.9)

where E

(�) is determined by the doping concentration. This is the Schottky

model.

2. The Bardeen model. In the opposite limit, where the density of surface states is
large, the transferred charge can easily be supplied by emptying a sufficient
number of surface states without significantly affecting the semiconductor bands.
In this case, eV

�
is completely determined by �

�
and is independent of the type of

metal deposited. This is the Bardeen model.

In both models, the energy:

e�
9
�E


(0)�E

3
(10.10)

is referred to as the Schottky barrier. In the first model, �
9

depends on the metal,
but not upon the doping in the semiconductor. In the Bardeen model, �

9
is

independent of both metal and semiconductor doping.
In reality, experimental results sit somewhere between these two models, but

more often than not, the results are consistent with the Bardeen model. Further-
more, once a metal is in contact with a semiconductor, the surface states may be
modified by chemical bonding between the materials with the result being that
both �

�
and �

9
become dependent upon the metal. To summarize, the Schottky

barrier depends on the metal/semiconductor pair, but this dependence is much
smaller than that predicted by the Schottky model. In what follows, we will assume
that �

9
depends weakly on the metal/semiconductor pair, and is unaffected by the

doping concentration. Values for �
9

will be taken to follow from experiment.
The metal/semiconductor pair is said to form a Schottky contact to the semicon-

ductor. We will see that this type of contact acts as a rectifier (i.e. allowing
preferential current flow in one direction), an important characteristic exploited in
Schottky diodes. Such devices are also useful as optical detectors (see Chapter 11).

10.3 The Schottky junction

When a metal and a semiconductor are in contact, the barrier between each of the
materials and the vacuum no longer exists, and an electron with energy in excess of
the barrier E


(0) can move between the metal and the semiconductor. At thermo-

dynamic equilibrium, the electron density at the interface originating from the
semiconductor is classically given by:

n(0)�N

exp��

E

(0)�E

3
k
9
T ��N


exp��

e�
9

k
9
T� (10.11)
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For a large barrier height �
9

with respect to k
9
T, this density is naturally very

small in comparison with the carrier density inside the semiconductor:

n(0)

n(�)
�
n(0)

N
)

� exp��
eV

�
k
9
T� (10.12)

where eV
�
�E


(0)�E


(�).

Among these n(0) surface electrons, half of them have a velocity component
directed towards the metal and the other half towards the semiconductor. The
average velocity of the electrons directed towards the metal is:

�v
�

�

�

�
�

v
�
exp��

m

v�
�

2k
9
T�dv

�

�

�
�

exp��
m

v�
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2k
9
T�dv

�

�	
2k
9
T

m

�

(10.13)

with a corresponding current density of:

j
#��

� e
n(0)

2
�v
�

� e	

k
9
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2�m


N

exp��

e�
9

k
9
T� (10.14)

As long as the system is in equilibrium, this current is perfectly compensated by a
current flowing in the opposite direction from the metal to the semiconductor.

j
#��

��j
��#

(10.15)

If we apply a voltage �
���

, we now have (see Fig. 10.3):

E
3��
�E

3�#
� e�

���
(10.16)

where the Fermi levels are defined far from the junction. In the metal, the
conductivity is so great that no drop in potential is possible and E


(0) therefore

remains at E
3��
� e�

9
. The applied potential is therefore confined to the semicon-

ductor, which must alter its depletion region so that the potential drop becomes
E

(0)�E


(�)� eV

�
� e�

���
.

Note: This modulation of the depletion length L with the applied bias leads to a capacitance C given by the
incremental charge dQ due to a variation in the applied voltage d�

���
:

C

A
�

1

A

dQ

d�
���

� eN
)

dL

d�
���

�	
e�N

)
2(V

�
��

���
)
�

�
L

(10.17)

This capacitance is therefore a function of the applied voltage — a property exploited largely in ultrahigh
frequency applications. The Schottky barrier therefore acts as a varactor diode, offering a variable reactance.
If the applied voltage is the sum of a small amplitude signal, with a frequency �

#
and amplitude V

#
, and a

local oscillator, with frequency �
�
��

#
��� and amplitude V

�

V

#
, the reactive current will possess a

component at the difference frequency ��. This current may be written (Q�N
)

L):
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Fig. 10.3. A Schottky junction under an applied forward voltage �
���

. The depletion region
shrinks and the electron density on the semiconductor side increases, causing an increase in
the electron flux from the semiconductor to the metal.
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which contains a current with frequency �� of:

dQ

dt
�

dQ

d�
���

d�
���

dt
�
C(0)

2

V
�
V
#

V
�

��
2

sin(��t) (10.19)

In general, all the frequencies �
�
��

�
,�
�
��

#
,�

#
��

#
, are contained in the diode current. The varactor

therefore translates the high frequency signal at �
#

to an intermediate or low frequency signal at �
#
��

�
. It

is therefore a useful element in heterodyne detection. As with other non-linear devices, the varactor also
performs frequency doubling and rectification functions �

#
��

#
. We will return to these concepts later

within the context of non-linear optics (Chapter 12).

On the metallic side of the interface, nothing has changed. The electrons still
see the same barrier to entry into the semiconductor, and the metal to semicon-
ductor current density remains:

j
��#

��e
n(0)

2
�v
�

��e	

k
9
T

2�m


N

exp��

e�
9

k
9
T� (10.20)

On the semiconductor side, however, the potential barrier does change. It is
this asymmetric response between the metal and the semiconductor which
leads to the rectifying behaviour of the diode. To simplify the calculations, we
will suppose that the diffusivity (and hence mobility) is very large in the
semiconductor. We can then assume that the electron transfer will only slightly
perturb the semiconductor’s equilibrium state. The carrier density on the
semiconducting side of the junction is then:

n(0)�N

exp��

E

(0)�E

3�#
k
9
T ��N


exp��

e�
9
� e�

���
k
9
T � (10.21)
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and the current directed towards the metal is:

j
#��

� e	
k
9
T

2�m


N

exp��

e�
9

k
9
T� exp�

e�
���

k
9
T � (10.22)

The net current crossing the structure is then:

j(�
���

)� j
����exp�

e�
���

k
9
T �� 1� (10.23)

Current–voltage characteristics for a Schottky diode

with the saturation current j
���

given by:

j
���
� e	

k
9
T

2�m


N

exp��

e�
9

k
9
T�

�
4ek�

9
�m


h�

T�exp��
e�

9
k
9
T� (10.24)

�A*T�exp��
e�

9
k
9
T�

We call A* the Richardson constant. Its value, assuming a mass of m

�m

�
, is

A� 120 A cm��K��. A characteristic plot for Eq. (10.23) is shown in Fig. 10.4.

Example
For an Al—GaAs junction, �

9
� 0.7 V. The room temperature saturation current is

then:

j
���
�A

m


m
�

T�exp��
e�

9
k
9
T�

� 120� 0.067� 300�� exp��
0.7

0.025�A cm��� 0.5 �A cm��

For a diode with a 100� 100 �m� area, the maximum reverse current is
�I

���
�� 0.05 nA. For an applied voltage �

���
� 0.2 V, the forward current is:

I� I
����exp�

0.2

0.025�� 1�� 0.15 �A

and for �
���
� 0.4 V, I� 0.44 mA. The diode resistance R

�
at �

���
� 0 equals:

R
�
A��

�j
��

���
�
��

�
�����

�
k
9
T

ej
���

�
0.025

0.5� 10��
� cm�� 50 k� cm�
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Fig. 10.4. Current—voltage characteristic for a Schottky diode.

To take into account the detailed characteristics of actual Schottky diodes, a
number of corrections must be added to this idealized model. To begin with,
electron transport in the depletion region can be limited by the capacity of the
semiconductor to transport electrons if the diffusivity is low. In other words, under
forward bias, the density n(0) will be lower than the equilibrium value for the
semiconductor (Eq. (10.21)) and the injected flux into the metal will be reduced.
This results in a modification to the exponential prefactor j

���
in the I—V character-

istics, whereas the dependence on �
���

remains unchanged.
Furthermore, the barrier �

9
may be reduced by the image charge. An electron

exiting the metal will polarize the electron gas in the metal. The resulting affinity of
the electron to the metal, known from electrostatics, can be represented by an
attraction of this electron to a single virtual image charge V

��
(z)��e�/(4�(2z)),

where z is the distance between the electron and the metallic surface. This potential
then adds �eFz to the depletion region potential, with the effect being that the
maximum of this latter potential is reduced with respect to �

9
: V

���
��

9
� (eF/

4�)���. The overall barrier is therefore lowered, increasing j
���

and inferring upon it
a dependence on the field strengthF (and hence on the applied voltage). Also, if the
field F is very strong (as is the case for a heavily doped semiconductor even under
low applied voltages) the electrons can cross the barrier by tunnelling and the I—V
characteristics become linear. In this case, the junction is referred to as an ohmic
contact.

Lastly, several parasitic processes (electron—hole pair production in the space
charge region, leakage currents near the perimeter of the contact, . . .) can be
sources of additional current. These processes depend strongly upon the explicit
fabrication ‘recipes’ used to produce the contacts. In practice, these parasitic effects
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are taken into account by an ideality factor n, which is always �1 — a manifestation
of Murphy’s law in Nature — obtained from the measured characteristics of the
contact:

j(�
���

)� j
����exp�

e�
���

nk
9
T�� 1� (10.25)

The Schottky diode is ideal when n� 1.

10.4 The p–n junction

A p—n junction is composed of a doped p-type semiconductor on one side of a
junction and a doped n-type semiconductor on the other. The I—V characteristic
for the current crossing such a junction as a function of the applied voltage exhibits
rectification as was the case for the Schottky diode; however, the processes
involved are quite different.

We will begin by studying an abrupt p—n junction at thermodynamic equilib-
rium (i.e. a junction over which the doping type changes over a very small distance
in comparison with the spatial extent of the depletion region — see Fig. 10.5). For
z� 0, the semiconductor is doped p type with a constant density of acceptorsN

(
.

Far from the junction, the Fermi level is therefore near the valence band, and the
hole density in the valence band is p

�
�N

(
, where the subscript ‘p’ designates the p

side of the junction. Also, since at thermal equilibrium we have np� n�
�

, the
electron density is n

�
� n�

�
/N

(
, with electrons playing the role of minority carriers

given that n
�
�N

(
. On the n side of the junction (for z� 0), the semiconductor is

doped with a constant densityN
)

of donors. Far from the junction, the Fermi level
therefore resides near the conduction band, and the majority electron and minor-
ity hole carrier densities are, respectively, n

�
�N

)
and p

�
� n�

�
/N

)
� n

�
.

Across the junction, the hole density cannot discontinuously change from p
�

to
p
�
. There is therefore a zone about z� 0, where p(z)� p

�
�N

(
. Similarly in the

case of the electrons, we also have over this region n(z)� n
�
�N

)
. At equilibrium,

n(z)p(z)� n�
�

is always true, but the sum of the mobile charge densities will be much
smaller than the densities of the fixed ionized dopant atoms. The depletion region
is therefore characterized by a charge density —eN

(
on the p side of the junction

and by a positive charge eN
)

on the n side. This dipolar layer is responsible for
creating an electrostatic potential on either side of the junction. At equilibrium, the
potential allows the electron and hole Fermi levels to line up. This potential is
referred to as the internal or built-in potential as it is already present at equilibrium.
It is given by:
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Fig. 10.5. A p—n diode at thermodynamic equilibrium. The potential created by the charge
dipoles in the depletion region between �d

�
and d
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lifts the conduction and valence bands on

the p side relative to the bands on the n side. This built-in potential acts to confine the
electrons to z� 0 and the holes to z� 0.
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�E
�
� k

9
T ln�

N
0
N


N
(
N
)
�

where we have used (5.52) and (5.54) to calculate the Fermi levels as a function of
doping concentrations.

The physical origin for the potential barrier is as follows. If we imagine that we
bring the n- and p-type regions of the semiconductor into contact with one
another, the majority carriers from either side of the junction will diffuse into each
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other (i.e. into regions where they existed previously in minority concentrations) as
would be expected by Fickian diffusion. In the absence of any opposing mechan-
ism, both electrons and holes would continue to diffuse until their concentrations
became constant across the entire structure. The charged dopant atoms left
behind, however, act to oppose this mechanism. As more carriers cross to the other
side, the magnitude of the space charge formed by the residual ionized dopant
atoms increases, creating an energy barrier which impedes and eventually stops
any further net carrier diffusion. We therefore see that carrier diffusion will play a
dominant role in the operation of a p—n diode. It is for this reason that the built-in
field is at times referred to as a diffusion potential. We note, in passing, the power of
the Fermi level concept. This quantity defines the electronic affinity in each of the
materials and takes into account, chemical potentials, electrostatic potentials, etc.
The final distribution of the potential will be that which maintains a constant Fermi
level across the material.

We can now go ahead and calculate the electrostatic potential �(z) or, simpler
yet, the potential energy of the electrons V(z)��e�(z). We will make the de-
pletion region approximation as it considerably simplifies the calculations — i.e. we
will neglect the influence of the carriers on the potential distribution in the space
charge region.

Therefore, over �d
�
� z� 0, the solution to Poisson’s equation:

d�V
dz�

�
e�

�
N
)

(10.27)

gives:

V(z)�V
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�
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2�
N
)

(z� d
�
)� (10.28)

and on the p side for 0� z� d
�
:

d�V
dz�

��
e�

�
N
(

(10.29)

which yields:

V(z)�V
�
�
e�

2�
N
(

(z� d
�
)� (10.30)

At the junction situated at z� 0, the physical continuity of the potential and its
first derivative, i.e. the electric field, leads to the conditions:

V
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�
e�

2�
N
)
d�
�
�V

�
�
e�

2�
N
(
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(10.31)
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with the solution (since V
�
�V

�
�V

��
):
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(10.32)

d�
�
�

2�V
��

e�N
(

1

1� (N
(

/N
)

)

The semiconductor bands become shifted in energy by the presence of the poten-
tial since the energy of the electrons increases along each point by �e�(z)�V(z):

E

(z)�E


(�W

�
)�V(z)�V

� (10.33)
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From this energy band configuration for E

(z) and E

0
(z), we may calculate the

electron and hole densities:
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and in particular:
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We have therefore determined at thermodynamic equilibrium: the form of the
potential V(z), the band diagram for E


(z) and E

0
(z), the widths of the space charge

regions, and the carrier densities at each location.

Example
We consider a GaAs p—n junction with each region doped with N

)
�

N
(
� 10�� cm��. We seek the diffusion potential V

��
and the electric field at z� 0

in the junction. We have from Eq. (10.26):

V
��
� 1.42 eV� 0.025 eV ln�

4.7� 10��� 7.0� 10�	

10��� 10�� �� 1.27 eV

and d
�
� d

�
� 92 nm. The depletion layer is therefore very thin. The maximum

field strength occurs at z� 0 and is equal to:

F(0)�
1

e

dV
dz
�
e

�
N
)
d
�
�

1.6� 10��

12� 8.84� 10���
10��� 9.2� 10�	

V
m
� 139 kV cm��
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Clearly, at equilibrium, no current will flow in the structure. Outside of the
depletion region, there is neither an electric field nor carrier gradient. On the other
hand, in the depletion region, there is a strong electric field, accompanied by
significant carrier gradients. The constant value of the Fermi level across the
structure guarantees that all current components will cancel out if the density profile
is as described in (10.34). Before applying a voltage to the structure, it is instructive
to keep in mind the different length scales which characterize the junction. The
zone defined by z� 0 represents a colossal reservoir of free electrons held at bay
by the depletion region potential. Only a very low concentration of minority
electrons can tail into the p side of the junction. Similarly, the z� 0 region
constitutes a hole reservoir, held in check by the depletion layer potential. Finally,
in the neutral regions, the elevated majority carrier densities ensure that the
conductivity remains high permitting the electric field to remain null. Therefore,
the potential remains constant on either side of the depletion region, even in the
presence of not too large currents.

The application of a weak forward bias �
���

(i.e. one which decreases the barrier
height) introduces a difference between the Fermi levels on either side of the
depletion region, see Fig. 10.6:

E
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�E

3��
� e�

���
(10.36)

In the neutral regions, the potential remains constant, and so the only location
where the potential drop can vary is in the narrowing depletion layer. This effect
can be accounted for by replacing V

�
in (10.31) by V

�
� e�

���
, yielding:
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In the electron reservoir, the potential at d
�

is lowered to V
�
� e�

���
. As the

depletion region is narrow, we can assume that the electron reservoir will remain in
equilibrium up to d

�
. The electron density is then from (10.34) and (10.35):
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(10.38)

� n
�
exp�
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���

k
9
T �

Shockley condition

where we recall that n
�
� n�

�
/N

(
is the minority equilibrium carrier density.

Equation (10.38) is fundamental in describing p—n diodes and is referred to as the
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Fig. 10.6. Under the influence of an applied forward bias �
���

, the depletion region shrinks,
the potential barrier between the n and p regions decreases, and the concentration of minority
carriers increases (dark lines). These carriers recombine with the majority carriers, and account
for the ensuing current flow in the structure.

Shockley condition. At z� d
�

there is a surplus of electrons with respect to the
equilibrium value n

�
. This surplus must be removed by the p contact (at z�W

�
in

Fig. 10.5) or by recombining with holes in the d
�
� z�W

�
region. In both cases, a

current is created between the junction and the p contact. It is important to
remember that as long as e�

���
�V

��
, the electrons will remain the minority

carriers by several orders of magnitude in comparison with the hole densities, and
so charge neutrality in the p region is relatively unperturbed by the injection of
electrons. As a result, there is no field to sweep the electrons out of this region (it is
in the wrong direction!) and so the only means of transport available is diffusion.
The transport equation for the electrons (see (6.60)) is then quite simply:

�n
�t
�

�
�z
D
�

�n
�z
��

n(z)� n
�

#
�

(10.39)

especially in the stationary state, where:

D
�

��n
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�
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� 0 (10.40)
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Here,D
�

is the diffusion constant for electrons in the p region and #
�

is their lifetime
prior to recombining with holes. By introducing the diffusion length:

L
�
��D

�
#
�

(10.41)
Diffusion length

the equation may be written, with �n(z)� n(z)� n
�
:

���n
�z�

�
�n(z)

L�
�

� 0 (10.42)

The Shockley condition (Eq. (10.38)) allows one to calculate �n at the edge of the
depletion region:

�n(d
�
)� n

��exp�
e�

���
k
9
T �� 1� (10.43a)

For the second limiting condition, we will model the contact at z�W
�

by a
lifetime that is so short that the electrons and holes are in thermodynamic
equilibrium with the Fermi level of the contact, so that:

�n(W
�
) � 0 (10.43b)

The solution for �n(z) is therefore:

�n(z)��n(d
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with the two limiting cases:

�n(z)��n(d
�
)exp��

z� d
�

L
�
� , L

�
�W

�

(10.45)

�n(z)��n(d
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�
� , W

�
�L

�

The first limiting case corresponds to a situation where no injected electrons can
reach the contact because they have all already recombined with holes. In this case,
given that the total current flux must be preserved, as we move away from the
junction (i.e. as z increases from d

�
towards W

�
) the electron flow is gradually

replaced by holes to fuel the recombination processes. In the second limiting case,
the diffusion length is sufficiently great so that all the electrons injected at z� d

�
arrive at W

�
without recombining with holes.

In both cases, the total current generated by the injection of electrons is the
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diffusion current at z� d
�

(positive if directed from the p side to the n side), i.e:
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where j
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is the diffusion current limit for electrons and is given by:
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A condition required for this theory to hold is that the depletion region be
sufficiently narrow so that neither pair-creation nor recombination occur. This
implies, among other things, that L

�

 d

�
� d

�
.

The reasoning applied to the injection of minority electrons into the p region,
similarly applies to holes in the n region. The potential barrier for the holes at
z��d

�
decreases in such a fashion that the hole density is:
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and the diffusion equation for the density of minority holes in the n-type region
(�W

�
� z��d

�
) is this time:

d��p
dz�

�
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� 0 (10.49)

where L�
�
�D

�
#
�

is the square of the diffusion length for holes in the n region. The
solution of this last equation with the limiting conditions at z��W

�
and

z��d
�

is analogous to (10.44) and leads to the following equation for density of
excess holes:
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(10.50)

463 10.4 The p–n junction



The current engendered by the injection of holes into the n-type region is conse-
quently:

j
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� j
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�
)� j
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k
9
T �� 1� (10.51)

with the diffusion current limit for holes:

j
�#
�
p
�
eD

�
L
�

coth�
�d

�
�W

�
L
�

���
p
�
eD

�
L
�

�
eD

�
L
�

n�
�
N
)

, L
�
�W

�

p
�
eD

�
W
�
� d

�

�
eD

�
W
�

n�
�
N
)

, W
�
�L

�

(10.52)

The total current at z, in the n region is therefore the sum of three components: an
electron current which supplies electrons injected into the p region, an electron
current which recombines with holes injected into the n region, and a hole current
injected into the n region. At any given location within the p-type region, comple-
mentary versions of these three processes also apply.

The total current crossing the structure is then the sum of (10.46) and (10.51) for
the currents injected on either side of the depletion region:
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(10.53)

Current–voltage characteristic for a p–n diode

We discussed the e�
���

� 0 case, in which we injected minority carriers. For
e�

���
� 0, i.e. under reverse bias conditions, the equations remain the same, except

that instead of a surplus of minority carriers, there is a deficit which promotes the
generation of electron—hole pairs in the neutral regions. The current—voltage
characteristics remain governed by Eq. (10.53) but with e�

���
� 0.

Example
For the GaAs junction studied above, we have N

(
�N

)
� 10�� cm��. If the

electron mobility in the p region is �
�
� 5000 cm�V��s�� and that of the holes in

the n region is �
�
� 800 cm�V�� s��, we find using the Einstein relation, D

�
�

�
�
k
9
T/e� 5000� 0.025 cm� s��� 125 cm� s��, and D

�
� 20 cm� s��. For carrier

lifetimes of #
�
� #

�
� 1 ns, the diffusion lengths are L

�
� 3.5 �m and L

�
� 1.4 �m —

clearly greater than the thickness of the depletion layer. The intrinsic carrier
density is given by (5.49) to be n

�
� 1.8� 10� cm��. A thick diode therefore

possesses the following diffusion current limits:

j
�#
�
n�
�
eD

�
N
(
L
�

�
(1.8� 10��)�� 1.6� 10��� 125� 10��

10��� 3.5� 10��

A

m�
� 1.8� 10��	

A

cm�
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�
N
)

L
�

�
(1.8� 10��)�� 1.6� 10��� 20� 10��

10��� 1.4� 10��

A

m�
� 0.7� 10��	

A

cm�

The inverse current is therefore j
#
� 2.5� 10��	A cm�� and the resistance at

�
���
� 0 is:

R
�
A��

�j
��

���
�
��

�
�����

�
k
9
T
ej
#

�
0.025

2.5� 10��	
� cm�� 10��� cm�

These values for the current limits under reverse bias are very weak. In fact, under
these conditions, the measured currents are dominated by leakage currents which
originate at electronic defects (see Complement 10.B).

The expression for the current—voltage characteristic (Eq. (10.53)) is worthy of a
few final comments:
1. The dependence on �

���
is the same as for the Schottky diode, but the difference

in the prefactors reflects the fact that different transport mechanisms are at play.
The Schottky diode is a unipolar device in which the current flow is established
by the transport of majority carriers. The p—n diode, however, is a bipolar
device in which carrier transport is controlled by the minority carriers in each
region.

2. A p—n diode behaves as a better rectifier when the diffusion currents are
minimal. Large gap semiconductors (with small n�

�
values), with high doping

levels, and long lifetimes help to decrease the diffusion currents.
3. Using a highly asymmetric doping scheme (N

(

N

)
, for example), all the

current results from the injection of electrons into the p-type region, while the
injection of holes is minimized. A similar effect can also be obtained by utilizing
different gap materials to form a p—n heterojunction in which n�

�
varies on either

side of the junction (see Complement 10.A).
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S. M. Sze, Physics of Semiconductor Devices, Wiley Interscience, New York (1981).
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Complement to Chapter 10

10.A A few variants of the diode

10.A.1 p–n heterojunction diode

The heterojunction diode is a p—n diode in which the p- and n-type regions are
defined using semiconducting materials with different bandgaps. Let us begin by
considering the structure in Fig. 10.A.1 before thermodynamic equilibrium estab-
lishes itself in both regions. In this case, each material possesses its own Fermi
level. The semiconductor heterojunction was studied in Chapter 8. In such a
structure, the bandgap discontinuity was found to be shared between the valence
and conduction band offsets �E

0
and �E


and spatially distributed across atomic-

scale dimensions. As these discontinuities are chemical in origin, they do not
change as the materials approach equilibrium. As is the case with any semiconduc-
tor junction, at thermodynamic equilibrium majority carriers diffuse into regions
where they are in a minority, until the Fermi levels become aligned. In Fig. 10.A.1,
the alignment of the Fermi levels on both sides of the structure leads to the
creation of an internal potential given by:

V
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�E���

3
�E���

3
�E���
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9
T ln�

N


N
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��E���
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� (10.A.1)

�E���
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��E
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� k
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T ln�

N

N
0

N
)
N
(
�

Poisson’s equation and the results obtained for the depletion layer thicknesses
((10.26)—(10.31)) remain unchanged. The internal potential V

��
, however, is given

by (10.A.1).
The bands again follow the potential shown for the equilibrium structure in Fig.
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Fig. 10.A.1. A p—n heterojunction diode. Material (1) is doped n type and material (2) is
doped p type. (a) Prior to onset of thermodynamic equilibrium, and (b) at equilibrium.

10.A.1. Clearly, the application of an external potential on this structure is de-
scribed by the same minority carrier transport theory as in (10.44) and (10.49) with
the important difference this time being that:

p
�
�
n�
��
N
)

and n
�
�
n�
��
N
(

(10.A.2)

where the intrinsic densities are different in each material. For a symmetrically
doped structure, N

)
�N

(
, the minority carrier density in the large gap semicon-

ductor is smaller than in the small gap material (i.e. n�
��
� n�

��
, as n�

�
	 e��

�
��9�). As a

result, the minority carrier current injected into the large gap semiconductor (the
holes in material 1) is greatly diminished in comparison with the homojunction
case.

10.A.2 The p–i–n diode

Another type of diode which is very important in optoelectronics is the p—i—n
diode, in which a lightly doped region is inserted between highly doped p- and
n-type regions (see Fig. 10.A.2). The built-in potential is as always determined by
the position of the Fermi levels in the n- and p-type regions, i.e:

V
��
�E

�
� k

9
T ln�

N

N
0

N
)
N
(
� (10.A.3)
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Fig. 10.A.2. Band diagram for a p—i—n diode at thermodynamic equilibrium.

The potential V(z) is determined by Poisson’s equation, which in the depletion
layer approximation (see Fig. 10.A.2) is:

d�V
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where the depletion lengths d
�

and d
�

are determined by V
��
�V

�
�V

�
or:
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which is nothing else but a linear potential drop between the two highly doped n-
and p-type regions. The system then behaves as a simple metal plate capacitor with
a constant electric field in the intrinsic region given by F�V

��
/(d
�
� d

�
).

The application of a reverse bias to this structure simply acts to increase the field
F:

F�
V

��
� e��

���
�

d
�
� d

�

(10.A.8)

There are many applications for p—i—n diodes. As this structure possesses a
constant electric field across the intrinsic region, it serves as a host structure for
optoelectronic components which require the modulation of a uniform field (e.g.
Stark, (Complement 8.C); or Franz—Keldysh, (Complement 7.A), effect electro-
optic modulators). By far, the most important of these consists of the use of the
p—i—n diode as a high frequency photodetector. The fast response of these photo-
diodes has a dual origin. First, the dynamic capacitance of a p—i—n diode (C� �A/
(d
�
� d

�
)) is much smaller than a comparable p—n junction (C� �A/L, where L is

the width of the depletion region). The RC time constant is thus much smaller in
the case of the p—i—n device and allows for higher frequency signal detection.
Additionally, the intrinsic region can be made sufficiently large to absorb the near
totality of the light. As a result, the absorption occurring in the neutral regions is
kept to a minimum. This in turn reduces the photogenerated contribution to the
diffusion current and effectively removes the contribution of the minority carrier
lifetime to the overall dynamic response of the photodiode (see Section 11.4).

A little bit of thought will allow us to determine the limits of this ‘constant field’
picture for the electric field in the intrinsic region of a p—i—n diode. The residual
doping in the intrinsic region is never completely null; and if the depletion length
L

�	�
corresponding to this residual doping level is smaller than d

�
� d

�
, the field

cannot remain constant and will be screened by the space charge associated with
the ionized dopants. This depletion length L

�	�
essentially depends on the quality

of the material. Another limit comes from the intrinsic density n
�

of the semicon-
ductor. The relevant parameter here is the Debye length corresponding to n

�
: if

d
�
� d

�
� l

)
, the free carriers can screen the field and the structure will degenerate

into two junctions with a zero field region in the centre. Since l
)

depends on
temperature, especially through n

�
, it becomes impossible to maintain a field in a

small gap semiconductor over important distances at ambient temperature.

Example
1. We seek the maximum tolerable residual doping level which would allow us to

implement a p—i—n diode which operates at a voltage V
V
��

. The thickness of
the intrinsic layer is D. From (10.1), we must have:
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For Si, with a voltage of 100 V and a depletion width of 50 �m (�� �
�
�
�

with
�
�
� 12), we must have N

)
� 5� 10�� cm��.

2. We seek the maximum operating temperature for an InAs p—i—n diode with an
intrinsic layer thickness D. In such a small gap semiconductor (E

�
� 0.36 eV),

the limitation results from the intrinsic carrier population at room temperature
whose density is given by (5.49). The associated Debye length is then:

l
)
�	

�k
9
T

e��N

N
0

e�����9� (10.A.10)

The effective state densities N


and N
0

are given by (5.46) for effective masses
of m


/m

�
� 0.023 and m

0
/m

�
� 0.4, or N


� 8.7� 10�� (T/300)��� cm�� and

N
0
� 6.3� 10�	 cm�� (T/300)���. The requirement that l

)
�D for D� 5 �m

leads to T
���

� 159 K.

10.B Diode leakage current

The theory behind the I—V characteristics of p—n diodes presented in Section 10.3
makes two assumptions:
1. The depletion region is narrow with respect to the diffusion lengths.
2. Neither recombination nor pair production occur in the depletion region.
The results from this theory, i.e. Eqs. (10.45), (10.50), and (10.51) are in satisfactory
agreement with experimental data obtained from semiconductor diodes with
moderate bandgaps (�1 eV) under low injection conditions, where minority car-
rier concentrations are non-negligible at room temperature. For large gap ma-
terials, there is a significant contribution to the diffusion current from generation—
recombination processes in the depletion region and, in many cases, this compo-
nent is dominant.

We saw that the Shockley condition (10.38) (which assumes that the carriers in
the depletion region remain in equilibrium with their respective regions) deter-
mines the carrier densities in the depletion region:

n(z)� n
�
exp��

V(z)�V
�

k
9
T �

(10.B.1)

p(z)� p
�
exp��

V
�
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k
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with V
�
�V

�
�V

��
� e�

���
. We recall that n

�
and p

�
are the majority carrier

concentrations on each side of the junction.
We will now suppose that trapping centres within the material lie near the centre

of the bandgap and give rise to Shockley—Read—Hall-type generation and recom-
bination (see Section 6.5). The net rate of electron—hole pair generation is then
given by (6.56):
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�p
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��

np� n�
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(p� p
�

)� #
��

(n� n
�

)
(10.B.2)

where n
�

and p
�

are the densities determined by the trapping energy E
�

, with
n
�
� p

�
� n

�
for a mid-gap trapping centre. Expression (10.B.2) indicates that as

soon as np� n�
�

(i.e. typically in the space charge region of a biased diode), there is
generation (np� n�

�
) or recombination (np� n�

�
) of electron—hole pairs.

Under reverse bias conditions (np� n�
�
— see Fig. 10.B.1), we have practically

everywhere in the depletion region p(z)� n
�

and n(z)� n
�
, and Eq. (10.B.2) leads to

a generation current:
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as the electrons and holes are rapidly swept from the depletion region by the
strong electric field which dominates there.

This current is to be compared with the diffusion current limit (10.51):
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en�
�
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N
(

L
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�
D
�

N
)
L
�

(10.B.4)

The ratio j
�
/j
#

is proportional to n��
�

, by which we see the importance of the
generation current in large gap semiconductors compared with the diffusion
current. The sum of these two currents constitutes the reversed bias diode leakage
current (see Fig. 10.B.2). Since the intrinsic carrier density n

�
is proportional to

exp(�E
�
/2kT ), we see that j

#
	 exp(�E

�
/kT) while j

�
	 exp(�E

�
/2kT ). The gener-

ation—recombination leakage current therefore prevails at high temperature,
whereas the diffusion current is dominant at low temperature.

Example
For the GaAs diode encountered in the last example of Section 10.2, we find for a
reverse bias of �1 V, a depletion layer thickness of:

d
�
� d

�
� 92 nm	

1.27� 1

1.27
� 123 nm

The generation current given #
��
� #

��
� 10 ns is then:

471 10.B Diode leakage current



d    d    +  n p

Fig. 10.B.1. Electron—hole generation mechanism by defects in the space charge region.
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Fig. 10.B.2. Leakage current in a diode as a function of temperature.
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which dominates the diffusion current by several (eight!) orders of magnitude.

In a p—i—n diode, the generation current therefore becomes more important as
the thickness of the intrinsic region increases. This dark current in the photodiode
plays a central role in the overall performance characteristics of these devices (see
Chapter 11).
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In the more general case involving an arbitrary bias, we have:
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We can find an upper limit approximation to this integral by evaluating the
maximum of the integrand: the denominator then possesses a minimum at
V�V
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such that:
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which substituted into the integrand, yields:
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This last approximation is only valid provided e�
���

� k
9
T, i.e. under forward bias

conditions.
We see that the characteristics of a diode dominated by generation—recombina-

tion currents has the same form as the classic case with the following important
differences: (i) the prefactor, and (ii) the generation—recombination current limit is
different since the denominator in the exponential is 2k

9
T, instead of k

9
T. This

then justifies that we write for the I—V characteristics of a real diode:

j� j
#�exp�

e�
���

nk
9
T�� 1� (10.B.8)

where j
#
, the saturation current, is the sum of the limiting currents, and the ideality

factor n sits between 1 and 2 (near 1 when the diffusion current is dominant and
near 2 when the generation—recombination current dominates).

To conclude, we summarize the three principal mechanisms that determine the
carrier lifetime in a semiconductor, and hence the leakage current exhibited by
diodes fabricated from these materials:
1. Radiative recombination. The radiative recombination of electrons and holes is

very efficient in a direct gap material. An expression for this time was given in
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(7.65) and can be deduced from Fig. 7.5. For typical doping levels, this value
ranges from approximately 10 ns (in GaAs) to 100 ns (in InSb).

2. Impurity recombination (Shockley—Read). This mechanism was described in
Section 6.5 and an expression for it was given in (6.59):

1

#
� �

"�
v
��
N
�

(10.B.9)

whereN
�

is the defect density and v
��

is the thermal velocity of the carriers given
by �m


v�/2
�m


v�
��
� kT/4� with (for example) v

��
� 10�� (T/300)��� cm s��

in GaAs. The capture cross-sections �
"�

generally correspond to the area
covered by the impurity wavefunctions (i.e. of the order of 10��� cm�). There-
fore, in GaAs, a defect concentration of 10�� cm�� leads to a lifetime of 100 ns.

3. Auger recombination. The origin of this mechanism was largely described in
Complement 6.D, and an expression for the lifetime #

(�
in an intrinsic material

was given in (6.D.21). In a material doped with a concentration N
)

, the Auger
lifetime can be obtained from (6.D.20):
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(
� 2#

(��
n
�

N
)
�
�

(10.B.10)

This mechanism dominates the diode leakage current in small gap semiconduc-
tors at room temperature (e.g. InAs, InSb, HgCdTe, . . .).

474 Complement to Chapter 10



11 Semiconductor photodetectors

11.1 Introduction

As early as 1850, Antoine Cesar Becquerel discovered that certain materials
generate an electrical current when exposed to a flux of light. It took, however,
until about 1935 before a quantum theory of condensed matter could be developed
to give a satisfactory account of this phenomenon. In spite of a lack of any firm
theoretical understanding for these empirical observations, photodetectors were
fashioned from these materials and put to work in photography and in military
infrared detection applications.

The basic general principles behind the operation of semiconductor detectors
are illustrated in Fig. 11.1. In the absence of photoexcitation, the carriers in these
materials do not conduct electricity either because: (a) they are in a band where
they cannot participate in conduction (e.g. a full valence band), (b) they are blocked
by a potential barrier (as in a Schottky detector), or (c) they are trapped in
quantum bound states (e.g. extrinsic photoconductors or quantum well detectors).

Optically driven transitions between two ensembles of quantum levels (one
conducting and the other insulating), are at the origin of photodetection. For this
reason, semiconductor detectors are sometimes referred to as quantum detectors.

Sections 11.3 and 11.4 describe (with reference to Fig. 11.1) type (a) photodetec-
tors (photoconducting and photovoltaic), Section 11.5 describes type (b) internal
emission Schottky photodetectors, and Section 11.6 describes type (c) quantum
well photodetectors. We will see that all these detectors share a common feature.
Their performance (or detectivity D*, which will be defined later) evolves as a
function of operation temperature as the square root of e������, where h� is the
minimum energy of the detected photons. We will see that this can be interpreted
as stating, ‘if photons of energy h� are detected, then, alas, so is a combination of
phonons with an average energy of h�’.

11.2 Distribution of carriers in a photoexcited semiconductor

The complexity of the photodetection mechanisms results from the multitude of
different length scales which govern electron—photon interaction in matter. First,
there is the issue of the absorption length, which is of the order of a few ��� (see
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(a) (b) (c)

Fig. 11.1. Three types of quantum detection based on: (a) band to band transitions which
generate electron—hole pairs, (b) internal photoemission above a potential barrier, and (c)
transition from a bound state to a continuum.

Sections 7.3 and 7.4). Then there are the minority carrier diffusion lengths (Chapter
10), which determine the distances over which these carriers can effectively partici-
pate in detection mechanisms. Finally, there are the dimensions of the space charge
regions, of particular significance to photovoltaic detectors. All these length scales
are of about the same order — a few micrometres to a few tens of micrometres.
None of these mechanisms can therefore be neglected in favour of others. In most
cases, it is necessary to resort to the complete equations for semiconductors (Eqs.
(6.60) and (6.61)) to describe the photodetection mechanisms. In this section, we
will describe these equations without solving them in their complete generality —
such work would be feasible, but tedious, and provide results of limited usefulness.
They will, however, be of use to the reader provided the appropriate simplifica-
tions are made for a given problem. We will limit ourselves to a one-dimensional
treatment (along the Oz axis of light propagation) and neglect problems involving
non-uniform illumination, etc.

To begin, the light flux in a semiconductor decays exponentially (see Chapters 3
and 4) as:

�(z)��
�
e��� (11.1)

where �
�

is the incident photon flux upon the surface. The absorption coefficient is
itself a function of the photon energy as explained in detail in Chapters 7 and 8.
Figure 11.2 shows the spectral response �(h�) for several semiconductors of par-
ticular relevance to optoelectronics. We note the difference in spectral behaviour
between direct gap (GaAs, InAs, InSb) and indirect gap semiconductors like Si,
which exhibit a less abrupt absorption edge than their direct gap counterparts.

The photons absorbed by the semiconductors generate electron—hole pairs with
density �n� n� n

�
and �p� p� p

�
with a generation rate G

��
(cm�� s��) given

by:

G
��

(z)� ��
�

e��� (11.2)

One of two possible fates await the carriers after creation. Either they will recom-
bine with each other with a characteristic lifetime # (#

�
for electrons, #

�
for holes), or
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1

Fig. 11.2. Spectral dependence of absorption for a few important semiconductors.

they will be swept out by the electric field or diffuse towards the ohmic contacts.
The equations which describe this mechanism are given in (6.60) and (6.61):

�
�t
n�G

��
(z)�

�n
#
�

�
1

q

�
�z
J
�

(11.3a)

�
�t
p�G

��
(z)�

�p
#
�

�
1

q

�
�z
J
�

(11.3b)

where the electron (J
�
) and hole (J

�
) current densities are:
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and the coefficients � and D are the mobilities and diffusivities for their respective
carrier types. Table 11.1 gives the transport properties of these materials: i.e.
typical recombination times (which clearly may depend on illumination), mobili-
ties, bandgaps, and dielectric constants.

To these equations, we must add Poisson’s equation which allows us to calcu-
late the electric field as a function of the permanent charge densities (dopants) and
photogenerated carriers, i.e:

dE

dz
�
q

�
(p�N�

�
� n�N�

�
) (11.5)

where � is the dielectric permittivity of the material (with �� �
�
�
�
, where �

�
is the

relative permittivity) and N�
�

and N�
�

are the ionized dopant concentrations. At
equilibrium (i.e. without illumination) and in the bulk N�

�
� p

�
�N�

�
� n

�
.
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Table 11.1. Values for the recombination lifetimes �, mobilities �
�
and �

�
, 300 K

bandgaps, and dielectric constants for important semiconductors

Material # (s) �
�

(cm�V�� s��) �
�

(cm�V�� s��) E
�

(eV) �
�

Si 10�� 1350 480 1.12 11.8
Ge 10�� 3900 1900 0.67 16
GaAs 10�� 8500 400 1.42 13.2
InAs 10�� 33 000 460 0.36 14.6
InSb 10�� 10� 1700 0.18 17.7

Equation (11.5) allows one to understand how photodiode detection efficiencies
vary under elevated illumination conditions where for example �n�N

�
. It is

important to note that the characteristic time, called the dielectric relaxation time,
over which the material preserves charge neutrality is quite short (#

"�	

� �/

�� 10��� s, where � is the conductivity of the material). The medium will therefore
remain electrically neutral, i.e:

�n(z, t)��p(z, t) (11.6)

This last equation, in spite of its simple form, has very important consequences for
the detector response. First, as carriers recombine in pairs, this means that the
recombination lifetimes must also be equal (#

�
� #

�
� #). This is only possible if the

recombination mechanisms depend in some manner on n and p. Another conse-
quence of equality (11.6) is that an internal field must be established before this
relation can be imposed on (11.3), (11.4), and (11.5). We could further complicate
the table by introducing capture mechanisms for a single carrier type, spatial
inhomogeneities, etc.

Let us begin by simplifying the system we are about to study. We will assume
that the detector material is dominantly p type (p

�

 n

�
, we will see later that this is

an interesting case for applications) and that no external electric field E(z) is
applied. We can always neglect all phenomena tied to the conservation of charge
neutrality, such as the appearance of an internal field — this neutrality is guaran-
teed by the majority dopants. Substituting (11.4a) into (11.3a), we obtain:

�n
#

�D
�

d�

dz�
�n� ��

�
e���

 

(11.7)
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�	����������� "�  ����� �����	

The solution to this equation is the sum of a particular solution including a source
term and a general solution without a source term, i.e:

�n(z)�Ae����)�Be���)�
�#�

�
1� (�L

)
)�

e��� (11.8)
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where L
)

is the electron diffusion length, L
)
��(D#). The constants A and B are

determined by the boundary conditions specific to the problem. These conditions
can be of many possible types:
Surface recombination S (in cm s��) at z� z

�
imposed as:

S�n�
����

�D�
d

dz
�n�

����

(11.9)

Ohmic contact, i.e. an interface where the recombination of minority carriers is
instantaneous (an ohmic p� contact on p-type material imposes a density of
minority carriers n given by np� n�

�
, i.e. n� 0) such that:

�n�
����

� 0 (11.10a)

Space charge region starting at z� z
�

, i.e. a region out of which all carriers are
swept, and again leading to:

�n�
����

� 0 (11.10b)

Let us analyse, for example, the case involving an infinitely thick sample (d
L
)

and 1/�). As z���, �n� 0. The coefficient A is then obtained by imposing the
boundary conditions at z� 0. We will suppose that no ohmic contact has been
made and that the electrons are free to recombine at the surface (z� 0) with
velocity S

�
. Equations (11.8) and (11.9) immediately yield the distribution of

photogenerated carriers �n(z):

�n(z)�
�#�

�
(�L

)
)�� 1�

S
�

/D
�
� �

S
�

/D
�
� 1/L

)

e����)� e���� (11.11)

As might be expected, the carrier concentration at the surface becomes null as the
recombination velocity tends towards infinity (see Fig. 11.3). If, on the other hand,
the semiconductor surface is passivated (i.e. if the density of surface states is null),
then S

�
� 0 and the number of generated carriers�n

���
in the entire volume is given

by integral (11.11) to be:

�n
���
�

�

�
�

�n(z)dz� #�
�

(11.12)
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This last expression can be read as �n
���

/#��
�

, i.e. that the entire flux of incident
photons �

�
is transformed into a flux of carriers �n

���
/#.

Another very simple case is that involving a sample of thickness d in which no
currents can flow through the light entrance and exit surfaces (for instance, a
photoconductor in which the electrical current flow is perpendicular to the photon
flux): this means, supposing that no external electric field is applied, that
J
�
�D

�
��n/�z� 0 at z� 0 and z� d. Integration of (11.7) leads immediately to a

total surface density �n
���

of photocarriers generated in the volume of:

�n
���
��

�
#(1� e���) (11.13)

The ratio between the flux of created carriers �n
���

/# and the flux of incident
photons �

�
expresses the conversion efficiency of the photon flux into a carrier

flux. This is the internal quantum efficiency )
�
of the detector and is given in this case

by:

)
�
�

�n
���

/#
�
�

� 1� e��� (11.14a)

Internal quantum efficiency for a detector

To this internal quantum efficiency, may be added other losses. The most import-
ant of these is generally due to the loss of photon flux by optical reflection
occurring at the surface, i.e. )

��
� 1�R. This optical efficiency is particularly

weak for untreated semiconductor—air interfaces as the semiconductor index of
refraction n

��
is considerable, and R� (n

��
� 1)�/(n

��
� 1)�. Thus, for silicon,

n
��
� 3.4 leading to R� 0.3 and )

��
� 1�R� 0.7. The total efficiency ) is there-

fore generally close to:

)� )
�
)
��
� (1�R)(1� e���) (11.14b)



Fig. 11.4. Of the incident flux, �
�

, only the grey portion transmitted by the surface and
absorbed over the detector thickness d can participate in photocarrier generation.
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Anti-reflection coatings are often deposited to reduce the losses due to reflection
by the semiconductor—air interface significantly over a wide range of wavelengths.
Figure 11.4 summarizes the various contributions to the total detector efficiency.

Example
We seek the carrier distribution in a semiconductor with an absorption coefficient
� of 10� cm��. We will suppose as well that the material possesses a mobility
of 40 cm�V�� s�� and a recombination time of 10�� s. This leads to a diffusion
coefficient given by the Einstein relation D

�
� (kT/q)�

�
of 40 cm�V�� s���

25.9 mV or 1 cm� s�� and a diffusion length (D
�
#)��� of 10 �m. It is therefore clear

that � dominates over 1/L in (11.11) and that the distribution �n(z) depends above
all on the relative magnitudes of S

�
/D

�
and �. Figure 11.3 shows the distributions

�n(z) for different surface recombination velocities S
�

.

11.3 Photoconductors

11.3.1 Photoconduction gain

We will now focus upon the behaviour of an ideal photoconductor fashioned from
a homogeneous semiconductor material of a given type (say p type), of thickness d,
width w, and length l (see Fig. 11.5). As in the immense majority of cases (with the
exception of quantum well photoconductors — see Section 11.5), the photon and
carrier fluxes are perpendicular to one another. A flux of photons is incident upon
the semiconductor surface in the Oz direction. The photons in the beam of light
have an energy h� greater than the semiconductor bandgapE

�
and are absorbed as

indicated by the particular dependence of � on h�. Two electrical contacts are
made on either edge (see Fig. 11.5) allowing one to:
1. apply an electric field E parallel to the surface (along Ox);
2. extract carriers ‘on demand’, i.e. sufficiently and without limitation to be able to

maintain charge neutrality in the material.
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Fig. 11.5. Geometry for a photoconducting detector.
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As we just saw, by neglecting the flux of carriers across the two surfaces (top and
bottom), the carrier surface density is determined by the equality of the two fluxes
�n

���
/#� )�

�
(in cm�� s��), i.e. by supposing that the diffusion length is sufficiently

large so that the inhomogeneities in �n(z) are negligible, and the volumetric
concentration �n(z)��n� constant is given by:

�n�
)#�

�
d

(11.15)

Under the influence of the transverse electric field E due to the potential V
(E�V/l), a photocurrent begins to circulate within the structure, having a density
of j

��
��nq�

�
E and a total magnitude given by I

��
� j

��
wd, as the surface crossed

by the circulating electric current is wd, so that:

I
��
� )q�

�
#
w

l
�
�
V (11.16)

From another point of view (this more subtle approach to photoconduction was
developed by A. Rose), the photon flux crosses the surface wl. It is therefore
reasonable to normalize the current I

��
by the incident power P

���
� h��

�
wl over

the surface wl giving rise to the detector responsivityR:

R�
I
��
P

���

� )
�
�
#
l�

V
h�/q

(11.17)

This formula shows the importance of the product �
�
# in determining the respon-

sivity of a photodetector. This is in fact the only occurrence of any of the intrinsic
properties of the semiconductor in the formula for the photocurrent. The product
�
�
# (in cm�V��) is used as a figure of merit for detector material. Expression (11.17)

can also be put into the form:
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Fig. 11.6. Spectral responsivity for a photoconductor. The linear variation of the
responsivity with � results from the fact that the number of photons necessary to make up
1 W increases with �. This overall lineshape is the spectral signature of a broad spectrum
quantum detector.

483 11.3 Photoconductors

R� )g
l

h�/q
(11.18)

Photoconductor responsivity (AW−1)

where g is the photoconductive gain given by:

g�
#
#
��

; #
��
�

l

�
�
E
�

l�

�
�
V

(11.19)

and #
��

is the transit time for electrons travelling between the two contacts. We note
that the responsivity of a detector as a function of wavelength may be put into the
form:

R� )g
�(�m)

1.24
(11.20)

Figure 11.6 shows the spectral responsivity R(�) characteristic of broad spectrum
quantum detectors.

The expression for the photoconductive gain is easy to understand. It is the ratio
of the electronic flux created in the Ox direction divided by photon flux in the Oz
direction. The first surprising observation is that this term can be greater than
unity, i.e. it gives a false(!) impression that a single photon can give rise to several
electron—hole pairs without drawing upon avalanche effects, etc. Several interpre-
tations have been advanced to dispel this apparent paradox. The first of these is
attributed to A. Rose, and consists of imagining that an electron can travel
through the circuit several times before disappearing by recombination. The same
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electron can therefore participate several times in the electrical current. Another
interpretation is that the semiconductor medium stockpiles electron—hole pairs
during illumination and that the contacts take care of providing all necessary
carriers to satisfy charge neutrality.

Example
We consider a 3 �m thick layer of InSb, 1 mm in length (l), and 100 �m in width (w).
We wish to know the responsivity of this detector at 6 �m for an applied voltage of
10 V (or a field of 10�V cm��) assuming a quantum efficiency ) of 60%. The
mobility for InSb is given in Table 11.1 to be 10� cm�V��, leading to a transit time
#
��

of 10�� cm/(10�� 10� cm s��), or 10�	 s. As the lifetime is 10�� s, we find a
photoconductive gain g of 10��/10�	� 10. The responsivity R is then 0.6�
10� 6 �m/(1.24 �m eV��), or 30 A W��.

11.3.2 Photoconductor detectivity

As discussed in Complements 11.A and 11.B, three mechanisms form the basis of
noise in photoconductors. These are: thermal noise i

!
; generation—recombination

noise i
-!

; and photon noise (or shot noise associated with random fluctuations in
the number of photons arriving at the detector), as given in (11.A.27), (11.A.38), and
(11.B.6). We will assume the case where the detector response is not limited by the
photon noise, i.e. that the detector is not in the BLIP regime (see Complement
11.B). The noise generated by the detector itself is then:

i�
+
� i�

!
� i�

-!
� 4

kT
R

��� 4qgI
�
��

(11.21)

�
4q

R �
kT
q
� gV���� 4qgI

�
��

once the applied voltage exceeds kT/q. We recall that I
�

is the dark current,R is the
photoconductor resistance, �� is the frequency integration bandwidth given by
��� 1/2t

���
, where t

���
is the integration time, and g is the photoconductive gain.

The signal-to-noise ratio i
=
/i
+

is then given by:

S/N�
i
=
i
9

�
RP

���
�4qgI

�
��

(11.22)

We introduce the noise equivalent power (NEP), which is the power P
���

at the
detection limit corresponding to a signal-to-noise ratio of 1. From (11.22), we
obtain the NEP for a photoconductor.
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NEP�
�4qgI

�
��

R
(11.23)

Noise equivalent power (NEP)

This last formula is clearly not independent of the measurement system, i.e. it does
not allow one to classify detector materials according to some figure of merit. In
order to normalize (11.23), we note that the NEP is a function of bandwidth as
�(��) and (given I

�
� J

�
A) a function of the square root of the surface area of the

sample �A. We thus introduce the detectivity D*, defined in a general fashion as:

D*�
�A��
NEP

(11.24)

Detectivity (cm Hz1/2 W−1) and NEP

The (barbaric) measurement unit for detectivity is cm Hz���W�� which in the
civilized world is also called the jones. We are now in a position to calculate the
detectivity of a photoconductor:

D*�
R

�4qgJ
�

(11.25)

Note: J
�
is the dark current density flowing between the two electrodes normalized by

the surface area A seen by the incident flux of light! This current density is therefore
given (for a p-type semiconductor) by:

J
�
� qp

�
�
�
E
wd

wl
(11.26)

where p
�

is the carrier density in the dark andE is the electric field between the two
contacts. Expression (11.25) can be put into the form:

D*�
)

�d
l

h�	
#

4p
�

�
�

�
�

(11.27)

Had we taken an n-type semiconductor, the ratio �
�
/�
�

would be replaced by
�
�
/�
�
��

�
/�
�
, decreasing the detectivity. The large contrast between the electron

minority mobility and the hole majority mobility is an essential ingredient for high
detectivity photoconductor devices. As )� 1� e���, we see that there exists an
optimum value for the ratio )/�d close to 0.66��. The maximum optical efficiency
of a semiconductor in terms of detectivity is therefore 66%. Consequently, the
maximum detectivity is given by:
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D*� 0.66
1

h�	
�#

4p
�

�
�

�
�

(11.28)

Maximum detectivity for a photoconductor

This expression is interesting as it is only a function of the material and the
wavelength. We see, therefore, that the detectivity of the material increases as the
dark carrier density p

�
decreases. However, infrared detectors which work over the

atmospheric transparency windows between 3—5 and 8—12 �m (see Complement
2.B), necessarily have bandgaps of the order of 250 and 120 meV, respectively.
Equation (5.49) tells us that at usual temperatures (i.e. for kT/q� 25 meV), the
intrinsic carrier densities n

�
, due to the thermal excitation of electrons above the

gap, are considerable (n
�

 10�� cm��) and result in low detectivities. Quantum

detectors must therefore be cooled to lower temperatures if their intended detec-
tion spectrum is to be extended to longer wavelengths. Figure 11.B.4 compares the
detectivities for several materials, and clearly demonstrates this behaviour.

The example below illustrates the use of expression (11.28) for detectivity.

Example
We wish to obtain the detectivity for an InSb photoconductor. At room tempera-
ture, the intrinsic carrier density calculated from (5.49) is 10�� cm��. In order to
improve the detector performance, it will be operated at a low enough temperature
to keep the free carrier density (p

�
) at 10�� cm��. Assuming an absorption coeffi-

cient � of 10� cm�� and the values given in Table 11.1, we obtain a photon
detectivity at 6.6 �m (0.2 eV) of:

D*� 0.66
1

0.2� 1.6� 10�� J	
10� cm��� 10�� s��

4� 10�� cm��
�

10�

1700

� 2.5 10�� cm Hz���W��

We then calculate the noise equivalent power (NEP) corresponding to a
50� 50 �m detection area with a 10 ms integration time, i.e. ��� 50 Hz:

NEP� 50� 10���50 Hz���/2.5� 10�� jones� 0.14 pW

11.3.3 Time response of a photoconductor

The time response of a photoconductor subject to a time varying optical signal
G

��
(t) can be derived from (11.3a,b). The essential characteristics can be easily

obtained by assuming uniform illumination. Integrating (11.3a) over the thickness
of the material (from 0 to d as in (11.14a)) and by taking into account the quantum
efficiency, we immediately obtain the dynamic equation:
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Fig. 11.7. Time response for a photoconductor subject to (a) abrupt pulse of illumination, (b)
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d

dt
�n

���
�

�n
���
#

� )G
��

(t) (11.29)

Several possible cases are illustrated in Fig. 11.7:
∑ Square light pulse starts at t� 0 and ends at t�T� # (Fig. 11.7a). Equation

(11.29) shows that the response of the material is immediate, but without gain: a
density �n

���
instantaneously arises in the material, with the density given by the

total number of photons absorbed, or �n
���
� )G

��
T. The density subsequently

decays exponentially with the characteristic lifetime #.
∑ Long square light pulse ends at t� 0 (Fig. 11.7b). The carrier density given by

(11.29) is:

�n
���
� )#G

��
e���� (11.30)

The time response of the photoconductor is therefore equal to the lifetime in the
material.

∑ Sinusoidally varying illumination G
*�

(t)�G
*�
sin�t. Integration of (11.29) is

immediate and leads to a sinusoidal response�n
���

(t)��n
���

(�)sin(�t��) with:

�n
���

(�)�
)G

��
#

�1���#�
(11.31)

The photoconductor therefore behaves as a low-pass filter with a frequency
cut-off of 1/2�#.

These last three results demonstrate the particular dilemma faced by photocon-
ductors. Materials with greater detectivities also have long lifetimes and simulta-
neously suffer from poor temporal responsivity. Figure 11.8 shows the frequency



0.01

2

4

6
8

0.1

2

4

6
8

1

2

R
es

po
ns

e 
(A

 W
   

)

103 104 105 106 107 108

Frequency (s 1)

= 10  s

 = 10  7 s

1

 6

Fig. 11.8. Frequency response for photoconductors with different lifetimes. The product of
the gain�bandwidth is constant for photoconductors.

488 Semiconductor photodetectors

response R of a photoconductor with two different carrier lifetimes. This result is
an illustration of the maxim: gain� bandwidth� constant.

11.4 Photovoltaic detectors

One of the difficulties governing the use of photoconductive detectors is their low
impedance. A photoconductor is fundamentally a light-sensitive resistor. As elec-
trical amplification of a signal preferably involves a high input impedance, the
combined detector and amplifier elements form an impedance bridge, placing the
detector at a net disadvantage. This is not the case with a photodiode.

A photovoltaic detector exploits the rectifying characteristics of a p—n diode or a
Schottky junction to obtain high impedances and to separate electron—hole pairs
produced by the light absorption processes. It is therefore the internal field in the
diode which is responsible for circulating the current. Figure 11.9 illustrates the
operation of a photodiode. We have taken a p�—n diode in which the bulk of the
built-in voltage drop occurs in the n-type material (see Section 10.4). The light
enters through the top surface and crosses the p�region (assumed to be sufficiently
thin to neglect light absorption in this layer). The photons are absorbed in the n
region, and give rise to electron—hole pairs in the space charge region (SCR) and in
the bulk of the material. The photogenerated pairs in the SCR are immediately
separated by the internal electric field which sweeps the holes towards the surface
(this constitutes the generated photocurrent — J

-
). The pairs produced outside the

SCR can diffuse within the structure, with some portion of them being able to
reach the SCR and undergo charge separation giving rise to a diffusion current
density J

"�  
.
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These two contributions create a total photocurrent density J
��

which adds to
the dark current:

J� J
���

(e ������ 1)� J
��

(11.32)

where J
���

is the diode saturation current given in (10.24) for a Schottky diode and
the hole diffusion limited current given in (10.52) for a p�—n diode. V is the applied
potential to the diode. Figure 11.10 shows the characteristics for the diode under
illumination. Two detection modes are possible:
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Fig. 11.10. Two operation modes for a photovoltaic detector: (a) photocurrent mode, and (b)
photovoltage mode.
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∑ Photocurrent mode. A diode can be introduced into a circuit with a very low
impedance (e.g. placed in series with an ammeter or in series with a low resistor
with a voltmeter hooked to its terminals — as in Fig. 11.10a). The current
measured in this case is then given by (11.32).

∑ Photovoltage mode. Here, the diode is introduced into a high impedance circuit
(I� 0). In this case, (11.32) shows that a voltage V

��
appears at the diode

terminals. The voltage V
��

is given in the inverse form as:

V
��
�
kT
q

log�1�
J

��
J

���
� (11.33)

The calculation of the photocurrent density J
��

follows from the equations in
Section 11.3. This is a good exercise which allows one to become familiar with
the application of the various boundary conditions (11.10). Let us begin by
calculating the current J

-
in the space charge region, i.e. between z� 0 and

z�W. In the SCR, the density of excess charges �n is zero, as all the carriers are
instantaneously swept out of this region, and the dynamic equation (11.3a)
becomes:

1

q

d

dz
J
-
����

�
e��� (11.34)

We obtain the current density J
-

by integrating (11.34) between 0 and W and by
noticing that no electron current can flow from the p� region as the electron



491 11.4 Photovoltaic detectors

concentration can only be zero (np�� n�
�
), so that J

-
(0)� 0 and:

J
-
��q�

�
(1� e��/) (11.35)

This is the electron current that crosses the boundary between the SCR and the
neutral material at z�W.

The contribution of the diffusion current is obtained from the differential
equations (11.3a) or (11.7) which at stationary state admit as a solution expres-
sion (11.8), which we rewrite here as:

�n(z)�Ae����)�Be���)�
�#�

�
e��/

1� (�L
)

)�
e��� (11.36)

given that the photon flux at z�W is now only �
�

e��/. We may suppose that
the sample is sufficiently thick to assume B� 0. Furthermore, every electron at
z�W is immediately swept by the electric field imposed by boundary condition
(11.10b) �n(W)� 0 such that:

�n(z)�
�#�

�
e��/

1� (�L
)

)�
(e�����/�� e����/���)) (11.37)

The diffusion current density at z�W is given by:

J
"�  
��qD

�

d

dz
�n�

��/
(11.38)

that is

J
"�  
��q

�L
)

1� �L
)

�
�

e��/ (11.39)

For the relatively common condition where �W � 1, the contributions made by
J
-

and J
"�  

((11.35) and (11.39), respectively) are comparable so that neither of
the two terms can be neglected. The total photocurrent is then given by:

J
��
��q�

��1�
e��/

1� �L
)
� (11.40)

This formula indicates that the low quantum efficiency of the space charge
region e��/ can be regained once the diffusion length becomes large, i.e. what the
space charge region lets through, is recuperated by the diffusion region. Expres-
sion (11.40) can, as in the photoconductor case, be put into the form:

R� )
1

h�/q
(11.41)

or alternatively as:
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R� )
�(�m)

1.24
(11.42)

with a total quantum efficiency ) given by:

)� (1�R)�1�
e��/

1� �L
)
� (11.43)

This formula is therefore quite similar to (11.18). We note, however, the absence
of photoconductive gain, which is equivalent to saying that the gain g in a
photodiode is unity.

Example
In n-type silicon doped 10�� cm��, the SCR extends across 1 �m for a junction
potential V

��
� 1 V. Figure 11.2 shows an absorption coefficient �� 10� cm�� at

2 eV. The efficiency of the SCR 1� e��/ is then 64%. On the other hand, the
diffusion length is �((kT/q)�

�
#) or 500 �m (see Table 11.1), which leads to a

quantum efficiency dominated by the reflectivity (1�R).

11.4.1 Photodiode detectivity

As discussed in Complements 11.A and 11.B, two mechanisms are responsible for
noise in photovoltaic detectors: generation noise (without recombination) i

-
(11.A.38) and photon arrival fluctuation noise (11.B.6). Again, we will make the
assumption that the detector noise is not dominated by photon noise (i.e. that the
detector is not in the BLIP regime — see Complement 11.B). The noise due to the
detector itself is then:

i�
+
� 2qI

�
��� 2qI

���
(1� e �����)�� (11.44)

where I
���

is the saturation current of the photodiode. The general idea behind
(11.44) is that the ‘plus’ sign in (11.44) results from the fact that the forward and
reverse contributions cancel out at V� 0, while their respective contributions to
the noise are additive. The signal-to-noise ratio (S/N) is given by:

i
=
i
+

�
RP

���
�2qI

���
(1� e�����)��

(11.45)

and the noise equivalent power (NEP) takes the form of:

NEP�
�2qI

���
(1� e�����)��
R

(11.46)

We reintroduce the detectivity D* as it allows us to get rid of parameters that are
not intrinsic to the system: (i) the area A, which relates the current I

���
to the
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current density J
���

(I
���
�AJ

���
), and the flux �

�
to the incident power P

���
(P

���
�A�

�
h�); and (ii) the frequency measurement bandwidth ��:

D*�
R

�2qJ
���

(1� e�����)
(11.47a)

We insist again on the fact that this time, the detection area and the transport area
are one and the same. The photon and electron fluxes are parallel.

We may think it profitable to bias the diode (V� 0) to decrease the factor e�����
and increase the photodiode detectivity. This bias, however, often adds additional
noise (peripheral leakage current, . . .) to the detection signal. Under zero applied
bias (V� 0), (11.47a) becomes:

D*�
)
h�/q

1

�4qJ
���

(11.47b)

This expression can be written in another form, by noting that:

dj

dV �
���

�
1

RA
�

q

kT
J

���
(11.48)

where RA (� cm�) is the product of the junction resistance with its area such that:

D*�
)
h�/q	

RA

4kT
(11.49)

Photodiode detectivity

Figure 11.11 shows how detectivity D* varies as a function of the product RA at
different temperatures for a detection wavelength of 5 �m (h�� 250 meV) and a
quantum efficiency of 50%.

This last formula is quite predictive when coupled with the expression for the
current density j

���
in a junction (10.B.4), i.e:

j
���
�
qD

�
L
)�

n�
�
N
)

� q	
D
�

#
�

n�
�
N
)

� q	
D
�

#
�

N

N
0

N
)

e������ (11.50)

where we recall thatD
�
, L

)�
, and #

�
are the diffusivity, diffusion length, and lifetime

of the minority carriers (holes) on the n side of the junction; N
)

is the doping
concentration; n

�
is the intrinsic carrier density given in (5.49); E

�
is the detector

bandgap; and N


and N
0

are the effective state densities in the conduction and
valence bands given in (5.46). Therefore the detectivity outside of the detector’s
BLIP regime varies as e�������, which emphasizes the interest in operating these
detectors at low temperature. We can also use (10.B.3) if the diode leakage current
is dominated by generation—recombination occurring at impurity sites.
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Example
We wish to calculate the RA product and detectivity for an InSb photodiode
doped n type (10�� cm��) at a temperature of 150 K. The temperature dependence
of the bandgap will be neglected. Table 11.1 gives us the diffusion coefficient at
150 K (kT/q� 13 meV) or 1700� 13� 10��� 22 cm� s��. Equations (5.46) give
the state densities N


and N

0
for m


� 0.0145 and m

0
� 0.4, i.e. N


�

1.5� 10�� cm�� and N
0
� 2.2� 10�	 cm��. The saturation current for an ideal

diode is given by (11.50), or:

j
���
� 1.6� 10��A s�	

22 cm� s��

10�� s

1.5� 10��� 2.2� 10�	

10��
cm�� e����	������

� 7.6� 10��A cm��

and theRA product from (kT/q)i
���

is 1.7� cm�. For an overall quantum efficiency
)� 0.5, the detectivity is then given by:

D*�
0.5

0.25 eV

1

�4� 1.6� 10��C 7.6� 10��A cm��

� 2.8� 10�� cm Hz���W��

Figure 11.12 shows the variation of detectivity D* for this device as a function of
temperature. From this graph, we see that it is clearly advantageous to operate
infrared detectors at low temperature.

11.4.2 Time response of a photodiode

The time response of a photodiode can be obtained by solving the dynamic
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equations (11.3) and (11.4). Whereas the calculation itself is demanding, the result
is quite easy to guess. Three time constants contribute to the overall temporal
response of a photodiode, with each resulting from a distinct physical effect:
∑ Time constant due to the diffusion current. This constant is clearly the lifetime #. It

varies between 10�� s in silicon and 10�	 s in GaAs (corresponding to band-
widths ranging between 10 kHz and 100 MHz). In many cases (for instance, in
telecommunications applications), a time constant in this range is unacceptable.

∑ Capacitive time constant. This same space charge region gives rise to a
capacitance C

�
given by (10.17):

C
�
�A	

q�N
)

2(V
��
�V)

�
A�
W

(11.51)

where we recall that �� �
�
�
�

is the permittivity of the medium, V
��

is the junction
potential (V

��
�V

)
��

9
� (E


�E

3
) for a Schottky junction as in Fig. 10.2 or

as given by (10.25) in the case of a p—n junction), W is the thickness of the
depletion layer, and N

)
is the doping concentration. For rapid operation, this

capacitance in series with a matched circuit with impedance R� 50� leads to
an upper frequency limit given by 1/2�RC.

Example
For a typical detector with an area of 1 mm�, doped 10�� cm��, and with a
potential V

��
�V� 10 V, we obtain a 3.6 �m (�W) wide SCR and a capacitance

of 30 pF. Loaded with a 50-� resistance, the cut-off frequency for this detector is
1/2�RC� 110 MHz.

∑ Time constant due to carrier transport across the space charge region. The SCR
extends over a distance of the order of 1 �m for an applied potential of ,1 V or a
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mean electric field of 10�V cm��. Even for a material with a relatively low
mobility (say �� 10� cm�V�� s��), this corresponds to a velocity of 10� cm s��
and therefore a carrier transit time of 100 ps and cut-off frequency of 10 GHz.

The first two limitations are unacceptable in most telecommunications applica-
tions which require bandpass frequencies of the order of tens of GHz or more. In
these applications, p—i—n diodes, see Fig. 11.13, possess an intrinsic region with a
large width W, sandwiched between two highly doped n and p regions. These
diodes were examined in Section 10.A.2 (see band diagram in Fig. 10.A.2). This
device structure presents the following advantages:
∑ It possesses a low capacitance C

�
�A�/W, and therefore an elevated cut-off

frequency (1/2�RC).
∑ The contribution made by the diffusion current J

"�  
is negligible (�W
 1 in

(11.40)), as is the influence of the time constant # on the response time of the
diode. The temporal response of the device is dominated by the generation
current in the SCR.
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Example
For a typical detector with a detection area of 0.01 mm�, doped 10�� cm��, and
with a potential V

��
�V� 100 V, we obtain a SCR width W of 36 �m. Contenting

ourselves with an intrinsic region width of 10 �m, we obtain a device capacitance of
0.1 pF. In series with a circuit impedance of 50�, such a detector would possess a
frequency cut-off of 1/2�RC or 30 GHz. The average electric field is 10�/10 �m or
10�V cm�� leading to a velocity of the order of 10� cm s�� assuming a mobility
�� 100 cm�V�� s��. This results in a transit time of 10 �m per 10� cm s�� or
100 ps, and a frequency cut-off of 10 GHz.

11.5 Internal emission photodetector

The operation of an internal emission Schottky photodiode is depicted in Fig. 11.14.
As discussed at length in Section 10.3, a potential barrier �

�#
naturally resides

between the Fermi level of the metallic layer and the bottom of the semiconductor
conduction band. We will now consider a beam of light travelling across the
semiconductor, composed of photons with energy h� less than the semiconductor
bandgap (making the semiconductor essentially transparent to the electromag-
netic radiation). The light is absorbed by the metallic layer, transferring its energy
to the electrons in the Fermi sea. Electrons can then be emitted into the semicon-
ductor above the potential barrier. This leads immediately to a cut-off wavelength
for this device of:

�

�

1.24

�
�#

(eV)
�m (11.52)

The quantum yield is rather low in these structures, as in the metal, the electrons
lose their energy over very short distances. Indeed, the ballistic mean free pathL

9
is

only between 50 and 100 Å in most metals. The absorption coefficient for metals is
given by the inverse of the skin depth � (see (7.C.6)): for a metal with a resistivity of
the order of 10 �� cm, this leads to a skin depth � of 200 Å at infrared wavelengths,
and an absorption coefficient �� 1/�� 5� 10� cm��. We must therefore expect a
photon conversion rate into hot electrons in the metal of 1� e���9, i.e. between 10
and 20%. To increase the absorption, the metal/semiconductor structure is usually
placed inside an optical cavity (see Fig. 11.14).

Furthermore, all the hot electrons excited above the barrier are not necessarily
destined to be recuperated by the semiconductor, as they must of course be
travelling in an appropriate direction. This is illustrated in Fig. 11.15.

We will consider those electrons which have a total energy E and relative
momentum P,E��� above the Fermi level of the metal. The hot electrons whose



(a)

ms

Metal Semiconductor

Optical cavity

(b)

Fig. 11.14. Operation of an internal emission Schottky photodiode.
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momenta are oriented at an angle " from the normal direction of the interface
possess a momentum component of Pcos " and therefore an energy of Ecos� " in
the appropriate direction (the Oz direction). They are a priori equally distributed
with respect to ". Over a solid angle of 4�, only a subset P(E) will therefore be able
to surmount the potential barrier (see Fig. 11.15):

P(E)�
2�(1� cos ")

4�
�

1� (�
�#

/E)���

2
(11.53)

We will then suppose that the density of states in the metal �
�

(in cm�� eV��) is
constant. The electronic flux effectively transferred to the semiconductor is then:

i
��
q
�

��

�
�
�#

�
�
P(E)dE�

1

2
�
�
h��1��

�
�#
h� �

���

�
�

(11.54)

The internal quantum efficiency is given by the ratio between the flux i
��

/q and the
absorbed photon flux �

�
h�, i.e:
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)
���
�

1

2�1��
�
�#
h� �

���

�
�

(11.55)

which leads to a total quantum efficiency ) of:

)� )
	��
)
���

�
1

2
(1� e���9)�1��

�
�#
h� �

���

�
�

(11.56)

We have to note that (11.56) — derived using this approach — is extremely simple
and is not reproduced by experiment. Given that the density of states in a
three-dimensional metallic medium goes as �

�
	�E (see for example Eq. (5.20))

and taking into account the Pauli exclusion principle in the metal, we could in fact
find:

)
���
�

1

8E
3
h�

(h���
�#

)�

where E
3

is the Fermi energy in the metal. This last expression is confirmed by
experiment and is known as Fowler’s law. Figure 11.16 shows the efficiency of a
Si/IrSi internal emission diode which obeys Fowler’s law. Expression (11.55) still
leads to reasonable results for h���

�#
.

Equation (11.56) explains why Schottky detectors are not intrinsically good
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detectors. First, given the small ballistic mean free path for hot electrons in metals,
the external quantum efficiencies are low, as we indicated at the beginning of this
section (i.e. ,10%). Additionally, 10% above the cut-off, i.e. for h�� 1.1�

�#
, the

internal quantum efficiency is 10��, which leads to a global quantum efficiency of
10�� — far from spectacular to say the least!

Nonetheless, these detectors have seen a fair level of success in the infrared
imaging industry; as in these devices, the range of detected wavelengths is not
imposed by the semiconductor, but by the height of the barrier between the metal
and the semiconductor. Silicon (semiconductor extraordinaire in microelec-
tronics!) can then be used to fabricate integrated detector arrays alongside their
measurement circuits. In this case, the only challenge is to find a good Si/metal
pair. For example, p-type Si/PtSi possesses a cut-off wavelength of 5.6 �m. De-
tector arrays consisting of 1024� 1024 pixels have been fabricated using such
detectors, allowing the acquisition of high-resolution infrared images (with low
detectivity).

11.6 Quantum well photodetectors (QWIPs)

In Section 8.6, we saw how the quantization of electron motion perpendicular to
the interfaces in quantum wells based on, for instance, the GaAs/Al

	
Ga
��	

As
system lead to the emergence of energy subbands. If such wells are doped n type
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(with an effective two-dimensional carrier concentration �
#

in cm��), additional
electrons populate the subbands according to Fermi—Dirac statistics, beginning
with the fundamental subband e

�
. If photons are incident upon the quantum well,

they will be in a privileged position to promote electronic transitions between the
conduction subbands.

Two kinds of optical transition can exist:
∑ Transitions between two bound states e

�
� e

�
(bound-to-bound transitions). We

saw in Section 8.6 that such transitions lead to (nearly) monoenergetic absorp-
tion features, i.e. only photons with energy within a spectrally broadened
distribution �� about h�� �

�
� �

�
� e

��
are absorbed.

The absorption coefficient within the well is given by (8.87b):

��
�q�z�

��
�

�
#

Z
�
n
��

h�
��/�

(e
��
� h�)�� (��)�

f (") (11.57a)

where we recall that Z
�

is the vacuum impedance (377�), n
��

is the semiconduc-
tor’s optical index, z

��
is the dipolar matrix element (an approximation for it

being given in (3.D.24) — a value typically on the order of 1 nm), and " is the angle
between the illumination axis and the normal vector of the quantum well. As
seen in Section 8.7.2, the function f (") varies as sin� "/cos " as long as the
cross-section of the light beam by the detector surface resides within the detector
area and sin� " otherwise. The sin� " dependence emerges from the selection
rules for k

�
as explained in Fig. 8.13.

∑ Bound-to-free transitions. Dominate when there is only one subband within the
quantum well (see (3.D.27)). In this case, the transitions occur between localized
states within the quantum well (energy difference and the bottom of the barrier
conduction band e

�
�E


� �

�
).

The absorption coefficient is then given by integral (11.57a) evaluated over the
continuum states �k

�

 in the barrier conduction band. The states �k

�

 have an

energy E
�
� ��k�

�
/2m


above the bottom of the barrier conduction band, where

m


is the effective mass in the conduction band. We saw in Complement 1.A all
the difficulties relating to normalization of the continuum states and the necess-
ity of introducing a fictitious box of width L

 ���
to proceed with the normaliz-

ation. To calculate the bound-to-free absorption in quantum wells, we must
introduce the following integral:

��
�q�
�

�
#

Z
�
n
��

��
�

�
�

L
 ���
�

��k
�
�z�1
��

��/�

�
��k�

�
2m



� (h�� e
�

)�
�
� (��)�

dk
�
f (") (11.57b)

where we recall that L
 ���

/� is the one-dimensional momentum density of states
in the continuum (see Complement 1.A). Expression (11.57b) can be placed into
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a form better suited to calculation by introducing the dipole volume z(E)�which
emerges as the limit of L

 ���
��k

�
�z�1
�� as L

 ���
�� and by integrating over the

final state energies E
�

, so that:

��
�

�
�

�
)

(h�,E
�

)dE
�
f (") (11.58a)

where �
)

is the differential absorption defined as:

�
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(11.58b)

The fine curves in Fig. 11.17 represent the energies �
�
� �

�
for bound-to-bound

intersubband transitions in a GaAs/Al
	
Ga
��	

As quantum well as a function of the
Al fraction x and the well thickness.

The thick curve represents the locus of the concentration—thickness values
which lead to a quasi-resonance situation, i.e. where the energy of the first excited
state e

�
sits just at the top of the well (and at the bottom of the barrier). This is the

configuration that is used in quantum well detectors.
Indeed, in this case, the structure possesses a double advantage: the oscillator

strength for such transitions is still important (being a close cousin of bound-to-
bound transitions), while the promoted electron is free to propagate within the
excited state (paralleling the behaviour of a bound-to-free transition). Figure 11.17
shows that we may therefore adjust the parameters of a quantum well to obtain the
quasi-resonance condition over a wavelength range of 5 to 20 �m, i.e. spanning a
portion of the far-infrared spectrum. The mid-infrared region can be accessed in a
similar fashion by using InGaAs/AlGaAs quantum wells.

Electrons excited into the barrier continuum are swept out by an applied electric
field leading to a photocurrent. The electric field E is produced by the external
application of a suitable bias voltage across (for example) two highly doped GaAs
contact layers. This multiple quantum well (or multi-quantum well) detector struc-
ture appears in Fig. 11.18. We shall see that increasing the number of quantum
wells leads trivially to an increase in the total light absorption levels, but also to an
increase in the overall quantum efficiency and detectivity of the device.

At sufficiently low temperatures, the electrons are trapped within the fundamen-
tal quantum well subband and, ideally, the system is insulating. Under the influ-
ence of a photon flux, electrons are photoionized out of the quantum wells and
into the barrier regions leading to a photocurrent which can be measured by an
ammeter. Figure 11.19 shows the calculated (using (11.58)) and measured absorp-
tion spectra for a multi-quantum well detector. It is worth noting, however, that
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relative to other semiconductor-based detector types, quantum well detectors are
narrow bandwidth detectors.

Two models can be used to describe the operation of a quantum well photo-
detector.
∑ The photoconductor model (Fig. 11.20a). The generation rate per square cm in a

single quantum well with an absorption coefficient �
�! 

subject to a photon flux
�
�

is:



Energy (meV)

A
bs

or
pt

io
n 

0.00

0.02

100 120 140 160

0.04

0.06

0.08

0.10

0.12

Fig. 11.19. Experimental and calculated absorption spectra for a multi-quantum well
detector in a planar waveguide geometry ("� 90°). (Courtesy of F. Luc@THALES.)

504 Semiconductor photodetectors

G
��
� p

�
�
�! 

�
�

(11.59)

where p
�

is the probability that a photoexcited electron will be successfully
emitted into the barrier continuum and swept out by the electric field. At a
stationary state, this rate must be compensated by the capture rate which keeps
filling the quantum wells with electrons. The recombination rate is then given
by:

R�
�
�

#


(11.60)

where #


is the capture time of an electron in the barrier by the quantum well and
�
�


is the two-dimensional density of photoexcited carriers. This capture time #


is dominated by Fröhlich interactions (see Complement 6.B) and is typically
between 1 and 10 ps. Setting (11.59) and (11.60) equal to each other determines
the two-dimensional density �

�

. The three-dimensional carrier density �

�

can

be obtained by assuming the carriers are uniformly distributed throughout the
barrier material of thickness L, such that:

�
�

�

�
�

L
�
p
�
�
�! 

#

�
�

L
(11.61)

Following the same reasoning as in Section 11.2, we find the photoresponsivity
for a multi-quantum well detector to be given by:
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R� )
�! 

G
�! 

1

h�/q
(11.62)
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�! 

and G
�! 

�
#


#
��

�
#


L/v
�

where )
�! 

is the quantum efficiency for a single quantum well, #
��

is the transit
time for an electron in a barrier of length L with a velocity v

�
��E, andG

�! 
is

the single period photoconductive gain. In this last expression, we note that the
responsivity of a photodetector does not depend on the number of quantum
wells. This rather surprising result is a consequence of the conservation of
electrical current. On the other hand, we will see that the detectivity of anNwell
device is proportional to �N.

∑ The photoemissive model (Fig. 11.20b). Using this model, the current is deter-
mined by the condition that, at stationary state, the carrier flux captured by the
quantum wells p


J

��
/q exactly balances out the flux of photoionized electrons

outside the well p
�
�
�! 

�
�

. The coefficient p


is the capture probability for an
electron crossing the quantum well. Setting both fluxes equal, we immediately
obtain for the detector photoresponsivity:

R� )
�! 

G
�! 

1

h�/q
(11.63)

)
�! 

� p
�
�
�! 

and G
�! 

�
1

p


We see that the expressions for the responsivity of a quantum well detector given
by each model are identical if:

1

p


� v
�

#


L
(11.64)

This last equation relates the quantum well capture time to the capture prob-
ability for an electron crossing a quantum well.

Example
We consider a quantum well structure subject to an electric field produced by 1 V
across a distance of 1 �m, or 10�V cm��. The carrier mobility in the barrier is
10� cm�V�� s��, the barrier thickness between successive wells L is 250 Å, and the
capture time #


is 10 ps. The velocity v

�
is then 10� cm s�� and the capture probabil-

ity p


is 0.25. The photoconductive gain of a quantum wellG
�! 

is then 4 assuming
an ionization probability p

�
of 1.

Using a grating coupler, the absorption coefficient for a typical quantum well is
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Fig. 11.20. Two models for electron transport across a multiple quantum well detector: (a)
photoconduction model and (b) photoemission model.
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�
�! 

� 1% for �� 10.6 �m (117 meV). The responsivity for such a quantum well
detector is then R� 4� 10��/0.117� 0.34 A W��.

Addressing the detectivity aspects, we have the noise in anNwell detector given
by (11.A.42):

i�
-!
� 2qI

�
(2� p


)

1

Np


(11.65)

The dark current I
�

can be obtained by first calculating the density �
�
���

of
thermally activated carriers in the barrier conduction band. We saw in (8.43) that
this density is given by:

�
�
���

�
1

L
m


���

�

�
�

e�����3����dE�
1

L
m

kT

���
e�����3�����

n


L
e�����3���� (11.66)

where n


is the critical density (8.43) in the conduction band, and the Fermi levelE
3

is obtained by writing that the quantum wells are doped to a concentration of �
#
,

such that (see (8.45)):

E
3
� �

�
�

�
#

m

/#��

(11.67a)

and E

�E

3
is the difference between the barrier level and the Fermi level. For a

quasi-resonant detector at ��, we must have:

E

�E

3
� ��� (E

3
� �

�
)� ���

�
#

m

/���

(11.67b)

The dark current is obtained by setting I
�
�AJ

�
�Aq�

�
���
v
�
, and the detectivity
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(assuming p
�
� 1) is then given by:

D*�
R

�2(2� p

)qJ
�

/Np


(11.68)

that is:

D*�
)
�! 
h�

N���

�2(2� p

)p

v
�

m

kT

���L
e������3������

���
(11.69)

Detectivity for a multi-quantum well structure

from which we obtain the aforementioned dependence on �N. This last equation
also indicates that if we increase the doping concentration in the wells, we can
expect to improve the quantum efficiency by increasing �

�! 
(see (11.58)). The

thermal barrier height E

�E

3
, however, decreases according to (11.67b). There

exists, therefore, a compromise which will optimize the detectivity (11.69).
Figure 11.21 shows the temperature dependence of the detectivity for an 8.5 �m

quasi-resonant 50 well detector. We observe an e������ dependence common to all
quantum detectors.

Widespread interest in quantum well detectors derives from two principal
advantages:
∑ The detection wavelength can be adjusted at will. To do so, one need only

specify a certain quantum well thickness and Al fraction in the barrier at the
time of growth (this aspect of design being referred to as quantum engineering).

∑ Standardized microfabrication methods are particularly well suited to the pro-
duction of large-scale detector arrays, which in contrast to Schottky detector
technology, offer good detectivity.

We note, finally, that since quantum well detectors cannot detect light at normal
incidence, a method must be found to allow the photons to couple efficiently to
intersubband transitions. This can be achieved by etching a grating coupler on the
detector surface (see Fig. 11.22).

Example
We will calculate the detectivity for a quantum well structure at 77 K assuming the
following physical parameters:

)
�! 

� 1%
��� 0.155 eV (�� 8 �m)
N� 50
p

� 0.25

v
�
� 10� cm s��

m

/���� 2.78� 10�� eV�� cm�� and n


� 7.2� 10�� (T/300) cm��
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Fig. 11.21. Temperature dependence of the detectivity for a multi-quantum well structure
(N� 50) assuming a quantum efficiency per well of 1%.
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Fig. 11.22. Single pixel in a multiple quantum well detector array. A grating coupler
redirects normally incident light to increase overlap with allowed intersubband transitions.
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L� 250 Å
�
#
� 5� 10�� cm��

The Fermi level in the well is then (11.67b):

E

�E

3
� 0.155 eV� 5� 10��/2.78� 10�� eV� 0.155� 0.018� 137 meV

and the detectivity is given by (11.69):
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D*�
10��

0.138� 1.6� 10�� J

�50

	4� 0.25� 10� cm s���
7.2� 10�� (T/300) cm��

250� 10�	 cm
e������	�	����������

or 3� 10�� cm Hz���W�� at 77 K.

11.7 Avalanche photodetectors

In an avalanche photodiode the response is increased by using electron—hole pair
multiplication to amplify the number of photogenerated carriers. Impact ioniz-
ation was described in Complement 6.C, where the multiplication coefficient �

�
was defined as being the number of secondary electron—hole pairs �

�
dx generated

by an electron travelling a distance dx in the presence of a strong electric field. The
coefficient �

�
similarly describes the number of pairs produced by a hole. These

coefficients depend drastically upon the field strength while being negligible at low
fields (see Fig. 6.C.3). In an avalanche diode, we can obtain a strong field by
applying a considerable reverse bias across a p—i—n structure (see Fig. 11.23).

There are therefore three possible sources for a current crossing such a diode (of
cross-sectional area A): primary generation (either thermally created, or resulting
from photon absorption)AqGdx in a layer of thickness dx; impact generation due
to electrons �

�
I
�
dx; and impact generation due to holes �

�
I
�
dx. These mechanisms

lead to the following equations for the steady state current:

�
dI
�

dx
� �

�
I
�
� �

�
I
�
�AqG

(11.70)
dI
�

dx
� �

�
I
�
� �

�
I
�
�AqG

The continuity of the total current I� I
�
� I

�
is assured by these equations, and

by replacing I
�

in the second equation, we obtain:

dI
�

dx
� (�

�
� �

�
)I
�
� �

�
I�AqG (11.71)

which possesses the general solution:

I
�
(x)�C exp[�(�

�
� �

�
)x]�

�
�
I�AqG

�
�
� �

�

(11.72)

The constantC depends upon the boundary conditions at the contacts: n at x� 0,
and p at x�L. Ideally, the n contact cannot inject any holes I

�
(0)� 0, and the p
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Fig. 11.23. In an avalanche diode, a photogenerated electron—hole pair creates secondary
pairs by impact ionization.
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contact cannot inject any electrons I
�
(L)� 0. From the conservation of total

current, it follows that I� I
�
(0)� I

�
(L), so that:

I�AqG
exp[(�

�
� �

�
)L]� 1

�
�
� �

�
exp[(�

�
� �

�
)L]

(11.73)

In this last equation, we see that the current flux I/Aq is equal to the generation
current G, multiplied by a factor M defined as:

M�
I

AqGL
�

1

L
exp[(�

�
� �

�
)L]� 1

�
�
� �

�
exp[(�

�
� �

�
)L]

(11.74)

Generation current multiplication factor

For the special case where �
�
� �

�
� �, the multiplication factor simplifies to:

M�
1

1� �L
(11.75)

For a given field strength, (11.74) imposes a limit on the length of the avalanche
region. If L increases to a value making the denominator equal to zero (Fig. 11.24),
the multiplication factor tends towards infinity, and any infinitesimal carrier
generation produces an avalanche response which short circuits the diode. This
surge can actually destroy the diode unless the current is limited elsewhere in the
circuit. Equation (11.74) also shows that an ideal material for obtaining a strong
multiplication factor in intrinsic regions of minimal thickness would be one in
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which the avalanche coefficients for the electrons and holes (�
�

and �
�
) are as close

as possible. However, we will see in Complement 11.A.5 that this is at the expense
of a much more important increase in noise and, therefore, decrease in detectivity.

We therefore see that avalanche leads to a photoconductivity gain, but for
fundamentally different reasons than those leading to gain in a photoconductor.
We will see in Complement 11.A.5 that avalanche photodiodes possess additional
sources of noise resulting from the avalanche process.

Several possible geometries can be used which can draw upon the avalanche
effect. For instance, an intrinsic region can be used to absorb light and amplify the
signal by avalanche. We can also absorb light in the weak field region (e.g. in one of
the two contact layers) and only use the intrinsic region for avalanche amplifica-
tion. In fact, if in the n and p contact layers, the photon absorption creates a non-
equilibrium density of minority carriers, a portion of these carriers will diffuse
towards the avalanche region, leading to an injection current (a hole current at
x� 0 and an electron current at x�L). In separate absorption—multiplication
photodiodes, a large gap semiconductor is used as an avalanche region and a small
gap semiconductor is used as a light absorption region.

Let us take as an example, an electron current I
�
(L) injected from the p contact

at x�L. In (11.70)—(11.72) we have G� 0, and the boundary conditions at x�L
have changed. The general solution (11.72) with the boundary condition I

�
(0)� 0

then gives:

I
�
(x)�

�
�
I

�
�
� �

�

�1� exp[�(�
�
� �

�
)x]� (11.76)
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and at x�L, we have:

I� I
�
(L)� I

�
(L)� I

�
(L)�

�
�
I

�
�
� �

�

�1� exp[�(�
�
� �

�
)L]� (11.77)

which gives us the electron injection current multiplication factor:

M
�
�

I

I
�
(L)

�
(�
�
� �

�
)exp[(�

�
� �

�
)L]

�
�
� �

�
exp[(�

�
� �

�
)L]

(11.78)

Multiplication factor for injected electrons

Similarly, we obtain a hole injection current multiplication factor at x� 0:

M
�
�

I

I
�
(0)
�

(�
�
� �

�
)

�
�
� �

�
exp[(�

�
� �

�
)L]

(11.79)

Multiplication factor for injected holes

As for the volumetric generation current multiplication factorM, these multiplica-
tion factors for the injected carriers diverge if �

�
L attains a certain threshold (see

Fig. 11.24).
Avalanche photodiodes are widely used to detect small signals, with silicon

avalanche detectors being used most commonly to detect wavelengths shorter
than 1 �m. In telecommunications applications, InGaAs-based photodetectors are
used to detect signals at wavelengths of 1.55 �m.
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Complement to Chapter 11

11.A Detector noise

In Complements 3.A and 4.D, we broached upon a few aspects of noise theory in
order to take into account the statistical properties of light. As the notion of
‘signal-to-noise ratio’ forms the basis for light [and signal!] detection, we will
further develop in this complement the mathematical formalism of noise theory.
Also addressed here are the physical mechanisms responsible for noise generation
in photodetectors.

Before engaging in the main goals of this complement, we wish to derive a rather
simple (and far from rigorous) argument which will allow us to derive the formula
for generation noise rapidly (the aim of this complement). This line of reasoning
will be helpful as a conceptual guide (a lifeline) during our elaboration of a more
precise theory.

We consider a photon flux � over a characteristic time T, incident upon a
photodetector with a quantum efficiency ) (see Fig. 11.A.1). This characteristic
time is the integration time of the detector which is also 1/2�� where �� is the
detection bandwidth. During this time interval, a numberN of photoelectrons are
created. N is a random number, with an average given by N � )�T, and if N
fluctuates according to a Poisson distribution, its variance is given by ��

+
�N . The

photogenerated current can be estimated by the number of carriers created per
unit time as i� qN/T. The average and the variance of the photocurrent are then:

I� i�
qN 

T
(11.A.1)

i�����
q

T�
�
��
+
� 2qI��

We thereby obtain formula (11.A.38), which relates the average value of the current
to its variance. We will now perform this derivation in a more rigorous fashion.
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Fig. 11.A.1. (a) Noise in the detection process, and (b) associated noise spectrum in the
photogenerated current.
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11.A.1 Fluctuations

We consider a current i(t) which circulates in a circuit. In a real situation, this
current fluctuates about a mean value which corresponds to the signal level. For
an observer devoid of any means of signal processing (e.g. signal integration, etc.),
this noise will impede the detection of a signal smaller than the magnitude of the
random fluctuations. We will now develop the physical and mathematical tools to
allow us to deal with this simple, yet fundamental model for noise in a quantitative
fashion.

The current i(t) in this case is an example of a random (or stochastic) process. A
random process is a function resulting from a random draw i(t; -), where - is a
random variable (see Fig. 4.D.2). More precisely, such a process is described by an
ensemble of functions i(t; -),��� t��, associated with a probability distribu-
tion f (-), where f (-) is the occurrence probability of the function i(t; -). As usual, we
define the ensemble average �i(t)
� ' i(t; -) f (-)d-, and �i�(t)
� ' i�(t; -) f (-)d-. For
stationary stochastic processes, which are the only ones we will consider here, this
average does not depend on t. Furthermore, we redefine i(t) by subtracting out the
average �i(t)
 (which in fact constitutes the signal) from the fluctuating current, so
that the average �i(t)
 is null. This is done for reasons of convenience as it lightens
many of the ensuing expressions.

While the simple averages do not depend on time, the temporal aspects of these
fluctuations do not disappear. The current at time t

�
can depend to varying

degrees on the value at time t. This effect refers to the memory of the stochastic
process. A measure of this memory is found using the autocorrelation function for i,
which is the average of i(t)i(t

�
) over the ensemble:

S
��

(t, t
�

)��i(t)i(t
�

)
� ' i(t; -)i(t
�
; -) f (-)d- (11.A.2)

The idea behind (11.A.2) is that, if the process is without a memory, then i(t) and
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i(t
�

) are independent random variables, and the average of the product is equal to
the product of the averages, making (11.A.2) null. For a stationary process, the
function S

��
depends only on the difference #� t

�
� t. Furthermore, we clearly

have S
��

(#)� S
��

(�#).
The Fourier transform of the autocorrelation function is referred to as the power

spectrum of i:

S�
��

(�)��S��(#)e����d# (11.A.3)

Power spectrum of i(t)

We can better understand the reason for calling this a power spectrum by calculat-
ing the square of the current i(t) over a large time interval T. We can expand the
current i(t) sampled between �T/2 and T/2, in terms of a Fourier series:

i(t)�
�
�
��

ı� (�
�
)e����,

ı� (�
�
)�

1

T

���

�
����

i(t)e�����dt,

�
�
�

2�j
T

(11.A.4)

We obtain for the square of the current:

i�(t)��
���

ı� (�
�
)ı� (�

�
)*e��������� (11.A.5)

giving for the time average of the square:

1

T

���

�
����

i�(t)dt��
�

�ı� (�
�
)�� (11.A.6)

which is simply Parseval’s theorem. Inserting the expression for i(�
�
) into this last

expression, we find:

1

T

���

�
����

i�(t)dt��
�
�

1

T

���

�
����

i(t)e����� �
�

dt

(11.A.7)

��
�

1

T

���

�
����

d#e�����
1

T

���

�
����

i(t)i(t� #)dt

This last integral represents the time average of the variable i(t)i(t� #). If the
ensemble average of this integral in the limit T�� is equal to the autocorrelation
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function S
��

(#), then this process is referred to as an ergodic process. We will
suppose in what follows that photodetection mechanisms are ergodic processes. It
can be shown that this property is satisfied if the integral of #S

��
(#) converges.

The consequence of ergodicity on (11.A.7) is therefore that:

�
1

T

���

�
����

i�(t)dt���
�

1

T

���

�
����

S
��

(#)e�����d# (11.A.8)

and in the T�� limit:

� lim

���

1

T

���

�
����

i�(t)dt��
�

�
��

d�
2�
S�
��

(�)�

�

�
��

S�
��
(�)d� (11.A.9)

where we have transformed the sum into an integral using the relation:

1

T
�
�

f (�
�
)��

d�
2�
f (�) (11.A.10)

as ��
�
� 2�/T. Equation (11.A.9) signifies that the total average of i�(t) is distrib-

uted over a frequency spectrum given by S� (�) and that the power over a band of
positive frequencies �� is:

i��� [S� (��)� S� (�)]��� 2S� (�)�� (11.A.11)
Average power in a frequency band ��

since we do not make any difference between positive and negative frequencies (see
Fig. 11.A.1). For calculations, we need to extract yet another important property
from the noise power spectrum. We will consider a linear filter transfer function
h(�) which transforms a signal i

��
(�) into an output signal i

���
(�)� h(�)i

��
(�).

According to the convolution theorem, we have that:

i
���

(t)�� h(t�)i
��

(t� t�)dt�� h(t)*i
��

(t) (11.A.12)

We now seek the correlation function between i
���

and i
��

:

S
*�

(#)��i
���

(t)i
��

(t� #)


�� h(t�)�i
��

(t� t�)i
��

(t� #)
dt� (11.A.13)

�� h(t�)S
��

(#� t�)dt�� h(#)*S
��
(#)

The autocorrelation function for i
���

is obtained by multiplying (11.A.12) by
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Fig. 11.A.2. An integrating circuit.
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i
���

(t� #):

S
**

(#)��i
���

(t� #)i
���

(t)


�� h(t�)�i
���

(t� #)i
��

(t� t�)
dt� (11.A.14)

�� h(t�)S
*�

(#� t�)dt�� h(�#)*S
*�

(�#)

or again,

S
**

(#)� h(�#)*h(#)*S
��

(#) (11.A.15)

which yields the Fourier transform:

S�
**

(�)� �h(�)��S�
��
(�) (11.A.16)

Transformation of the power spectrum by a filter

This important result allows one to recover (11.A.11) from the average noise
power, as the filter (�h(�)�� 1, if �

�
����

�
��� and h(�)� 0 otherwise)

transmits the power S� (�)��. Additionally, this equation shows that the calcula-
tion for noise propagation in a linear circuit is completely analogous to the
calculation for a normal signal, if we represent the noise by an amplitude source i�,
whose square is given by (11.A.11). Armed with these general results, we can turn
to the problem of identifying the physical origins of detector noise.

Example
For the simple integrating circuit in Fig. 11.A.2, we easily find:

h(�)�
i
���

(�)

i
��

(�)
�

1

1� i�#
, #�RC

and (11.A.16) shows us that if the power spectrum of a noise source at the entrance
is S�

��
(�) then the output power spectrum is:

S�
**

(�)�
1

1� (�#)�
S�
��
(�)
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Fig. 11.A.3. In a semiconductor, the random motions of free carriers produce a fluctuation
current in the circuit.
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The filter therefore significantly reduces the noise by eliminating the portion of the
power spectrum above �� 1/#. The greater the value of #, the greater the extent of
the filtering.

11.A.2 Physical origin of noise

In a shorted semiconductor sample, the instantaneous current which circulates is
conserved everywhere in the circuit and is given by:

i(t)�
A

V
�
�

� qv
	�
��q

N

L
�v
	


+

(11.A.17)

whereA and V refer, respectively, to the area and the volume of the semiconductor
sample, and the sum over n is performed for all N carriers in the sample. On
average, this current is null. However, since the velocity and the number of carriers
can fluctuate, i(t) generally differs from being exactly zero at any given time. These
deviations from zero are therefore responsible for a current noise (see Fig. 11.A.3).
Two sources of noise coexist in this last equation:
∑ The velocity of each carrier can fluctuate due to scattering by thermal motions.

This is the source of thermal noise (also referred to as Johnson or Nyquist noise).
∑ The number of carriers can fluctuate either due to generation—recombination

processes (referred to as generation—recombination noise), or because of the fact
that each contact can inject or capture the current one electron at a time with
some necessary time elapsing between each event (referred to as shot-noise).

As these mechanisms are distinct from each other, they may be treated as indepen-
dent non-correlated sources of noise.

11.A.3 Thermal noise

In order to calculate the thermal noise, we will first consider an electron in a
semiconductor possessing neither field nor a carrier density gradient. Boltzmann’s
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equation (see Chapter 6) gives the evolution of the distribution function for such an
electron:

�f (v, t)

�t
��

f (v, t)� f
�

(v)

#

(v)

(11.A.18)

where f (v, t) is the probability at time t that an electron possesses a velocity v (Eq.
(6.7)). We have used the approximation for the relaxation time for the collision
integral (Eq. (6.12)). f

�
(v) is the Maxwell distribution at thermodynamic equilib-

rium.
The solution to this equation is quite simple:

f (v, t)� f (v, 0)exp��
t

#

�� f

�
(v)�1� exp��

t

#

�� (11.A.19)

If we fix the velocity at time t� 0 to v
�

, we then have f (v, 0)� �(v� v
�

), and
(11.A.19) gives the conditional distribution function, i.e. the probability that the
velocity at time t is v given that it was v

�
at t� 0:

f (v, t�v
�

, 0)� �(v� v
�

)exp��
t

#

(v
�

)�� f
�
(v)�1� exp��

t

#

(v
�

)�� (11.A.20)

The joint distribution function, i.e. the probability that the velocity be v at time t
and v

�
at time t� 0, is consequently:

f (v, t; v
�

, 0)
(11.A.21)

� f
�

(v
�
)�(v� v

�
)exp��

t

#

(v
�

)�� f
�

(v
�
) f
�

(v)�1� exp��
t

#

(v
�

)��
From this joint distribution, we obtain the autocorrelation function for v

	
:

S
		

(t)��dvdv
�
v
	
v
�	
f (v, t; v

�
, 0)

(11.A.22)

��dv
�
v�
�	
f
�
(v
�

)exp��
t

#

(v
�
)�� 0

for t� 0. As for all other stationary processes, we have S
		

(t)� S
		

(�t). Further-
more, if #


was simply a constant, integration of (11.A.22) would give:

S
		

(t)�
kT
m*

exp��
�t�
#

� (11.A.23)

The noise power spectrum is the Fourier transform:
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S�
		

(�)�

�

�
��

S
		

(t)e����dt (11.A.24)

which yields:

S�
		

(�)��dv
�

2#

(v
�

)v�
�	
f
�
(v
�
)

1� i�#

(v
�

)
(11.A.25)

For usual electronic frequencies, �#

� 1 (#


is of the order of ps), and we find using

expression (6.16) for the mobility:

S�
		

(�)� 2
kT
q
� (11.A.26)

Now, each electron contributes by�qv
	
/L to the current i, and since the motion of

the electrons is uncorrelated, we have for the power spectrum of i:

S�
��

(�)�
q�

L���
�

v
	�

(t)�
�

v
	�

(0)�
(11.A.27)

�
q�

L�
�
�

�v
	�

(t)v
	�

(0)
�
q�

L�
NS�

		
(�)

and in combination with (11.A.26):

S�
��

(�)� 2kT
N

L�
q�� 2kTG (11.A.28)

Thermal noise power spectrum in electrical current

whereG� 1/R is the conductance of the semiconductor. The relationship between
the fluctuations described by the current autocorrelation function S

��
and the

conductance G is a particular case of the quite general fluctuation—dissipation
theorem. The connection between the linear response G and the fluctuations in i
show that a dissipative process cannot exist without fluctuations or noise. It is
therefore impossible to measure the response of a system to a perturbation without
the system being simultaneously a source of noise.

Applying (11.A.11) for the power in a bandwidth �� due to thermal noise, we
obtain:

i��� 4kTG���
4kT
R

�� (11.A.29)

Thermal noise in a bandwidth ��

This last expression can be interpreted as follows: the thermal power Ri�� dissi-



(a) (b)

Fig. 11.A.4. (a) Following pair generation, an electron created in a diode generates a current
by moving towards the p contact where it recombines with a hole, similarly a contribution is
made by the hole as it moves towards the n contact where it recombines with an electron. In a
photoconductor (b), the created electron recombines with another hole in the semiconductor.
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pated in a resistor R over a bandwidth �� is equivalent to an average thermal
energy 4kT dissipated during a time ����.

Example
We seek the standard deviation of the current due to thermal noise at 300 K in a
50� resistor by integrating the signal over 1 ms. The spectral bandwidth is 10�Hz
and expression (11.A.29) gives �(4� 1.3� 10��� J K��� 300 K� 10�Hz
50�����) or 0.57 nA. This current is far from being negligible.

11.A.4 Generation–recombination noise

The electron—hole generation process does not create a perfectly constant current
as electrons and holes carry discrete charge and the exact instant of their creation
is random. Current fluctuations in this case originate from fluctuations in the
density of free carriers in the semiconductor. From (11.A.17), we see that the
average velocity of carriers must be other than zero to allow a density fluctuation
to generate a current fluctuation. Contrary to thermal noise, generation—recom-
bination noise is only present if the current is already non-zero. This then requires
that an electric field or a density gradient be present in the semiconductor.

We will follow the fate of an electron created at time t
�
, travelling with velocity v,

until its tragic disappearance from the conduction band through recombination at
a later time t

�
� #

�
(see Fig. 11.A.4). The contribution of this event ‘k’ to the current

in the circuit is i
�
(t� t

�
), where:

i
�
(t)���

qv

L
, 0� t�#

�
0, t� 0 or #

�
� t

(11.A.30)

The total current is therefore:
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I(t)��
�

i
�
(t� t

�
) (11.A.31)

and we can write the average current as:

�I
��
qv

L
�#
�N% 
 (11.A.32)

where N% is the generation rate and �#
 is the average electron lifetime. This
generation can have several physical origins: generation at an impurity site (as in
the Shockley—Read mechanism studied in Section 6.5), the Auger effect (see Com-
plement 6.D), band-to-band thermionic emission (see Complement 10.B), or
photon absorption. In all cases, we can suppose that the distribution of creation
times follows a Poisson distribution, i.e. that there is no temporal correlation
between creation events.

According to our now well established procedure, the power spectrum for the
generated current I is:

S
��

(�)�

�

�
��

�I(t)I(t� #)
e����d#

(11.A.33)
�

�
��

��
�

i
�
(t� t

�
)�
�

i
�
(t� t

�
)�e����d#

This expression can be calculated using the Fourier transform for the elementary
contribution i

�
:

i
�
(t� t

�
)�

�

�
��

d�
2�
i
�
(�)e���e�����

(11.A.34)

i
�
(�)�

�

�
��

i
�
(t)e����dt��

qv

L
1� e�����

i�

which, once inserted into (11.A.30) gives:

S
��

(�)��d#�
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�

2� �
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e����e����

��e����������
�

i
�
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�

)e�������
�

i
�
(�
�

)e������� (11.A.35)

��
d�
�

2� �e���������
�

i
�
(�
�

)e�������
�

i
�
(�)e������
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In this summation average, we have the two following distinct cases:
∑ k� l for which each sum becomes:

��
�

i
�
(�
�

)e�������� 2��(�
�

)�i
�
(0)
 (11.A.36)

as the creation times t
�

and lifetimes #
�

are uncorrelated. In the integral (11.A.35)
for S

��
these averages give the square of the mean current.

∑ k� l, in which case the average of the double sum in (11.A.35) may be written:

��
�

i
�
(�
�

)i
�
(�)e������������ 2��(�

�
��)��

�

�i
�
(�)��� (11.A.37)

which leads to the simple result for the current fluctuation autocorrelation
function:

S����(�)���
�

�i
�
(�)�����

qv

L�
�

��
�

2� 2 cos�#
�

�� �
(11.A.38)

��
qv

L�
�

��
�

#�
��� �N% 
�

qv

L�
�
�#�


By using Eq. (11.A.32) for the average current, we obtain the result:

S����(�)��I

qv�#


L
�#�

�#


� gq�I

�#�

�#


(11.A.39)

with the gain g�
v�#


L
�

�#

#
��

where the photoconductive gain was introduced in Section 11.3, and #
��

is the
electron transit time across the creation—recombination region. We then have the
following general result for the generation—recombination noise:

i��� 2qgI
�#�

�#


�� (11.A.40)

Generation–recombination noise

Thus (as predicted), this noise only exists in the event of a non-zero average
current. Three situations involving this expression are of particular interest:
1. Photodiode without recombination. The lifetime distribution is particularly

simple. A created electron will have a lifetime #
��

which will take it to the p
contact, where it will instantaneously recombine upon arriving. We therefore
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have g� 1 and �#�
� �#
�with no fluctuation in #. The noise is then purely a
generation noise:

i��� 2qI�� (11.A.41)
Generation noise

Example
Assuming that a 1 nA current crosses a photodiode, and a bandwidth of 1 kHz,
(11.A.41) leads to a generation noise of �(2� 1.6� 10��C� 10�A�
10�Hz) or 0.56 pA.

2. Photoconductor with recombination. We can suppose the radiative lifetime to be
distributed according to a Poisson process:

P(#)�
1

�#

exp��

#
�#
� (11.A.42)

which has the property (among many others) that �#�
� 2�#
�. This leads to a
generation—recombination noise:

i��� 4qgI�� (11.A.43)
Generation–recombination noise

Generation—recombination noise can be considered as a generation noise
2q(I/g)�� amplified by the gain g, to which is added the recombination noise. In
a photodiode, the recombination noise is null; however, in a photoconductor it
is of the same type as the generation noise. This doubles the generation noise,
and is responsible for the factor of 4 in Eq. (11.A.43).

3. Generation—capture noise in a quantum well photoconductor. As an electron
traverses a multi-quantum well structure, we saw that it may be captured by a
well with probability p


. The probability that an electron will be captured after

travelling n wells beyond the well from which it was initially photoexcited is
p

(1� p


)��� and the average lifetimes are:

�#
�
L
:
vp


, �#�
��
L
:
v �

� 2� p


p�


(11.A.44)

where L
:

is the distance between successive wells. The noise according to
(11.A.40) is then:

i��� 2(2� p

)qgI�� (11.A.45)

Generation–capture noise in a MQW structure

with the two limits
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∑ p

� 1 (the photodiode limit, as capture of the electron by the nearest neighbour-

ing well (with respect to electron’s well of origin) is certain),
∑ p


� 0 (the photoconductor limit, as the capture probability is Poissonian as the

electron crosses many wells before being captured).
We recall that g� 1/p


N, where N is the number of wells.

11.A.5 Multiplication noise

In Section 11.7, we saw how, in avalanche diodes, the generation current is
multiplied by impact ionization. As the generation current is also a source of noise,
we may expect this noise to be amplified by avalanche multiplication. The impact
ionization process, however, is also a random process, and thereby adds to the
overall noise. To describe the noise in an avalanche detector, we need to generalize
the equations in Section 11.7 to be able to find the current I(x

�
) due to a generation

current source qGA�x�(x� x
�

) located at x� x
�
, 0 � x

�
� L. Equation (11.70)

may then be written:

dI
�

dx
� �

�
I
�
� �

�
I
�
� qGA�x�(x� x

�
)

(11.A.46)

�
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�

dx
� �

�
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�
� �

�
I
�
� qGA�x�(x�x

�
)

with the boundary conditions I
�
(0)� I

�
(L)� 0. For a total current I(x

�
), the

solution for I
�

employing these boundary conditions is:

I
�
(x;x

�
)��

�
�
I(x
�

)

�
�
� �

�

(1� e���	), 0�x�x
�

�
�
I(x
�

)

�
�
� �

�

(1� ke�����	�), x
�
� x�L

(11.A.47)

where ��� �
�
(1� k)� �

�
� �

�
, and k� �

�
/�
�
.

For x� x
�

we obtain by integration of (11.A.46) about x� x
�
:

I
�
(x�
�

;x
�
)� I

�
(x�
�

; x
�

)� qGA�x (11.A.48)

which allows us to determine I(x
�

):

I(x
�

)� qGA�x
��e��	�

�
�
� �

�
e���

� qGA�xM(x
�

) (11.A.49)

where the multiplication factor M now depends on x
�
:

M(x
�
)�

(1� k)e��	�
1� ke���

(11.A.50)
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The conclusion to be drawn from (11.A.49) is that a generation source at x
�

yields
through multiplication a current in the circuit which is M(x

�
) times the original

generation current. We may therefore consider the multiplication region as a filter
in the sense of Section 11.A.1, as it provides a transfer functionM(x

�
). We also see

that the multiplication factors deduced in Section 11.7 are the following particular
cases of M(x

�
):

1. Injection at x� 0:

M
�
�M(0)�

1� k

1� ke���
(11.A.51)

2. Injection at x�L:

M
�
�M(L)�

(1� k)e���
1� ke���

(11.A.52)

3. Uniform bulk generation:

M�

�

�
�

I(x
�
)dx

�

�

�
�

qGAdx
�

�
e���� 1

�
�
L(1� ke���)

(11.A.53)

The fact that the avalanche region behaves as a linear filter is important in terms of
noise calculation. We know given (11.A.16) that the noise spectrum at the output
of the filter is �M(x

�
)�� times the entrance noise. As the sources at different locations

x
�

are independent, it is sufficient to calculate the total noise contributed from all
sources and multiply the result by M(x

�
)�.

At each location, there are three generation sources having the associated noise:

i��-� 2q��qG(x
�
)A�x

i���� 2q���
�
I
�
(x
�

)�x (11.A.54)

i���� 2q���
�
I
�
(x
�

)�x

where G(x
�

)A�x is the thermal and optical generation rate, �
�
I
�
(x
�

) is the gener-
ation current produced by electron collisions, and �

�
I
�
(x
�
) corresponds to that

produced by holes. I
�
(x
�

) and I
�
(x
�

) are, respectively, the mean electron and hole
currents. The case involving the injection of electrons or holes at the contacts is
obtained by replacing qG(x

�
)A�x by I

�
(L)�(x

�
�L) or I

�
(0)�(x

�
) leading to the

injection noise:
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i��-� 2q��I
�
(L)�(x

�
�L)

(11.A.55)
or i��-� 2q��I

�
(0)�(x

�
)

The total detector noise is then:

i���
�

�
�

M�(x
�

)(i��-� i���� i���)dx�

(11.A.56)

� 2q��A
�

�
�

M�(x
�

)[qG(x
�
)� �

�
I
�
(x
�

)� �
�
I
�
(x
�

)]dx
�

We now consider the three following cases:
1. Bulk generation, i.e. G(x

�
)�G, 0� x

�
�L. We have according to (11.74)

I� qGALM and:

I
�
(x)� qAG

�
�
LM� 1

��
(1� e���	)

(11.A.57)
I
�
(x)� I� I

�
(x)

Inserting these equations into (11.A.56) and using the expression forM given in
(11.74), we find:

i��� 2q��AqG(1� �
�
LM)

�

�
�

M�(x)e���	dx

� 2q��AqGLM(1� �
�
LM)(1� �

�
LM) (11.A.58a)

� 2q��IM
(1� �

�
LM)(1� �

�
LM)

M

which we may also write as:

i��� 2q��IMF(M)
(11.A.58b)

F(M)�
(1� �

�
LM)(1� �

�
LM)

M

Consequently, the noise is composed of the generation noise 2q��I amplified by
the avalanche factorM, which plays the same role as g in a photoconductor (see
(11.A.43)), and a multiplication noise factor F(M), which describes the noise
added by the avalanche process. In Fig. 11.A.5, we show this factor as a function



1

10

100

M
ul

tip
lic

at
io

n 
no

is
e 

fa
ct

or
, F

(M
)

543210

n L

0.0

0.2

0.4

0.8

0.6

1.0
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of the product �
�
L for several values of the ratio k� �

�
/�
�
. We note that this

factor is minimized when k� 0, or 1/k� 0, but that it is asymptotically
proportional toM when the two ionization coefficients have the same value. In
order to obtain high performance detectors, it thus becomes necessary to find
materials and polarization configurations in which one of the two coefficients
dominates.

2. Electron injection, i.e. qG(x
�
)� I

�
(L)�(x

�
�L). We then have I�M

�
I
�
(L), and

according to Eqs. (11.76)—(11.78):

I
�
(x)�

�
�
M

�
I
�
(L)

��
(1� e���	)�

M
�
I
�
(L)

1� k
(1� e���	)

(11.A.59)
I
�
(x)� I� I

�
(x)

which gives, after introduction into Eq. (11.A.55) and simplification (note that
e����M

�
/(1� k� kM

�
)):

i��� 2q��I
�
(L)�M��� �

�
M
�

�

�
�

M�(x)e���	dx�
� 2q��I

�
(L)[M�

�
� kM�

�
� (1� 2k)M�

�
� (1� k)M

�
] (11.A.60)
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The interpretation of this result is the same as in the preceding case. Further-
more, we clearly see that the multiplication noise factor is minimized for k� 0
and increases catastrophically as �

�
approaches �

�
.

3. Hole injection, i.e. qG(x
�

)� I
�
(0)�(x

�
). This case can be deduced from the

preceding one by replacing I
�
(L) with I

�
(0), �

�
with �

�
and therefore k with 1/k

yielding:

i��� 2q��IM
�
F(M

�
)

(11.A.61)

F(M
�
)��

1

k
M
�
��1�

1

k��2�
1
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This case is only of practical interest if �
�

 �

�
.

In concluding this complement, we see that there are several sources of noise
whose behaviour we summarize in Fig. 11.A.6. Most notably, we found that:
∑ photon noise is transformed into photoelectron noise by the detection mechan-

ism — we saw in this complement that its fate is the same as the signal, i.e. it
suffers the same quantum losses ()� 1) and experiences the same gains (g in case
of photoconductors, M in the case of avalanche photodiodes) as the detected
signal;

∑ gain noise is specific to avalanche detectors with the factor F(M) described by
(11.A.58b);

∑ the readout circuit noise (e.g. amplifier, integrator, . . .), however, is independent
of photoconductive gain.

It is therefore clear that one benefits from an internal amplification (photoconduc-
tive gain g or avalanche multiplicationM) before resorting to electronic amplifica-
tion.

More specifically, if the amplifier noise is �
���
�

(A Hz���), the signal-to-noise
ratio for the complete detection chain is given by (11.73) and (11.A.58b):

S/N�
MAq)�

�
�2Aq���)�

�
M�F(M)� ��

���
�
��

(11.A.62)

whereA is the surface area, �
�

is the photon flux, and ) is the quantum efficiency of
the detector. This is to be compared with the ratio of the signal to noise obtained
by using a photodiode in the same detection circuit, i.e:

S/N�
qA)�

�
�2Aq���)�

�
� ��

���
�
��

(11.A.63)

We will now compare the signal-to-noise ratios between a photodiode and a
silicon avalanche diode with k� �

�
/�
�
� 0.1 and �

�
L� 3. In this case, M� 100

and F(M)� 12 (see Figs. 11.24 and 11.A.5). In Fig. 11.A.7, we compare (11.A.62)



Fig. 11.A.6. Different sources of photodetection noise in a photodiode (a) and in a gain
detector (photoconductor or avalanche) (b).
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with (11.A.63). We notice that the use of an avalanche photodiode is advantageous
for small signal levels when we want to extract the detection noise from the
amplifier noise. More precisely this is the case when:

�
�
�

1� 1/M�

F(M)� 1

��
���
�

2q�A)
�

1

F(M)

��
���
�

2q�A)
(11.A.64)

Therefore, if we assume a light signal made up of 1 eV photons, detected using a
1 mm� detector with a quantum efficiency of 0.5, and an amplifier noise of
0.1 pA Hz����, this leads to a limit flux of 3.2� 10�� photons cm�� s��. So for an
incident power less than 0.5 �W, an avalanche detector would be the detector of
choice.
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11.B Detectivity limits: performance limits due to background (BLIP)

As we saw in Complement 11.A, all detectors contribute noise to the idealized
signal. We are therefore not as interested in the detected signal (say as given by the
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photocurrent i
#
) as we are in being able to extract this signal from a noise

background (given by a noise current i
�
). Detecting a signal, therefore consists in

obtaining as large a S/N ratio as possible.

S/N�
i
#
i
�

(11.B.1)

In a general sense, a signal i
#

(A) is the product of a response R (A W��) to an
incident powerP

���
(W). The noise i

�
takes the form i

�
� (quAJ

�
��)��� (see Comple-

ment 11.A), where u is a constant (2 or 4 depending on whether a photovoltaic
detector or a photoconductive detector possessing a gain of g is used);A is the area
of the detector; J

�
is the background current density; and �� is the bandwidth of

the measurement system, i.e. 2/t
���

, where t
���

is the integration time of the signal
measurement. The signal-to-noise ratio is then:

S/N�
RP

���
�uqAJ

�
��

(11.B.2)

The minimum detectable power is that which corresponds to a signal-to-noise
ratio of 1. This quantity is referred to as the noise equivalent power (NEP) and is
given by:
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NEP�
�uqAJ

�
��

R
(11.B.3)

Noise equivalent power

This last expression shows that the performance of a detector in terms of NEP
depends upon the bandwidth �� and the detector surface area. These two depend-
encies result from nothing else than a manifestation of the law of large numbers
m/�m, where m is the number of detection events in a certain spectral range. To
allow comparisons between different detector technologies, we will introduce a
more intrinsic measure of performance, the detectivity D* defined as:

D*�
�A��
NEP

(11.B.4)

or:

D*�
R

�uqJ
�

(11.B.5)

Detectivity versus background current density Jd

(cmHz1/2 W−1)

It is now time to define the background current density J
�
. This current can have

two origins:
∑ An intrinsic origin due to the fact that the detector picks up the blackbody

radiation from the environment at T
9

. This noise component is given by:

J
9
� qg

��

�
��

)(�)
d�

9
(�)

d�
d� (11.B.6a)

where )(�) is the quantum efficiency of the detector for a photon with
wavelength �; �

�
and �

�
define the spectral detection range; g is the photocon-

ductive gain (g� 1 for a photodiode); and (d�
9

(�)/d�)�� is the photon flux over
the wavelength range �� (d�

9
/d� is in cm�� s���m��). This latter quantity can

be expressed in terms of the blackbody emittance given in Complement 2.B as:

dR

d�
�
hc

�
d�

9
d�

(11.B.6b)

where c is the speed of light.
∑ An extrinsic origin due to the detector itself: this is the dark currentwhich relates

to conduction by free carriers in photoconductors (see Eq. (11.26)), or the
leakage current J

���
in photodiodes (see Eq. (11.44)). To set these ideas straight,

we will consider the noise in a reverse biased V� 0 photodiode (the factor
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e������ 0 in (11.44) and u� 2). The global detectivity at a wavelength �
�

and a
background temperature T

9
is then given by:

D*(�
�

, T
9

)�
)(�
�

)

1.24/���

1

2����qJ���
(T

"	�
)� q�

��

�
��

)(�)
d�

9
(�)

d�
d��

���

(11.B.7)

Global detectivity for a photodiode

where we have added the dependence of the current density J
���

to the detector
temperature T

"	�
(see Eq. (11.50)). As the detector temperature decreases, i

���
drops

exponentially (as e������"	�). We see clearly in this last expression that there is an
operation temperature below which it is useless to cool the detector further. The
system is then dominated by background current, and we say that the detector is in
the BLIP regime (for background limited infrared performance — see Fig. 11.B.1).
The temperature required to reach the BLIP regime T

�%�+
is given by:

J
���

(T
�%�+

)� J
�
� q

��

�
��

)(�)
d�

9
(�)

d�
d� (11.B.8)

BLIP temperature

Equation (11.B.7) permits one to calculate the detectivity limits for a photodiode,
yielding:
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D*
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d�
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(11.B.9a)

To find the fundamental detectivity limit due to blackbody radiation at the cut-off
wavelength �

�
(where the detectivity is maximal), we set )(�)� 1 for � between

�
�
� 0 and �

�
� �

�
, which leads to:

D*
�%�+����

(�
�
, T

9
)�

1

h�
1

2���[�
9

(�
�

)]���
(11.B.9b)

BLIP detectivity

Figure 11.B.2 shows these fundamental limits as a function of detection
wavelength � for a background temperature T

9
of 300 K. The detectivity limit at

room temperature decreases considerably as the detection wavelength increases
up to about 8 �m. This results from variation in the spectral emittance of black-
body radiation at 300 K, which exhibits a maximum at ,10 �m (see Fig. 11.B.2).
The linear increase in D*

�%�+����
for �� 8 �m occurs as the number of photons

required to add up to 1 W of energy increases as � becomes larger.
In an actual application, a detector observes a detail against a background

through an objective (see Fig. 11.B.3). If the surfaces surrounding the detector are
cooled, then the flux received from the background at temperature T

9
decreases by

sin��, where � is the acceptance angle of the aperture.
The noise due to the background blackbody flux �

9
therefore diminishes

according to sin��. The detectivity in the BLIP regime for the system is then given
by:
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Fig. 11.B.3. In an infrared detection system, the blackbody flux is screened by cooling the
detector enclosure. The detector observes the background with an acceptance angle of �.
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D*
�%�+

(�
�

, T
9

, �)�
D*
�%�+

(�
�

, T
9
)

sin �
(11.B.10)

We therefore see that the BLIP detectivity can be significantly increased by
diminishing the acceptance angle of the detector. Generally, a lens with a diameter
D is placed at the entrance of the detector assembly at a distance f (corresponding
to the focal length of the lens) from the detector. The ratio of f/D then gives
f-number (FN) of the system and tan �� 1/(2�FN). As sin��� 1/(1� 1/
tan��), Eq. (11.B.10) may be written:

D*
�%�+

(�
�

, T
9

, �)��1� 4FN�D*
�%�+

(�
�

, T
9

) (11.B.11)

Often, infrared detectors are used to resolve a thermal image immersed within a
continuous background of thermal noise (see Fig. 11.B.3). A reasonable question
which arises in such a case is what minimum thermal contrast can be resolved by
the detector. The answer is in fact quite simple. This noise equivalent temperature
difference (NETD) is given by the change in temperature which leads to a signal-to-
noise ratio of 1, i.e. which leads to power emission equal to the NEP defined in
(11.B.3). Figure 11.B.4 shows D*(�

�
, T

9
� 300 K) for several quantum detectors.

From (2.B.12), a thermal variation �T for a blackbody leads to a variation
C
�
(��)�T in the emittance dR/d� over the spectral range �� (C

�
is in W cm��K��).

The NETD may then be written as:

NEP�NETD�
d

dT �
��

dR

d�
d��C

�
(��)NETD (11.B.12)

giving for NETD as a function of the detectivity D*:
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Figure 11.B.5 shows the correspondence between the noise equivalent temperature
difference NETD and the detectivity for a 40� 40 �m� detector with a bandwidth
of 50 Hz. We see that extremely small thermal contrasts can be resolved.

Example
MATHEMATICA program for calculating the noise equivalent temperature
difference for a detector in the 3� 5 �m band, with a detection area of
40� 40 �m�, a bandpass of 50 Hz, and an f-number of f/1:
(*universal constants *)
c = 2.988 10 ˆ8 (* m/s*);
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Fig. 11.B.5. Correspondence between the noise equivalent temperature difference NETD
and the detectivity across two spectral bands for a 40� 40 �m� detector, with a bandpass of
50 Hz, and an FN of 1.
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k= 1.38 10 ˆ -23 (*J/K*);
h = 6.625 10 ˆ -34 (*J.s*);
hb= h/(2*3.1416);
m0= 0.91 10 ˆ -30 (*kg*);
(* Wavelength Band in �m *)
lambda1= 3;lambda2= 5;
(* Blackbody as a function of temperature*)
temp= .; lambda= .;
emm:= 2*3.1416*h*c ˆ 2*(lambda*10 ˆ -6) ˆ -5/(Exp[h*c/((lambda*10 ˆ -6)*k*temp)]-1)
emm = emm * 10 ˆ -6 (* W/m ˆ2/�m*);
contr = D[emm,temp]; (*contrast used in the NETD calculation*)
temp= 300 (*Blackbody temperature*);
(*Differential contrast over the spectral band*)
cc = NIntegrate[contr,�lambda,lambda1,lambda2�] (*W/m ˆ2/K*)
*10 = -4 (* W/cm ˆ2/K*);

df = 50;A = 16 10 ˆ -6 (*cm2*);dies = 1;
NETD=Sqrt[df/A]/Det/cc*(1]4*dies ˆ2);
Plot[NETD,�Det,10 ˆ 10,10 ˆ 11�]
Results from this calculation appear in Fig. 11.B.5.

FURTHER READING

G. Gaussorgues and S. Chomet, Infrared Thermography, Kluwer, Boston (1993).
R. J. Keyes, Ed., Optical and Infrared Detectors, Topics in Physics Vol. 19, 2nd Edn, Springer

Verlag, Berlin (1980).



12 Optical frequency conversion

12.1 Introduction

One of the most impressive accomplishments of wave optics is its success in
providing a coherent and succinct description of the interactions between elec-
tromagnetic waves and matter (gases, solids, etc.). Maxwell’s equations, which
describe the propagation of light, and the Laplace—Lorentz equations, which
describe the source terms of light, allow one to take into account the phenomena of
refraction, diffusion, and diffraction of light by dense media. It is amazing — to say
the least — that such a theory can account for the complex interactions of an
electromagnetic wave with an immense ensemble of atoms (each approximated in
terms of individual harmonic oscillators), by means of a simple optical index n

��
.

Such an achievement is reminiscent and, indeed, on par with the level of concision
achieved by the concept of effective mass in representing the interaction of a
conduction electron with a crystalline lattice.

In the description of all these effects, an electromagnetic wave with (angular)
frequency � forces free carriers into oscillatory motion at the same frequency,
leading to radiative re-emission at this same frequency. This behaviour is a natural
by-product of the linear equations we have employed up until now. In this chapter,
we will see that non-linear media (i.e. materials whose response to external
excitations contains non-linear terms), may by used to perform frequency conver-
sion as evidenced, for example, by second harmonic light generation or optical
parametric oscillations.

12.2 A mechanical description for second harmonic frequency generation

We already know that the mechanical model of an elastically bound electron
successfully describes several optical effects, such as spectral dispersion (Comple-
ment 7.B). We now seek the behaviour of an electron subject to a confinement
potential containing higher-order non-quadratic terms. To keep things simple, we
shall suppose that the confinement potentialU(x) is one dimensional, and write it
as (see Fig. 12.1):

U(x)�
1

2
m��

�
x��

1

3
mDx� (12.1)
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Fig. 12.1. An electron confined by an asymmetric potential and excited by an
electromagnetic field E cos�t (a) experiences anharmonic oscillations about its equilibrium
point (b). Its motion exhibits a continuous component (c) and a component at 2� (d) which,
respectively, give rise to a constant polarization (optical rectification) and the generation of a
second harmonic signal.

where �
�

is the natural oscillation frequency of the oscillator in the linear regime,
m is the vacuum electron mass, andD is the non-linear coefficient (in m�� s��). This
system is then subjected to a dipolar electrical driving force:

F� qEcos(�t)�
qE

2m
(e���� c.c.) (12.2)

where (as usual) c.c. designates the complex conjugate. The motion of the particle
x(t) therefore obeys the differential equation:

ẍ� �x" ���
�
x�Dx��

qE

2m
(e���� c.c.) (12.3)
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where � is the friction coefficient of the particle and determines the width of the
associated optical transition (see Complement 3.A). As the motion of the particle
must clearly be periodic (with frequency � and accompanying harmonics), we can
perform a harmonic analysis of x(t) by writing it as:

x(t)�
1

2
(x
�
�x

�
e����x

�
e����� · · ·� c.c.) (12.4)

We will assume for the time being that x
�
� 0, i.e. that there is no constant

polarization induced in the system. Later on we will see that such a term can exist,
leading to the phenomenon of optical rectification. Substituting (12.4) into (12.3)
we obtain:

�
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2

(x
�

e���� c.c.)� 2��(x
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e����� c.c.)�
i��
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e����� c.c.)�
D
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(x�
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e����� 2x

�
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e���� (12.5)

�x
�
x*
�
� x
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� 2x

�
x
�

e�����x�
�

e����� c.c.)�
qE

2m
(e���� c.c.)

This expression may at first seem complicated, but, as is often the case in non-
linear optics, it can be considerably simplified by grouping like terms.

We will first consider the linear response, i.e. the terms in e��� and neglect those
in D. We immediately find:

x
�
�
qE

m

1

(��
�
���)� i��

�
qE

2�m
1

(�
�
��)� i�/2

(12.6)

for ���
�

. The motion x
�

(t)� x
�
e���� c.c. gives rise to a linear polarization in

the medium:

P
�
(t)�Nqx

�
(t)�Nqx

�
(e���� c.c.) (12.7)

whereN is the volumetric density of the systems which interact with the wave. We
can then identify term by term expression (12.7) with the definition for linear
susceptibility given in (3.24):

P
�
(t)�

�
�

2
($���
�
Ee���� c.c.) (12.8)

which leads to:

$���
�
�

Nq�

2�m�
�

1

(�
�
��)� i�/2

(12.9)
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This last result is equivalent to that provided by the classical Lorentz model
investigated within the context of quantum mechanics in Chapters 2 and 3.
Following an inductive line of reasoning, we define the non-linear second-order
susceptibility as:

P
�
(t)�

�
�

2
($����
�
E�e����� c.c.)�

Nq

2
(x
�

e����� c.c.) (12.10)

The term in x
�

is generated by the non-linear quadratic term Dx� in (12.3). An
expression for it can be obtained through (12.5) by identifying terms in e����:

x
�

(�4��� 2i�����
�

)��
1

2
Dx�
�

(12.11a)

We see in this last expression that it is the term in x�
�

which drives the 2� motion of
the electron. Employing (12.6), we find:

x
�
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q�D

2m�

1

[(��
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���)� i��]�[(��

�
� 4��)� 2i��]
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(12.11b)
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q�D

24m���
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�
��)� i�/2]�[(�

�
� 2�)� (2/3)i�]

E�

After substituting this last equation into (12.10), we are in a position to find the
second-order non-linear susceptibility:

$����
�

��
Nq�D

24�
�
m���

1

[(�
�
��)� i�/2]�[(�

�
� 2�)� (2/3)i�]

(12.12)

Several interesting points are worthy of mention now. First, the system is doubly
resonant, i.e. there is a resonance at ���

�
and at �� 2�

�
. Additionally, when

comparing (12.12) and (12.9), we see that this model predicts the following relation-
ship between linear and non-linear optical susceptibilities:

$����
�

($���
�

)�$����
�

��
�

�
mD

2N�q�
� ����� (12.13)

As shown in (12.13), the parameter ����� (referred to as the ‘Miller parameter’)
should be very similar for all materials, and it effectively is. Table 12.1 presents
values for non-linear second-order susceptibilities in different semiconductors.
Looking at this table, we conclude ������ 3� 8� 10SI.

We will now build an extremely crudemodel for a non-symmetric crystal, which
will allow us to obtain a value for D starting from fundamental constants. To do
so, we will assume that the electrons in such a crystal are subject to an attractive
potential resulting from a nucleus with charge 2q and a second nucleus with charge
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Table 12.1. Optical indices n� at a fundamental wavelength of 10.6�m, second
harmonic optical indices n

�� at 5.3 �m, quadratic susceptibilities �
�

, and Miller
parameters for several semiconductors (n

�� and 	
0�

	�

are unknown for InSb)

Material n� n
�� $

�
(pm V��) �

0�

	�
(10SI)

InSb 3.95 ? 1634 ?
InAs 3.49 3.54 419 2.8
GaSb 3.8 3.82 628 3.2
GaAs 3.27 3.30 368 5.4
CdTe 2.69 2.71 168 6.4
ZnTe 2.69 2.70 90 4.7
ZnSe 2.42 2.43 78 8.6

q separated from the first by a distance a. This potential may be written as:

V(x)�
�q�

4��
�
�

1

x
�

2

a� x� (12.14)

In the vicinity of the minimum this potential may be expanded as:

V(x)�
�q�

4��
�
a�5.83� 24�

x

a�
�
� 17�

x

a�
�
� · · ·� (12.15)

The non-linear coefficient D in (12.1) then follows through the identification of
similar terms, yielding:

D��51
q�

4��
�
ma�

(12.16)

Assuming a typical interatomic distance a of 5 Å, we find D� 2� 10��m�� s��,
which leads to a Miller parameter ����� of 6� 10 SI for a density N of
6� 10�	 atoms m� (see Eq. (12.13)). Our simple model, which attributes the origin
of optical non-linearity in a material to an asymmetry in the atomic potentials
between its constituent atoms, leads to results that are compatible with experimen-
tally determined values. We present in Complement 12.A a more rigorous quan-
tum mechanical derivation using density matrix formalism.

Finally, it is obvious that the quantity $
�

is fundamentally a tensor. If the
fundamental wave has components (E

	
,E



,E

�
), the second harmonic wave will

have components (P
	
,P



,P

�
) which in the most general case, will be determined by

all quadratic combinations between the components E
	
, E



, and E

�
, i.e:
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The tensors $
�
���� possess properties that depend strongly upon the symmetries of

a given crystal. We will not enter here into a classification of these different
symmetries, but rather content ourselves with describing the operation of various
optoelectronic devices which employ the non-linear optical properties of these
materials.

12.3 An electromagnetic description of quadratic non-linear optical
interaction

The anharmonic displacement of electrons in a non-linear material subject to
excitation by an electromagnetic wave leads to light emission at frequencies of
2�, 3�, . . .. The calculation of optical emission due to these non-linear source
terms is, as is the case in linear optics, taken into account using the powerful
formalism provided by Maxwell’s equations. We recall here Maxwell’s equations
in the absence of free charges (�� 0) and conduction current (j� 0):

� ·E� 0

� ·B� 0
(12.18)

��E��
�
�t

B

��B� �
*

�
�t

D� �
*

�
�t

(�
*
E�P)

where P is the polarization vector and is the sum of the linear polarization P
�
given

by (12.8) or P
�
� �

�
(n�

��
� 1)E (with n�

��
� 1� $

�
) and the non-linear polarization

P
�


as given for instance in (12.10). The ensemble of equations in (12.18) may be
written in the more compact form:

��E��
n
��
c �

��
�t�

E� �
*

��
�t�

P
�


(12.19)

Propagation equation with a source term

In order to simplify the notation and concentrate on the concepts, we will assume
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Fig. 12.2. In a medium characterized by a non-linear optical susceptibility $
�

, three waves
�
�

, �
�

, and �
�

can exchange energy during propagation by intermediary of the quadratic
polarization terms.

the system is one dimensional and that all electromagnetic waves propagate along
the Oz axis.

As illustrated in Fig. 12.2, we will consider three electromagnetic waves with
frequencies �

�
(i� 1, 2, and 3 with �

�
��

�
��

�
) which propagate within the

non-linear crystal. These three waves may be described as envelope functions, i.e.
they may be written in the form:

E��(z, t)�
1

2
[E

�
(z)e����������� c.c.] (12.20)

We recall that the envelope function approximation stipulates that the amplitude
variations E

�
(z) are small in comparison to the scale of the involved wavelengths

�
�
� 2�/k

�
. This is to say:

�
dE

�
dz
k
� �


d�E
�

dz�
(12.21)

The envelope function approximation

Furthermore, the solutions to Maxwell’s linear equations (without source terms as
in (12.19)) lead to the dispersion relations:

�
�
� k

�

c

n
�

(12.22)

These three waves interact in the crystal through the effect of non-linear polariz-
ation. We will suppose that the non-linear polarization vector is oriented alongOy
and we will only consider its normP

�

. The non-linear source term possesses terms

in E��(z, t)E��(z, t) which will generate terms of angular frequency �
�
��

�
��

�
.

Similarly, source terms in E�+(z, t)E��(z, t) (or E�+(z, t)E��(z, t)) will generate waves
of frequency �

�
��

�
��

�
(or �

�
��

�
��

�
). We therefore expect the following

three mechanisms:

mechanism A: �
�
��

�
��

�
sum frequency

mechanism B: �
�
��

�
��

�
difference frequency

mechanism C: �
�
��

�
��

�
difference frequency
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The non-linear source term corresponding to mechanism B, for example, is given
by immediate generalization of (12.10):

P
�


(z, t)�
�
�
$
�

2
[E
�

(z)*E
�

(z)e����+��������+������� c.c.] (12.23)

It is important to note at this stage that the presence of e����� or e����� in the time
dependence will be accompanied, respectively, by E

�
(z) or E*

�
(z) in the envelope

function. Moreover, it is clear that the non-linear susceptibility $��+���� has no
reason to equal the second harmonic generation susceptibility $����

�
. Nonetheless,

to keep our notation simple, we will write this susceptibility under the general form
of $

�
.

We need now only substitute the expression for the non-linear polarization
(12.23) as the source term in Maxwell’s equations, (12.19). We will calculate each of
the terms in this equation. The first may be written as:

��
�z�

E��(z, t)�
1

2�
d�

dz�
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(z)e����������]� c.c.�
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1
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� 2ik

�

d
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E
�
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�
E
�� e����������� c.c.� (12.24)
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�
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where we have made use of the envelope function approximation (12.21). The
propagation equation, (12.19), may therefore be written as:
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As �
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�

and �
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�
, this equation can be simplified and rewritten

more compactly as:
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2
[$
�
E
�
E*
�

e����+������ c.c.] (12.26)

We are now in a position to account for the variation of the complex amplitude
E
�
(z) in the material (as a function of the evolution of the amplitudes of the two

source-wavesE
�

(z) andE
�

(z)), which describes the difference frequency mechanism
�
�
��

�
��

�
. Clearly, the two other mechanisms �

�
��

�
��

�
and �

�
�

�
�
��

�
occur concurrently. The amplitudes E

�
(z), E

�
(z), and E

�
(z) are related by
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the following series of three differential equations:

�
�
��

�
��

�
�

d

dz
E
�
��i

�
�

2n
�
c
$
�
E
�
E*
�

e�����

�
�
��

�
��

�
�

d

dz
E
�
��i

�
�

2n
�
c
$
�
E*
�
E
�

e����� (12.27)

�
�
��

�
��

�
�

d

dz
E
�
��i

�
�

2n
�
c
$
�
E
�
E
�
e����

Second-order parametric interactions

We have left the reader to derive the last two equations in (12.27). We note that the
added frequencies ��

�
lead to an E

�
term in (12.27), whereas the subtracted

frequencies��
�

yield an E*
�

term on the right-hand side of the equation. �k is the
phase mismatch given by:

�k� k
�
� k

�
� k

�
(12.28)

Phase mismatch

12.4 Optical second harmonic generation

We describe here the particular case where ���
�
��

�
and �

�
� 2�. This

situation corresponds to optical second harmonic generation. Equation (12.27) then
becomes:

d

dz
E���i

�
2n�c

$
�
E
��E*�e�����

(12.29)
d

dz
E
����i

�
n
��c

$
�
E��e����

with new notation forE� being evident. The origin of the �k term is that the source
field P

�� is synchronous with the field E� (which generates it), which has a
propagation speed given by c/n�, whereas the field E

�� possesses its own propaga-
tion velocity as imposed by n

�� (see Fig. 12.3).
We will suppose for the time being that the non-linear conversion efficiency is

weak and consequently that E�(z) remains fairly constant over the interaction
volume, i.e. that E�(z)�E

�
. The complete calculation is provided in Complement

12.C. The second differential equation in (12.29) can be easily integrated along the
interaction path (the non-linear crystal length from 0 to L) to find:

E
��(L)��i

�
n
��c

$
�
E�
�

e����� 1

i�k
(12.30)
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Fig. 12.3. Origin of phase mismatch between the non-linear polarization field P(2�) and the
second harmonic field E(2�).

We can use the technique employed earlier in (1.77) for time-dependent perturba-
tions, which involves multiplying the numerator and denominator in (12.30) by
e�������, leading to:

�E
��(L)��

�
n
��c

$
�
E�
�
L sinc�

�kL
2 � (12.31)

In general, we are more interested in the optical power converted into second
harmonic radiation, which relates to the amplitude E

�� according to:

P
���

1

2Z
�

n
���E��(L)�� (12.32)

where Z
�

is the vacuum impedance (Z
�
� (�

�
/�
�

)���� 377�). The second har-
monic frequency conversion efficiency is then:

P
��
P�

� 2
Z�
�

n
��n��

(��
�
$
�
L)�sinc��

�kL
2 �P� (12.33)

Second harmonic generation yield

This last equation brings to light the role played by the phase mismatch �k. If this
term is null, the conversion efficiency increases quadratically with the interaction
length L (sinc(0)� 1), and there is a permanent exchange of energy between the
fundamental wave and the second harmonic wave across the interaction trajec-
tory, until the pump power is depleted of course (see Complement 12.C). On the
other hand, if �k is not zero, the efficiency varies as sin�(�kL/2), which oscillates
periodically along the interaction path (see Fig. 12.4). In this case, the energy
periodically cycles between both waves during propagation in the crystal. The
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Fig. 12.4. Variation in power of the second harmonic signal P
�� as a function of

propagation distance in the non-linear medium for phase matched and phase mismatched
conditions.

distance L


at the end of which the energy transfer is at a maximum is given by
�kL


��, i.e:

L

�

�
�

4(n
��� n�)

(12.34)

Phase mismatch length

where �
�

is the vacuum wavelength of the fundamental electromagnetic wave. This
quantity, L


, is often inappropriately designated in the literature as a coherence

length. We prefer the term phase mismatch length. The existence of this maximum
conversion length clearly relates to the natural dispersion occurring in non-linear
material (except near resonances where dispersion may be anomalous), where
n(2�)� n(�). Examination of (12.29) and (12.30) allow one to understand the
oscillatory nature of the energy exchange between fundamental and second har-
monic waves. It can be shown that for z�L


, the work performed by the wave �

on the dipoles at 2� is positive, whereas the inverse situation occurs over
L

� z� 2L


.

Example
We wish to use a GaAs crystal to convert a beam of 10.6 �m radiation into light at
5.3 �m. GaAs is a material with a very strong non-linear susceptibility at 10.6 �m.
We will suppose in this experimental configuration that $

�
� 100 pm V��. Other

required constants are:

n(5.3 �m)� n(10.6 �m)� 2.5� 10�� (see the Sellmeier relation in Complement
7.B)
n(5.3 �m) � n(10.6 �m) � 3

The optimal length of GaAs to obtain the greatest conversion efficiency is then
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Fig. 12.5. Different configurations for second harmonic generation at 530 nm using a
Nd: YAG laser at 1.06 �m. (a) Non-linear crystal (NLC) placed outside the optical cavity
oriented to allow angular phase matching, (b) intracavity conversion using a NLC oriented for
angular phase matching, and (c) microchip conversion with mirrors deposited on either side of
the Nd: YAG and NLC layers.

given by L

� 10.6 �m/(4� 2.5� 10��)� 106 �m. The accessible efficiency is

then:

P
��
P�

� 2��
377

3
��
�
� [1.8� 10�� s��� 10��m� 8.85� 10���Fd m��

� 10���m V��]�P�
i.e:

P
��
P�

� 10���P�(W cm��)

AssumingP�� 1 MW cm��, the conversion efficiency is only 10��, which is disap-
pointing. The cause of this low conversion efficiency is the phase mismatch which
limits the effective interaction length to 100 �m.

Figure 12.5 describes various experimental configurations for achieving optical
frequency doubling: (a) the doubling crystal can be placed outside the laser cavity,
(b) the doubling crystal can be placed inside the optical cavity to benefit from
optical feedback from the cavity mirrors (see Complement 12.E), and (c) a very
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compact (microchip) configuration involving the deposition of mirrors on either
side of adjacent YAG and doubling crystal layers — the structure can be pumped
using a laser diode.

12.5 Manley–Rowe relations

Examination of (12.27) reveals a lack of aesthetic symmetry between the equations
(presence of different �

�
and n

�
in each equation). To make these equations

symmetrical, Manley and Rowe suggested the introduction of the following quan-
tities:

A
�
�	

n
�

�
�

E
�

(12.35)

The interest in using these modified amplitudes is that they relate directly to the
flux ��� of photons (having energy ��

�
). In fact, the light power is given by:

P���
1

2Z
�

n
�
�E
�
���

1

2Z
�

�
�
�A
�
�� (12.36)

so that:

����
P��
��

�

�
1

2�Z
�

�A
�
�� (12.37)

in which neither �
�

nor n
�

appear. Substituting this newly defined amplitude into
the conversion equations, (12.27), we obtain the more symmetric set:

�
�
��

�
��

�
�

d

dz
A
�
��i�A

�
A*
�

e�����

�
�
��

�
��

�
�

d

dz
A
�
��i�A*

�
A
�

e����� (12.38)

�
�
��

�
��

�
�

d

dz
A
�
��i�A

�
A
�

e����

Non-linear coupling equations between photon fluxes

where � is the non-linear coupling coefficient:

��
1

2

$
�
c 	

�
�
�
�
�
�

n
�
n
�
n
�

(12.39)

Equation (12.38) is particularly powerful if we can assume that the material is
non-dispersive (i.e. �k� 0). This condition can be achieved, as we will see later,
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using artificial phase matching techniques. We will now illustrate the superiority of
(12.38) over (12.27). To do so, we multiply each equation i in (12.38) byA*

�
and add

to it its complex conjugate. We then obtain:

A*
�

d

dz
A
�
�A

�

d

dz
A*
�
��i�A*

�
A*
�
A
�
� i�A

�
A
�
A*
�

A*
�

d

dz
A
�
�A

�

d

dz
A*
�
��i�A*

�
A*
�
A
�
� i�A

�
A
�
A*
�

(12.40)

A*
�

d

dz
A
�
�A

�

d

dz
A*
�
��i�A

�
A
�
A*
�
� i�A*

�
A*
�
A
�

which leads to the Manley—Rowe equations:

d

dz
(�A
�
��)�

d

dz
(�A
�
��)��

d

dz
(�A
�
��) (12.41)

The Manley—Rowe equations express the fact that the photon flux is conserved.
Therefore, in a sum frequency experiment, photons with energy ��

�
can only be

produced at the detriment of the numbers of constituent ��
�

and ��
�

photons.
Alternately, the Manley—Rowe relations reveal an asymmetry in the energy ex-
changes. In a difference frequency mechanism, (�

�
��

�
��

�
), we see that

photons ��
�

are consumed, while ��
�

photons are created even if they are already
present. We will return to this aspect later on (see Section 12.8).

We therefore see how optical frequency conversion processes can be interpreted
in corpuscular terms. The photons ��

�
, ��

�
, and ��

�
cannot exchange their

energies unless both energy and momentum conservation between the particles is
conserved by the interaction (see Fig. 12.6):

��
�
� ��

�
� ��

� (12.42)
k
�
� k

�
� k

�
Energy and momentum conservation laws for photons

12.6 Parametric amplification

Equation (12.38) shows that it is possible to amplify a signal with frequency �
�

(signal beam) through non-linear interaction with a secondary wave at �
�

(pump
beam) (see Fig. 12.7). As expected from energy conservation considerations (12.42),
a third beam is produced at a frequency �

�
(referred to as an idler beam).

To simplify these calculations, we will make the same assumption as in the case
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Fig. 12.7. In parametric amplification, an incident signal at frequency �
�

is amplified while it
propagates in a non-linear medium via quadratic non-linear interaction with a pump beam at
�
�

. Conservation of photon energy requires the creation of an idler beam at �
�

.

k
1

k
2

k
3

1

2

3

Fig. 12.6. Energy transfer conditions between three waves �
�

, �
�

, and �
�

during interaction
in a non-linear medium may be interpreted according to energy and momentum conservation
laws which govern the constituent photons.

of second harmonic generation, and suppose that the amplitude of the pump beam
A
�

(z) is not affected by the non-linear interaction. In other words, the conversion
efficiency is presumed to be weak (substantiated earlier in the example of Section
12.3 and later on in this section). In such a situation, we speak of an undepleted
pump beam. The complete calculation is given in Complement 12.C.

Having made this approximation, (12.38) takes the simple form:

d

dz
A
�
��igA*

�
(12.43)

d

dz
A*
�
� igA

�

where the parametric gain g (cm��) is given by:

g�
1

2

$
�
c 	

�
�
�
�
�
�

n
�
n
�
n
�

A
�
�

1

2

$
�
c 	

�
�
�
�

n
�
n
�

E
�

(12.44)
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andA
�

andE
�

are the constant amplitudes of the pump beam. The solution to this
system of differential equations, (12.43), is trivial. We find�:

A
�

(z)�A
�

(0)ch(gz)� iA
�

(0)*sh(gz)
(12.45)

A
�

(z)�A
�

(0)ch(gz)� iA
�

(0)*sh(gz)

We will suppose that no idler beam has been injected at z� 0, i.e. that A
�

(0)� 0.
The evolution of the signal and idler beams may then be written as:

A
�

(z)�A
�

(0)ch(gz)
(12.46)

A
�

(z)��iA
�

(0)*sh(gz)

These two waves experience exponential amplification as a function of propaga-
tion distance in the material (as in the case of laser amplification) — this situation is
referred to as parametric amplification. Figure 12.7 shows the variation in the
power levels E� for different waves in the material.

Example
We wish to amplify a �� 10.6 �m wave in a GaAs crystal which we will assumed
to be phase matched (i.e. �k� 0 — we will see later on how this can be achieved in
practice). We will suppose for the particular configuration used in this experiment
that $

�
� 100 pm V��. We will calculate the parametric gain for the crystal assum-

ing a pump power P�� of 5 MW cm�� at 5.3 �m.
The corresponding electric field amplitude is:

E
�
� (2P��Z�/n��)���� (2� 5� 10��W m��� 377�/3)���� 3.5� 10�V m��

The parametric gain is therefore g� $
�

/2c��/n
��
�E

�
or:

g� (10���mV��)/(6� 10	m s��)� 1.8� 10�� s��� 3.5� 10�V m��/3
� 0.35 cm��

which is quite low considering the rather high pump power.

It is worth remarking that Eq. (12.38) states that it is not possible to amplify a
signal with frequency �

�
using pump beams �

�
or �

�
of lesser frequency. In fact,

assuming an undepleted pump beam A
�

(z)�A
�

a similar calculation to the
preceding one shows that if �

�
��

�
, then the variations in the signal amplitude

A
�

(z) will be sinusoidal (in cos(gz)) and not exponential. Mathematically, this has
its origin in the presence of E

�
or E*

�
in the non-linear coupling equations depend-

ing on whether we increase or decrease the frequency (see Eq. (12.38)) — a point
insisted upon earlier. In more physical terms, this comes from the fact that,
according to Manley—Rowe, for each photon �

�
annihilated to produce a photon

� ch� cosh, sh� sinh
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�
�

, a photon�
�

should also be consumed. And such photons are not present in the
system! We will return to this aspect later in Section 12.8.

12.7 Optical parametric oscillators (OPOs)

As demonstrated in the preceding example, the optical gain associated with
parametric amplification is quite low. We therefore cannot expect reasonable
conversion efficiencies from an experimental set-up such as the one depicted in Fig.
12.7. This situation is completely analogous to that encountered in Section 4.4 in
the course of our study of laser amplification. We will therefore make use of the
same stratagem which allowed us to obtain laser oscillations from even weakly
amplifying gain media — optical feedback.

In this case, we place a non-linear crystal in the centre of an optically resonant
Fabry—Pérot cavity (see Complement 9.D) consisting of two mirrors with complex
reflection coefficients r

�
and r

#
with r

�
� (R

�
)���e��� (where i� e or s for entrance or

exit, respectively).R
�
are the mirror reflectances and �

�
their associated phase shifts

(�
�
�� for metallic mirrors).

We will study two distinct cases (see Fig. 12.8).
1. A simply resonant oscillator. The mirrors possess reflectances R

�
close to unity

for the signal wave, but virtually null for the idler wave.
2. A doubly resonant oscillator. The mirrors possess reflectances R

�
close to unity

for both the signal and idler waves.
In either case, mirrors fulfilling these requirement can be obtained through the
deposition of dielectric multilayers (see Complement 9.D). In the following devel-
opment the pump power is supposed to be undepleted. The complete case is
treated in Complement 12.F.

12.7.1 Simply resonant optical parametric oscillators (SROPOs)

This case bears a complete resemblance to the laser cavity. To keep from repeating
ourselves needlessly, we will assume as in Section 4.4 that the active crystal fills the
entire space between the two mirrors (i.e. that L is simultaneously the length of the
active crystal and the optical cavity). As the cavity is not resonant for the comple-
mentary wave, the amplitude A

�
(z) remains weak and the amplification coefficient

for the wave during a single pass through the medium is given by (12.46) to be
cosh(gL), even after multiple passes.

We consider a signal beam with a weak amplitude a
�

(starting at the entrance
mirrorM

�
and directed towards the exit mirrorM

#
) subject to parametric amplifi-

cation using a pump beam with frequency �
�

(see Fig. 12.8a). Once at the exit
mirrorM

#
, the complex amplitude of the signal wave is then a

�
cosh(gL)e�����. The
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Fig. 12.8. Principle of optical parametric oscillation (OPO). The non-linear crystal is placed
in a cavity between two mirrors M

�
and M

#
. When the parametric gain that the signal wave �

�
extracts from the pump beam �

�
exceeds the cavity losses, the system begins to oscillate at

frequency �
�

. We can either make the signal wave �
�

oscillate (using a simply resonant cavity)
(a), or (b) make both �

�
and the complementary wave �

�
oscillate (using a doubly resonant

cavity).

wave is then reflected, its amplitude becoming a
�
r
#
cosh(gL)e�����, and goes on to

travel through the crystal in the opposite direction. The waves �
�

and �
�

then
propagate in opposite directions and the phase matching condition cannot be met,
with the result being that no amplification takes place over this leg of the trip. Its
amplitude is then a

�
r
#
cosh(gL)e������, once it returns to the entrance mirror M

�
.

Finally, the signal wave experiences a second reflection at the entrance mirror, and
its amplitude becomes a

�
r
�
r
#
cosh(gL)e������, and so on.

The signal wave in the resonator at z� 0 then results from the sum of the
contributions made by these multiple passes:

A
�

(0)� a
�
�1� r

�
r
#
ch(gL)e������� [r

�
r
#
ch(gL)e������]�� · · ·� (12.47)

or:

A
�

(0)�
a
�

1� r
�
r
#
ch(gL)e������

(12.48)

The system begins to oscillate spontaneously once the denominator in (12.48) goes
to zero, i.e. given the two conditions:

555 12.7 Optical parametric oscillators (OPOs)



�R
�
R
#
ch(g

���	���
"
L)� 1 (12.49a)

�
�
��

#
2

� k
�
L�m�, m� 0, 1, 2, . . . (12.49b)

The first condition indicates that the system possesses a threshold gain g
���	���
"

above which it begins to oscillate spontaneously at frequency �
�

. The optical
parametric oscillator therefore ‘fragments’ the photon at �

�
into two photons

(�
�
,�
�

), such that �
�
��

�
��

�
. Clearly, as was the case with laser oscillations,

parametric oscillations are built up from quantum noise within the cavity. As the
gain is generally weak, cosh(gL) � 1� (gL)�/2 and condition (12.49a) becomes for
R
�
�R

#
�R� 1:

g
���	���
"

L

�2
��1�R (12.50)

SROPO threshold

This last condition indicates that the system begins to oscillate as soon as the
cavity gain g

���	���
"
exceeds the cavity losses (1�R)��� due to light transmission

by the mirrors.
The second condition is the phase restriction, which fixes the allowed modes in

the cavity. The OPO can only oscillate over these allowed modes. Nonetheless, we
may well ask at what wavelength the OPO will begin to oscillate if it is pumped at
a certain frequency �

�
. In fact, contrary to the case of laser oscillations, the

oscillation frequency is not determined by an atomic transition. All pairs (�
�
,�
�

)
which satisfy �

�
��

�
��

�
, are permitted a priori. Also, the phase conditions,

(12.49a), are only slightly discriminating for macroscopic crystal sizes (�1 mm)
and so do not allow one to select a particular (�

�
,�
�
) pair. We will see in

Complement 12.B that it is the phase matching condition (k
�
�k

�
�k

�
) which

determines a particular �
�

frequency. This condition is generally obtained by
rotating the crystal into some particular crystallographic orientation which allows
the phase condition (k

�
�k

�
�k

�
) to be satisfied for a desired �

�
.

Example
We wish to induce oscillations in a cavity possessing crystalline GaAs phase
matched for a wavelength of 9 �m and pumped by a 5 �m pump beam. The GaAs
crystal is 5 mm long and possesses a non-linear susceptibility of 100 pm V��. The
crystal cavity is coated at both ends by mirrors with reflectances of 98%. We wish
to know the threshold power level for the pump beam to initiate optical paramet-
ric oscillations in the structure.

The wavelength of the complementary wave is 1/(1/5� 1/9) �m or 11.9 �m. The
frequencies of the signal and complementary waves are then 2.1� 10�� and
1.6� 10�� s��, respectively.
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The parametric threshold gain for the system is given by (12.50) to be:

g
���	���
"

��2� (1� 0.98)���/0.5 cm� 0.4 cm��

This parametric threshold gain corresponds to the pump electric field E
�

given by
(12.44):

g
���	���
"

� 10���m V��/(6� 10	m s��)� (2.1� 10�� s��
� 1.6� 10�� s��)���� (E

�����	���
"
V m��)/3

� 40 m��, i.e. E
�����	���
"

� 4� 10�V m��

The pump power at oscillation threshold is therefore:

P
�����	���
"

� 1/(2Z
�

)n
��
E�
�����	���
"

� 6 MW cm��

which is considerable.

12.7.2 Doubly resonant optical parametric oscillator (DROPO)

In this case, the complementary wave �
�

also experiences optical feedback from
the mirrors and is no longer negligible in comparison with the signal wave �

�
. We

are therefore led to the formalism presented in Complement 9.D and used to
describe optical wave propagation in a Fabry—Pérot cavity. We label as r

�
and

r
�

(r
�
� (R

�
)���e��� for i� 1, 2) the reflectivity coefficients for the two mirrors (as-

sumed to be the same for the entrance and exit mirrors) for the signal and
complementary waves, respectively. We introduce the complex amplitude vector
A(z):

A(z)��
A
�

(z)e�����

A*
�

(z)e���� � (12.51)

Propagation of the complementary and signal waves between the cavity entrance
and exit mirrors, and described by the system of equations in (12.45), can be placed
into matrix form as:

A
!

(L)�MA(0) (12.52)

where M is the matrix:

M��
ch(gL)e����� �i sh(gL)e�����

i sh(gL)e���� ch(gL)e���� � (12.53)

and A
!

designates the amplitude vector propagating towards the right. Once the
wave is at the exit mirror, a portion of the light is reflected and is given by the
vector:
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A
�

(L)�RMA(0), with R��
r
�

0

0 r*
�
� (12.54)

where A
�

corresponds to the complex amplitude directed towards the left. As in
the preceding case, the signal and complementary waves cannot interact with the
pump wave in this propagation direction as they cannot satisfy the phase match-
ing requirement (12.42). The amplitude vector A

�
at the entrance mirror prior to

reflection is then:

A
�

(0)�LRMA(0), with L��
e����� 0

0 e������ (12.55)

Finally, the complementary and signal waves are reflected at the entrance mirror
and the amplitude vector becomes:

A
!

(0)�RLRMA(0) (12.56)

The oscillation condition can be obtained by demanding that the sum of all these
contributions diverge, as in the preceding case. We could also require that these
waves be reproduced identically at z� 0 (a condition equivalent to the first), i.e.
that A

!
(0)�A(0). This imposes the condition:

det(RLRM� Id)� 0 (12.57)

where Id is the 2� 2 identity matrix. This last condition is obtained by performing
the matrix multiplications leading to:

det�
(r�
�
ch(gL)e������� 1) �ir�

�
sh(gL)e������

ir*�
�

sh(gL)e����� (r*�
�

ch(gL)e������ 1)�� 0 (12.58)

The evaluation of this determinant poses no particular problem and yields the
condition:

ch(gL)�
R
�

e�����R
�

e����� 1

R
�

e������R
�

e����
(12.59)

where the dephasing terms ��
�

are given by:

��
�
� 2(k

�
L��

�
), i� 1, 2 (12.60)

Equation (12.59) yields a non-trivial solution only if the following three conditions
are met:
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k
�
L��

�
�m�

k
�
L��

�
� n�

(12.61)

ch(gL)�
1�R

�
R
�

R
�
�R

�

The first two conditions in (12.61) are nothing else than the stationary wave
conditions in the cavity for the signal and idler waves. The third condition
indicates that the cavity establishes parametric oscillations for the two waves once
the parametric gain g exceeds the mirror losses R

�
and R

�
. As in the case of a

simple resonator, we have cosh(gL) � 1� (g
���	���
"

L)�/2 and R
�
�R

�
� 1 where

g
���	���
"

is the parametric gain at oscillation threshold. This threshold gain is given
by:

g
���	���
"

L ��(1�R
�

)(1�R
�

) (12.62)
DROPO threshold

This last expression is to be compared with condition (12.50) for the simply
resonant cavity case. The doubly resonant configuration decreases the oscillation
threshold by a factor of:

F�
g
���	���
" ����
	� �	������	
g
���	���
" "���
	� �	������	

�	
2

1�R
�

(12.63)

Example
We will now calculate the oscillation threshold for the OPO described in the
example in Section 12.6.1, i.e. for a 5 mm long GaAs crystal phase matched for a
9 �m wave, pumped using a 5 �m beam. Both ends of the crystal are coated this
time with mirrors having 98 and 99.8% reflectances for the signal and idler waves,
respectively. We seek the threshold power for the pump beam to initiate optical
parametric oscillations in the structure.

The oscillation threshold is reduced by a factor F given in (12.63):

F� [2/(2� 10��)]��� or a factor of 31

The optical pump power at oscillation threshold is therefore:

P
�����	���
"

� 6/31 MW cm�� or 190 kW cm��

We now summarize some of the particularities associated with the phenomenon of
parametric oscillation:
∑ All frequency pairs (�

�
,�
�

) satisfying �
�
��

�
��

�
, where �

�
is the oscillation

frequency of the pump beam, can be generated by an OPO. The explicit pair of
frequencies which will undergo OPO is determined by the stationary phase
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conditions (12.49b) and (12.61) (to begin with, the cavity mirrors must be
properly selected) and, especially, by the requirement for momentum conserva-
tion between the involved photons (12.42). We can alter the pair (�

�
,�
�

) and
thereby the wavelengths generated by the OPO by changing the phase matching
conditions (for instance, by altering the orientation of the non-linear crystal). In
practice, an OPO acts as a tuneable light source (see Complement 12.B).

∑ As was the case for lasers, parametric oscillations are built up from noise in the
cavity. This noise does not result from spontaneous emission but from quantum
noise within the cavity (see Section 2.5).

12.8 Sum frequency, difference frequency, and parametric oscillation

We saw in the beginning of Section 12.2 that interaction between three waves with
frequencies �

�
, �

�
, and �

�
in a crystal possessing a non-linear second-order

susceptibility will lead to the generation of sum and difference frequencies. We
have also just seen that parametric oscillations may also result. It is now time to
draw a distinction between these different regimes. We therefore consider two
waves of angular frequencies�

�
(pump) and �

�
(signal) incident upon a non-linear

crystal. We will assume �
�
��

�
. Equation (12.38) lists the three processes we can

expect:

Difference frequency generation (DFG) 4 ��3��2��1

We will assume that the crystal orientation has been chosen in order to satisfy the
DFG phase matching condition, i.e. �k� k

�
� k

�
� k�

�
� 0. After a small change

in notation, the two relevant equations from (12.38) may be written:

��
�
��

�
��

�
�

d

dz
A
�
��ig

�
A*
�

(12.64)

�
�
��

�
���

�
�

d

dz
A
�
��ig*

�
A
�

where g
�
� �A

�
and may be supposed real. This system can be trivially solved to

obtain the conversion efficiency corresponding to the ratio of the converted power
P
�
(L) to the power of the incident signal P

�
(0):

P
�
(L)

P
�
(0)
�

��
�

�
�

sin�(g
�
L) (12.65)

Energy is transferred from the signal wave �
�

to the difference wave ��
�

and the
pump wave �

�
. This translates in terms of ‘photon number’ notation (see Chapter

2) as �n
�
, n
�
, n�
�

� �n

�
� 1, n

�
� 1, n�

�
� 1
. At the end of a distance L��/2g

�
,
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Fig. 12.9. Various energy transfer processes involved in difference frequency generation in a
non-linear medium.

the energy transfer process changes direction, and photons from the ��
�

and �
�

waves recombine to yield signal photons with �
�
, which translates into

�n
�

, n
�

, n�
�

� �n

�
� 1, n

�
� 1, n�

�
� 1
 (see Fig. 12.9). Consequently, photon split-

ting and recombination may simultaneously be present in parametric interactions.
We will see in Complement 12.F that the prevailing mechanism depends on the
relative phases between the different waves.

We note that, even at the conversion efficiencymaximum (i.e. for g
�
L� �/2), the

conversion ratio P
�
/P
�

cannot exceed unity:

�
P
�
P
�
�

���

�
��
�

�
�

� 1 (12.66)

This last expression is reminiscent of the fact that parametric conversion of a
photon with energy ��

�
into a photon of lesser energy ���

�
cannot proceed with an

efficiency greater than ���
�

/��
�

. For weak efficiencies in comparison with unity,
(12.65) can be expressed more simply by noting that:

P
�
(L)

P
�
(0)

�
�
�

�
�

(g
�
L)� (12.67)

which gives, using (12.44) to express g
�

as a function of the electric field E
�

, and
(12.32) to express E

�
as a function of the power per unit surface area P

�
:

P
�
(L)

P
�
(0)
�

Z�
�

2n
�
n
�
n
�

(�
�
$
�
�
�
L)�P

�
(12.68)

Conversion efficiency for optical frequencies
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We thus find an expression similar to Eq. (12.33) obtained within the context of
second harmonic generation.

Sum frequency generation (SFG) �3��2��1

Here, we again suppose that the crystal orientation has been chosen to satisfy the
SFG phase matching condition �k�k

�
�k

�
� k

�
� 0. The two relevant equa-

tions from (12.38) are in this case:

�
�
��

�
��

�
�

d

dz
A
�
��ig

�
A
�

(12.69)

�
�
��

�
��

�
�

d

dz
A
�
��ig*

�
A
�

As before, this system of equations can be solved trivially, with the result revealing
a behaviour identical to that given earlier in (12.65). This time, however, energy is
transferred from the signal and pump waves, to the sum wave �

�
. In ‘photon

number’ notation, this translates to: �n
�
, n
�

, n
�

� �n

�
� 1, n

�
� 1, n

�
� 1
. At the

end of the distance L��/2g
�

, the energy transfer changes direction and the
photons from the sum wave �

�
‘fragment’ into �

�
and �

�
. This process may be

written as �n
�

, n
�

, n
�

� �n

�
� 1, n

�
� 1, n

�
� 1
 (see Fig. 12.10).

Equation (12.69) is quite similar to (12.64), obtained during discussion of differ-
ence frequency generation. Expression (12.68) for frequency conversion efficiency
therefore remains identical in the case of optical sum frequency generation. Addi-
tionally, we now have a maximum efficiency given by:

�
P
�
P
�
�

���

�
�
�

�
�

� 1 (12.70)

This efficiency can therefore exceed unity. There is no mystery in this observation
as the increase in the power of the beam resulting from the conversion of photons
with energy ��

�
into photons of greater energy ��

�
proceeds at the expense of the

pump beam photons ��
�
.

Sum or difference frequency generation then proceeds in the non-linear crystal
according to which of the associated phase matching conditions are met (i.e. either
k
�
�k

�
�k

�
, or k�

�
�k

�
� k

�
, respectively).

Parametric oscillation
This case differs from the two others. In parametric oscillation, the pump energy
photon ��

�
‘fragments’ spontaneously into two lesser energy photons ��

�
and ���

�
(see Fig. 12.11). ‘Spontaneously’ here is meant to imply that no external effect has
been introduced from the outside to seed the ��

�
or ���

�
photons.

In analogy with (4.28a,b), from Section 4.6 on laser oscillations, and given the
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Fig. 12.10. Various energy transfer processes involved in sum frequency generation in a
non-linear medium.

Fig. 12.11. Energy transfer process involved in parametric oscillation.

Manley—Rowe equations, we might jump to the conclusion that the output power
for a parametric oscillator is given by:

P
�

�
�

�
P
�

��
�

�
P
�����	���
"
�
�

�
P
�

P
�����	���
"

� 1� (12.71)

WRONG!

where P
�����	���
"

is imposed by the oscillation conditions (12.50) or (12.62). This
equation is quoted by many authors, but is never valid. In fact, the situation is far
more complex and discussed in Complement 12.F, see Eqs. (12.F.20) and (12.F.33).

The spontaneous production of photons ��
�

or ���
�
— which are necessary to
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Fig. 12.12. Principle behind parametric fluorescence. (a) Photons with energy ��
�

fragment
spontaneously within the non-linear crystal into two photons with energies ��

�
and ���

�
. (b)

Only photon pairs oriented towards the detector and satisfying momentum conservation to
within dk are detected.

seed OPO oscillations — originate from parametric fluorescence. This physical
phenomenon cannot be described within the classical framework developed up to
this point (and is similar to the impasse reached in our discussion of laser
oscillation and the necessity for introducing spontaneous emission into our model
— see Chapter 4). Figure 12.12 depicts the conditions under which this effect can be
observed. A pump beam of photons at ��

�
with wavevector k

�
is incident upon a

non-linear crystal. Aligned with this beam, we have placed a detector sensitive only
to photons with energy ��

�
and ���

�
. The angular acceptance of the experimental

set-up is such that only photons originating from the non-linear crystal with
wavevector k

�
to within dk can be detected (see Fig. 12.12).

Spontaneously, an ensemble of photon pairs (��
�

, ���
�

) with ��
�
� ���

�
� ��

�
will be created through parametric interaction. As this frequency conversion
process must also respect momentum conservation, only photon pairs having total
momenta k

�
�k�

�
that ‘fall’ within the acceptance window of the apparatus will be

detected. This parametric fluorescence is responsible for triggering the parametric
oscillations.
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Complement to Chapter 12

12.A A quantum model for quadratic non-linear susceptibility

In Section 12.2, within the mechanical model framework for non-linear optics, we
were able to see how second-order non-linear susceptibility arises from asymmet-
ries in the mechanical potentials (12.1) which confine the motions of electrons
agitated by electromagnetic waves. While such a model is intuitively fruitful, it is in
strong disagreement with the quantum mechanical nature of electrons in matter.
We offer here such a quantum derivation. The very powerful and predictive
formalism that we shall develop is founded on the density matrix approach
presented in Section 1.7.

We consider a quantum system described by a HamiltonianH
�

and possessing a
spectrum of discrete non-degenerate states �i
 with energy E

�
, such that

H
�
�i
�E

�
�i
. Examples of such systems are shown in Fig. 12.A.1. At thermal

equilibrium, the associated density matrix �
�

is a diagonal matrix with diagonal
elements ����

��
� n

�
equal to the populations of the levelsE

�
as given by Fermi—Dirac

statistics. The population densities are given in units of ‘cm��’ or ‘cm��’ depending
on whether the system is two or three dimensional. The system is then excited by
an electromagnetic wave, possessing an electric field given by:

E(t)�E� e����E� e���� (12.A.1)

In the D ·E dipole approximation (see Chapter 3), interaction between the quan-
tum system and the electromagnetic field is described by the Hamiltonian
H(t)��qẑE(t). Under the influence of this time-dependent perturbation, evol-
ution of the elements �

��
of the density matrix is given by the Schrödinger equation:

��
��

�t
�

1

i�
[H
�
� qẑE(t),�]

��
��

��
(������)

��
(12.A.2)

To keep things simple, we will suppose that only two relaxation rates �
��

are
required to describe the system: �

�
� 1/T

�
, for i� j, is the population relaxation
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(a) (b)

(c) (d )

Fig. 12.A.1. A few examples of asymmetric quantum systems based on quantum wells.

rate (inelastic mechanism), i.e. the average de-excitation rate for an electron in an
excited state, and �

�
� 1/T

�
is the off diagonal relaxation rate or dephasing

constant corresponding to elastic scattering of electronic phases over various
states. The density matrix can be expressed in an increasing series in the electric
field E(t) in the following iterative way:

�(t)��
�

����(t) (12.A.3)

with:

�������
��
�t

�
1

i�
�[H

�
,������]

��
� i��

��
������
��

��
1

i�
[qẑE(t),����]

��
(12.A.4)

The term of order n (����) acts as a source term in the differential equation in ������.
Through recurrence, we see in this last equation that the contribution of the
electric field E(t) to the dipolar matrix element ����

��
is a polynomial of order n. The

electrical polarization in the Oz direction is then given by the average value of the
qẑ operator obtained (as with any other observable — see Section 1.7), by evaluat-
ing the trace of �qẑ:
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P(t)�Tr(qẑ�)� q�
�

(ẑ�)
��
� q�

�

�
�

z
��
�
��

(12.A.5)

The contribution of the nth order density matrix to electronic polarization is
therefore a polarization of order n:

P���(t)�Tr(����qẑ) (12.A.6)

Now, the first two elements in the expansion for electronic polarization P(t) of the
system follow from expansion of the polynomial:

P(t)� �
�
$���E� e���� �

�
$���
��E� �e����� c.c.� �

�
$���
�

�E� �� (12.A.7)

where $���, $���
��, and $���

�
are the optical linear and quadratic susceptibilities (for

second harmonic generation and optical rectification), respectively. The term in
2� is due to the product of a term in e��� with another in e���, whereas the constant
term results from the product of e��� with e����. The term in $���

�
gives rise to a

constant electric field under the effect of an electromagnetic wave — this corre-
sponds to the phenomenon of optical rectification and will not be dealt with further
in this book. We are only interested in the second harmonic generation term in 2�
(or more generally, frequency n�), i.e. in expressions for ���� of the form:

����(t)��� ���(�)e������� ���(��)e����� (12.A.8)

In (12.A.4), we can replace the term d������
��

/dt by i(n� 1)�������
��

. Furthermore, as
the HamiltonianH

�
is diagonal in the basis formed by its stationary states �i
, we

have:

[H
�

, ������]
��
��

�

(H
�
)
��

(������)
��
��

��

(������)
���

(H
�

)
���

(12.A.9)
� (E

�
�E

�
)(������)

��

which leads to a simplified version of the recurrence relation in (12.A.4):

�� �����
��

(�)�
q[z,�� ���]

��
�[(n� 1)���

��
� i�

��
]
E� (12.A.10)

where �
��
� (E

�
�E

�
)/� is the Bohr frequency. We begin by applying the recur-

rence relation (12.A.10) for n� 0. This immediately yields:

����(t)� �� ���(�)e������ ���(��)e���� (12.A.11)

with:

�� ���
��
�

qz
��

(n
�
� n

�
)

�[(���
��

)� i�
��

]
E� (12.A.12)

where z
��

is the matrix element z
��
� �i�ẑ�j
. Substituting this expression into
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(12.A.5) and (12.A.6), we obtain the linear polarization:

P� ����
q�

�
�
���

�z
��
��(n

�
� n

�
)

[(���
��

)� i�
��

]
E� (12.A.13)

Under weak illumination, and at reasonable temperatures (kT�E
�
�E

�
), only

level �1
 is populated, and therefore only terms with i or k� 1 contribute to the
linear susceptibility. Comparing it alongside Eq. (12.A.7), we see that the linear
susceptibility is given by:

$����
q�n

�
�
�
�

�
���

�z
��
��

[(���
��

)� i�
�

]
(12.A.14)

which allows us to obtain the absorption � through ���Im$���/n
��
c, i.e:

��
q�n

�
�

n
��
�
�
c�

�
���

�
�
�z
��
��

[(���
��

)����
�
]

(12.A.15)

or again:

��
q��n

�
2mn

��
�
�
c
�
���

f
��

�
4�

��

�
�
/�

[(���
��

)����
�
]

(12.A.16)

where f
��
� 2m(E

�
�E

�
)z
��

/�� is the oscillator strength for the transition
�1
� �k
, reproducing the result obtained in Chapter 3, i.e. Eq. (3.41).

The next iteration (n� 1) yields the quadratic susceptibility. We therefore start
with the second-order element in the density matrix:

����(t)��� ���
��(�)e������� ���

��(��)e����� (12.A.17)

given by (12.A.10):

[�� ���
��]

��
�

1

�(2���
��
� i�

��
)
[qz,�� ���]

��
E� (12.A.18)

We carry out the iteration by substituting (12.A.12) for ���� into this last expression
to find:

[�� ���
��]

��
�
q�

��
1

(2���
��
� i�

��
)��

�

z
��
z
��

(n
�
� n

�
)

[(���
��

)� i�
��

]
(12.A.19)

��
�

z
��
z
��

(n
�
� n

�
)

[(���
��
)� i�

��
]�E� �

We then make use of the trace of the operator ����qẑ to find the second-order
electronic polarization P���(t) (see (12.A.6)). We need only use Eq. (12.A.17) for
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definition of the quadratic susceptibility $���
�� to obtain (after performing a few

acrobatics with the indices!):

$���
���

q�

�
�
��

�
�

�
�

1

(2���
��

)� i�
�� (12.A.20)

��
�

�
��
�
��
�
���

�
�
��

�
(���

��
)� i�

��

�
�
�
� �

�
(���

��
)� i�

��
�

This formula (in spite of being a little complicated) allows one to calculate the
quadratic optical susceptibility for any quantum system, with the following two
cases being of particular interest to us:
∑ A two-level system. After neglecting the antiresonant terms (terms in ���

��
,

with �
��
� 0) in (12.A.20), only two terms remain in the summation: i.e. those for

which k� 1, i� 2, and l� 1 or 2. This yields for the quadratic susceptibility $���
��:

$���
���

q�(n
�
� n

�
)

�
�
��

z�
��
�
��

(���
��
� i�

�
)(2���

��
� i�

�
)

(12.A.21)

where �
��
� �2�ẑ�2
��1�ẑ�1
� z

��
� z

��
is the average electron displacement

resulting from the transition from level �1
 to �2
. We see immediately that if the
system possesses inversion symmetry (or more precisely, if electrons in the two
levels possess the same average positions z

��
� z

��
) then the quadratic suscepti-

bility goes to zero. A second point is that the quadratic susceptibility is maxi-
mized when the product z�

��
�
��

is at a maximum. To maximize the quadratic
susceptibility, the mean positions for wavefunctions describing states �1
 and �2

must be as distant from one another as possible (�

��
maximal) while keeping the

overlap between the wavefunctions (z
��

) as large as possible. A satisfactory
compromise between these mutually conflicting requirements can be reached
through the quantum engineering of molecules and quantum wells for specific
applications in non-linear optics. Far from resonance (�

��

�), (12.A.21) can

be written:

$���
���

q

�
�

(n
�
� n

�
)(z�
��
�
��

)

(��
��

/q)�
(12.A.22)

Quadratic susceptibility for a two-level system far from resonance

The term in the numerator is the quantity of charge contained by the asymmet-
ric volume z�

��
�
��

. From this formula, we see that the quadratic susceptibility is
expressed in units of m V�� (and in pm V�� in practice). While this last expres-
sion has not been derived within the framework of semiconductor physics, it
nonetheless gives useful insight into the behaviour of these materials as one may
consider the valence and conduction bands to be represented by two such
distinct energy levels separated in energy by E

�
. We see, assuming constant
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Fig. 12.A.2. Optical quadratic susceptibility at 10.6 �m for various semiconductors as a
function of bandgap.

matrix elements z
��

(for the purpose of argument), that the non-linear susceptibil-
ity for semiconductors may be expected to vary according to 1/E�

�
. Figure 12.A.2

shows the quadratic optical susceptibility $
�

for different semiconductors at
10.6 �m as a function of their bandgapsE

�
. The behaviour predicted by (12.A.22)

is surprisingly well respected in spite of the simplicity of the model we used,
which does not take into account the varying ionic tendencies of the chemical
bonds, etc.

∑ A three-level system. For a three-level system with constant energy spacing
(E
�
�E

�
�E

�
�E

�
� ��), (12.A.20) possesses a distinct maximum corre-

sponding to the condition for double resonance ���
��

��
��

��. One term
dominates the sum (12.A.2) in this case:

$���
���

q�(n
�
� n

�
)

�
�
��

z
��
z
��
z
��

(���� i�
�

)(2�� 2�� i�
�

)
(12.A.23)

Here again, it is clear that the product z
��
z
��
z
��

is null if the system is symmet-
ric. Near resonance (���), the quadratic susceptibility becomes:

$���
������

�
q

�
�

(n
�
� n

�
)(z
��
z
��
z
��

)

(��
�

/q)�
(12.A.24)

Expression (12.A.22) for non-resonant systems and (12.A.24) for resonant sys-
tems lead to fairly reliable predictions for the optical quadratic non-linearities in
quantum systems such as molecules or asymmetric quantum wells.

Example
1. Asymmetric molecules. Expression (12.A.22) allows one to calculate the order of
magnitude of the non-linear susceptibility in a medium constituted of molecules
possessing a resonance ��

��
of about 2 eV, a density of 10�	 molecules m��, and
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Fig. 12.A.3. Absorption and generation of second harmonic light in a doubly resonant
asymmetric quantum well (from E. Rosencher and P. Bois, Phys. Rev. B 44, 11 315 (1991); and
P.Boucaud, et al. Appl. Phys. Lett. 57, 215 (1990)).

matrix elements z
��
� 1 Å and �

��
� 0.1 Å. The ratio q/�

�
is 1.8� 10�	V m. The

average number of molecules in z�
��
�
��

is therefore 10�	� (10���)�� 10��� or
10��. This leads to a quadratic susceptibility of:

$���� 1.8� 10�	V m� 10��/4 V�� 4.5 pm V��

which is effectively what is found for non-optimized asymmetric molecules.

2. Asymmetric quantum wells. We saw in Chapter 8 that optical intersubband
transitions in a quantum well can by suitably represented as transitions between
discrete energy levels. In this case the electrons possess the effective mass asso-
ciated with their subband of origin. During growth, it is possible to introduce
asymmetric compositional gradients in the quantum wells to produce wells with
asymmetric confinement potentials (see Fig. 12.A.1).

Let us take as an example asymmetric quantum wells made of 6 nm of GaAs and
4.5 nm of Al

���
Ga
��

As separated by 30 nm thick Al
���

Ga
���

As barriers. The wells
are doped 2� 10�� cm�� and the filling factor is of the order of �

�
. A very simple

MATHEMATI CA program can be used to calculate the discrete energy levels
E
�
, E
�

, and E
�

, obtained as solutions to the one-dimensional Schrödinger equa-
tion (p�

�
/2m*�V(z))�i
�E

�
�i
 as well as the matrix elements z

��
, z
��

, and z
��

. This
system has been engineered in such a fashion as to provide identical E

�
�E

�
and

E
�
�E

�
transitions energies equivalent to 10.6 �m. The matrix elements z

��
, z
��

,
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and z
��

are, respectively, 2.1, 3.0, and 0.38 nm. We note that these matrix elements
are larger than in molecules. This results from the small effective mass of electrons
in GaAs. As the system is doubly resonant, (12.A.24) can be used to calculate the
susceptibility at resonance. We find:

$���
������

�
1.6� 10��C

8.85� 10���Fd m��

2� 10��m��/4� (2.4� 10���m�)

(10��V)�
� 22 000 pm V��

The conclusion is that significant non-linear optical effects can be obtained in
doubly resonant systems. The experimental data in Fig. 12.A.3 confirm the reson-
ant nature of this non-linear optical effect.

FURTHER READING

P. Butcher and D. Cotter, The Elements of Nonlinear Optics, Cambridge University Press,
Cambridge (1990).

J. L. Oudar and J. Zyss, Phys. Rev. A 26, 2016 (1982).
E. Rosencher and P. Bois, Phys. Rev. B 44, 11 315 (1991).
Y. S. Shen, The Principles of Non Linear Optics, Wiley, New York (1984).

12.B Methods for achieving phase matching in semiconductors

Throughout the course of this chapter, we saw that very low frequency conversion
efficiencies resulted when phase matching requirements could not be met (see, for
example, (12.33)). This criterion is usually impossible to fulfil in any given material
as it demands the absence of optical dispersion over the entire range of frequencies
involved. For second harmonic generation, the phase matching condition can be
written as:

n(2�)� n(�) (12.B.1)

If this condition can be satisfied, the maximum conversion length L


(12.34)
becomes infinite. Of course, all materials (and semiconductors most particularly)
exhibit dispersion. The fact that the smaller bandgap semiconductors (which
possess increasingly large non-linear second-order susceptibilities — see (12.A.22))
also demonstrate increasingly dispersive behaviour (see Complement 7.C) is unfor-
tunate to say the least!

Luckily, there are several means available to solve this problem. We will
describe two commonly used techniques:
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∑ birefringent phase matching
∑ quasi-phase matching

12.B.1 Birefringent phase matching

Many crystalline materials (and among them certain semiconductors) possess
anisotropic optical properties due to their crystal structure. In this section, we will
limit our discussion to uniaxial crystals — crystals that possess a single symmetry
axis about which they can be rotated by any elementary symmetry operation (e.g.
rotation by �/3, �/4, etc.) and remain unchanged. We will take this axis (referred to
as the optical axis) to lie in the Oz direction. From elementary optical theory, such
a crystal is known to be birefringent, i.e. the optical index of the medium is not
constant for all propagation directions. More precisely, an electromagnetic wave
propagating along the optical axis Oz encounters an index of refraction n

*
(sub-

script ‘o’ for ordinary), whereas a wave propagating in any other direction in the
Oxy plane experiences a different index of refraction n

�
(‘e’ for extraordinary).

Furthermore, optics tells us that, in any electromagnetic propagation direction,
only two principal polarization directions are possible, i.e. a wave polarized along
one of these principal directions will remain linearly polarized in this direction
while it propagates through the crystal. These two directions are geometrically
determined as shown in Fig. 12.B.1. For this we consider the index ellipsoid defined
by the ensemble of points (x, y, z) such that:

x�

n�
*

�
y�

n�
*

�
z�

n�
�

� 1 (12.B.2)

and an electromagnetic wave propagating with wavevector k. Without loss of
generality we may suppose the wavevector to be in theOyz plane. The intersection
of the plane perpendicular to k with the index ellipsoid produces an ellipse (see Fig.
12.B.1). The two principal axes (with one of them always being the Ox axis) are
these two principal polarization directions, and the magnitude of each of the two
principal axes of this ellipse gives the corresponding index of refraction for each
polarization. It is clear from Fig. 12.B.1 that the index of refraction along the Ox
axis is independent of the angle " and is always equal to n

*
: this is the ordinary

polarization. On the other hand, the second allowed polarization direction (the
extraordinary polarization corresponding to this vector k) possesses an index of
refraction that depends on the angle " and is simply given by:

1

n�
�
(")
�

cos� "
n�
*

�
sin� "
n�
�

(12.B.3)

If the ordinary index of refraction n
*

is less than the extraordinary index n
�
, the
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Fig. 12.B.1. Construction for the two allowed polarization directions in a birefringent
medium. One of the two indices of refraction (n

�
) depends on the angle " between the

wavevector and the optical axis. This figure corresponds to the situation for a negative
uniaxial material (i.e. n

*
� n

�
).

ellipsoid will be narrow at the equator, and the crystal is a positive uniaxial
material. Alternatively, if n

*
� n

�
(as in Fig. 12.B.1), the crystal is a negative uniaxial

material.
Birefringent phase matching makes use of this anisotropy. Under certain condi-

tions, it is possible to satisfy the equality condition between the index of refraction
n(�) in one principal direction and n(2�) in the other. More precisely, although in
general we have n(2�,")� n(�,"), it may be possible using a negative uniaxial
crystal to obtain:

n
�
(2�, "

#
)� n

*
(�) (12.B.4)

(In a positive uniaxial crystal we should use n
*
(2�)� n

�
(�, "

#
).) To solve this

equation, we place ourselves in the Oyz plane and seek the angle "
#

which satisfies
this equation. We trace the normal ellipse for the extraordinary indices, which is
given by the ensemble of points M such that OM(")� n

�
(�, ") and the sphere of

ordinary indices given by points M for which OM(")� n
*
(�, "). Figure 12.B.2

shows that this normal index ellipse can be obtained from the index ellipse by a �/2
rotation. We add to this figure the normal index ellipsoids corresponding to a
frequency of 2�. The intersection between the sphere n

*
(�) and the ellipse n

�
(2�, ")

defines a cone about the optical axis along which phase matching between the
wave at � and its second harmonic 2� occurs (see also Fig. 12.B.3).
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Fig. 12.B.2. Graphical method for obtaining phase matching conditions between an
ordinary wave with frequency � and a second harmonic (with frequency 2�) extraordinary
wave in a negative uniaxial crystal.

Clearly, a solution only exists if n
*
(�)� n

�
(2�)(�n

�
(�)), i.e. provided the crystal

is sufficiently birefringent. Using equalities (12.B.3) and (12.B.4), we see that the
angle "

#
is given by the condition:

1

n
*
(�)�

�
cos� "

#
n
*
(2�)�

�
sin� "

#
n
�
(2�)�

(12.B.5)

or again:

sin� "
#
�
n
*
(�)��� n

*
(2�)��

n
�
(2�)��� n

*
(2�)��

(12.B.6)

Birefringent phase matching

This last equation allows one to calculate the phase matching angle directly once
the dispersion relations are known for each of the polarizations. Most often these
may be obtained through the Sellmeier (Eq. (7.B.2)) or Afromowitz (Eq. (7.B.10))
relations for large and small gap semiconductors, respectively.

Once the phase matching angle is known, we still need to calculate the value for
the quadratic optical susceptibility starting from Eq. (12.17). The result will clearly
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depend on the various non-zero terms in the tensor �����
�

and therefore upon the
crystal symmetry. The reader can find descriptions for all relevant tensors in a
non-linear optics reference text such as Sutherland (1996).

Example
Lithium niobate is one of the most popular non-linear optical materials. It is not a
semiconductor, but rather a metallic oxide type insulator which possesses a strong
birefringence and is therefore well suited to phase matching. Its ordinary and
extraordinary indices of refraction are given by the Sellmeier-type formulas:

n��A�
B

C� ��
�D��

with:

A B C D

n
�

4.5820 0.099 169 0.044 432 0.021 950
n
*

4.9048 0.117 68 0.047 50 0.027 169

Figure 12.B.4 shows the resulting dispersion curves for this material.
We wish to phase match a lithium niobate crystal to frequency double light from a
Nd : YAG laser at 1.3 �m to obtain red light with a wavelength of 0.65 �m. We
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therefore need to solve Eq. (12.B.6). The MA THEMATICA program listed
below can be used to solve this type of problem.
ae=4.5820;be=0.099169;ce=0.044432;de=0.021950;
ao=4.9048;bo=0.11768;co=0.04750;do=0.027169;
ne2[l—]:= ae-be/(ce-l ˆ 2)- de*l ˆ 2
ne[l—]:= Sqrt[ne2[l]]
no2[l—]:= ao-bo/(co-l ˆ 2)- do*l ˆ 2
no[l—]:=Sqrt[no2[l]]
Funct=(1./no2[l]-1./no2[l/2])/(1./ne2[l/2]-1./no2[l/2]);
theta=ArcSin[Funct]*180/Pi;
N[theta]/.l-�1.3
ParametricPlot[�theta,l�,�l,1.1,3.5�]
The phase matching angle is found to be 45°.

Birefringent phase matching of parametric oscillations can be achieved follow-
ing the same principles. In this case, however, we need to satisfy both the energy
and momentum conservation requirements for the photons. Using a pump beam
of frequency �

�
and signal and idler beams with frequencies �

�
and �

�
, the

conditions given in (12.42) may be written:

�
�
��

�
��

� (12.B.7a)
n
�
�
�
� n

�
�
�
� n

�
�
�

As n
�

/n
�

and n
�
/n
�

are less than 1, optical dispersion will again prevent phase
matching unless some artifice (such as birefringence) can be used to compensate. In
a negative uniaxial material (n

�
� n

*
), it is natural to choose the signal and

complementary waves as having an ordinary polarization, and a pump beam with
an extraordinary polarization so that the ratios n

*
(�
�

)/n
�
(�
�
) and n

*
(�
�
)/n

�
(�
�

)
render the two equations in (12.B.7a) compatible. This is known as the eoo
configuration and corresponds to:
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(12.B.7b)

with the two terms now being positive. The phase matching angle "
#

is given by the
equation:

n
*
(�
�
)�
�
� n

*
(�
�

)�
�
� n

�
(�
�

, "
#
)�
�

(12.B.8)

where the variation of n
�

as a function of " is given by (12.B.3). Thus, any frequency
�
�

can be obtained through parametric interaction (or ‘fragmentation’) of the
pump beam �

�
as long as the following expression admits a solution for "

#
(�
�

):

�
�
n
*
(�
�

)� (�
�
��

�
)n
*
(�
�
��

�
)��

���
cos "

#
n
*
(�
�

)�
�
��

sin "
#

n
�
(�
�

)�
�

�
����

(12.B.9)

Figure 12.B.5 shows the variation in wavelength of the signal and idler waves as a
function of the phase matching angle " for a pump beam of 1.06 �m in a lithium
niobate crystal LiNbO

�
. Other phase matching configurations are possible (e.g.

eoe, oeo, . . .) and the interested reader is encouraged to consult more specialized
texts for details on this.

Example
The phase matching diagram for a non-linear material represents the ensemble of
wavelength pairs (for the signal and complementary beams) that can be generated
at a given pump wavelength as a function of a parameter such as the angle "
between the wave and the optical axis of the crystal. The MATHEMATICA
program below can be used to solve Eq. (12.B.9) (the dispersion curves are the
same as those in the preceding example).
ae=4.5820;be=0.099169;ce=0.044432;de=0.021950;
ao=4.9048;bo=0.11768;co=0.04750;do=0.027169;
ne2[l—]:= ae-be/(ce-l ˆ 2)-de*l ˆ 2;ne[l—]:=Sqrt[ne2[l]];
no2[l—]:= ao-bo/(co-l ˆ 2)-do*l ˆ 2;no[l—]:=Sqrt[no2[l]];
lp=1.06;l2=1./(1./lp - 1./l1);
f1= ((lp/l1)*no[l1]+(lp/l2)*no[l2]) ˆ 2;
f2=1/f1 -1/no2[lp];
f3= 1/ne2[lp]-1/no2[lp];
fctopo= Sqrt[f2/f3];theta= ArcSin[fctopo]*N[180/Pi];
ParametricPlot[�theta,l1�,�l1,1.5,4.�]

With a means of achieving birefringent phase matching, the implementation of
an optical parametric oscillator (OPO) as a (wavelength) tuneable source of
coherent light is relatively straightforward (see Fig. 12.B.6). A laser cavity provides
a powerful pump beam at �

�
. This beam then undergoes parametric interaction

with a non-linear crystal situated within a singly or doubly resonant cavity. The
mirrors which define the OPO cavity are designed to maintain an elevated
reflectivity throughout the desired range of tuning wavelengths for the signal and
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Fig. 12.B.6. Schematic for a wavelength tuneable doubly resonant OPO.

idler beams. Wavelength tuning of the OPO is then achieved by rotating the
crystal to obtain the phase matching angle corresponding to the desired signal
frequency �

�
(Eq. (12.B.9)).

12.B.2 Quasi-phase matching

The idea behind this approach is to find a means of spatially modulating the
optical non-linearity with some period (/) to supply a quasi-wavevectorK� 2�//
to satisfy the wavevector conservation requirement (as in diffraction theory). The
quasi-phase matching condition consists in providing a quasi-wavevector such
that k

��� 2k��K.
This concept can be easily understood by returning to Eq. (12.29), which

describes the evolution of the second harmonic field E
��(z) over the course of its

propagation through the non-linear medium in the undepleted pump beam
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approximation (E�� constant). We add to this equation, however, a spatial
variation for $

�
(z), which we write:

$
�
(z)� $

�
f (z) (12.B.10)

where f (z) is a periodic function which oscillates between �1 and �1. We then
obtain:

d

dz
E
����i

�$
�

n
��c

E�� f (z)e���� (12.B.11)

The converted field strength E
�� at the end of a propagation distance L is then:

E
��(L)��i

�$
�

n
��c

E��

�

�
�

f (z)e����dz (12.B.12)

Expanding f (z) as a Fourier series with period /:

f (z)��
�

f
�
e������� �� (12.B.13)

Eq. (12.B.12) then gives:

E
��(L)��i

�$
�

n
��c

E���
�

f
�

�

�
�

e���������� �dz (12.B.14)

where in this last equation, we clearly see the role played by the periodic modula-
tion of susceptibility. If an integer n exists such that:

k
��� 2k��

2n�
/

(12.B.15)

only a single term in (12.B.14) is non-zero for large L, leading to:

E
��(L)��i

�( f
�
$
�

)L
n
��c

E�� (12.B.16)

Comparing (12.B.15) with the expression for the maximum conversion length L


(12.34), we see that the modulation periods are multiples of L


given by:

/� 2nL


(12.B.17)

Expression (12.B.16) shows that the medium behaves as though it is phase match-
ed, but with an effective non-linear susceptibility given by:

$	  
�
� � f

�
�$
�

(12.B.18)
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where f
�

is the Fourier series term for the periodic function f (z) given by:

f
�
�

1

/

 

�
�

f (z)e������ ��dz (12.B.19)

If f (z) is a sinusoidal function ( f (z)� sin2�z//), then f
�
� f

�
� 1/2 and $	  

�
� $

�
/2.

A more realistic approach involves modulating the non-linear susceptibility by
periodically reversing the direction of the non-linearity so that f (z)��1 between
0 and //2, and �1 between //2 and / (see Fig. 12.B.7). Integration of (12.B.19) is
then straightforward yielding:

$	  
�
�

2

�
$
�

(12.B.20)

Figure 12.B.7 shows the mechanism behind quasi-phase matching. The direction
of the non-linearity is inverted before the cyclic energy transfer begins from
the second harmonic wave to the fundamental wave. Several physical systems
allow for this type of quasi-phase matching. In the mid-infrared, it is possible to
use successive GaAs layers with alternating crystallographic orientations
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(i.e. alternating �1 1 0
 and �1� , 1� , 0
 layers) at every phase mismatch length L


(every 106 �m to frequency double 10.6 �m light into 5.3 �m light). In the near-
infrared (to produce blue light by frequency doubling GaAs laser diode emission at
805 nm), it is possible to use the periodic reversal of domains in ferroelectric
materials.

FURTHER READING

Optical frequency conversion techniques:
A. Yariv, Quantum Electronics, 3rd Edn, Wiley, New York (1989).
R. L. Sutherland,Handbook of Nonlinear Optics, Marcel Dekker Inc., New York (1996).

Birefringence:
M. Born and E. Wolf, Principles of Optics, 6th Edn, Pergamon Press, Oxford (1980).
J. M. Perez, Optique, 4eme édition, Masson, Paris (1997).

12.C Pump depletion in parametric interactions

During our investigation of parametric interaction in Chapter 12, the conversion
efficiency between the pump beam and the signal and idler beams was assumed to
be low enough to allow us to neglect any attenuation in the pump beam intensity
(i.e. setting E�(z)�E

�
in Section 12.3). In fact, efficiencies in excess of 50% are

currently available in certain OPO materials. As energy must be conserved over
the course of the parametric interaction, creation of non-linear waves must take
place at the expense of the energy contained in the pump beam. An explicit
description of the depletion of the pump beam intensity, however, requires a more
complete account of the parametric interaction. Most notably, as we progress
through this complement, we will uncover the primordial role played by the
relative phases of the different waves in parametric interaction. In Chapter 12, this
aspect of the problem was rendered inaccessible a priori by our earlier resolve to
simplify the problem through application of the constant pump beam approxi-
mation.

We begin by treating the case of phase matched (�k� 0) second harmonic
generation (���� 2�):

d

dz
A���i�A*�A��

(12.C.1a)
d

dz
A
����i�A��

where we recall that the non-linear coupling parameter � is given by:
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$
�
c �

2��
n��n���

���
(12.C.1b)

In order to take phase effects into account, we introduce the variables:

A�� u
�

e���
(12.C.2)

A
��� u

�
e���

which, after introduction into (12.C.1) and identification of like terms, leads to the
set of coupled differential equations:

d

dz
u
�
� �u

�
u
�
sin("

�
� 2"

�
)

d

dz
u
�
� �u�

�
sin(2"

�
� "

�
)

(12.C.3)
d

dz
"
�
���u

�
cos("

�
� 2"

�
)

d

dz
"
�
���

u�
�
u
�

cos(2"
�
� "

�
)

These equations can be considerably simplified by seeking their invariants (or
constants of motion). The first invariant is obtained by combining the first two
equations in (12.C.3) leading to:

u
�
(z)�� u

�
(z)�� u�

�
� constant (12.C.4)

which is nothing other than a statement of energy conservation. The second
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invariant is obtained by dividing the equations in du
�
/dz by those in d"

�
/dz and by

introducing the relative phase term "� 2"
�
� "

�
giving:

d"
�

du
�

��
1

u
�

cot "

(12.C.5)
d"
�

du
�

��
1

u
�

cot "

These two equations (12.C.5) can be combined to yield the single equation:

u�
�
(z)u

�
(z)cos "(z)� u�

�
(0)u

�
(0)cos "(0)�� (12.C.6)

where � is a constant determined by the boundary conditions. This last equation
shows how the phase difference between two waves evolves over the course of their
non-linear interaction within the crystal. If we assume a zero starting amplitude
for the second harmonic wave at the entrance of the non-linear crystal (i.e.
assuming an absence of optical feedback), then u

�
(0)� 0 and the constant � is

zero. For z� 0, (12.C.6) is satisfied by a non-zero incident wave if and only if
"(z)� constant� (2m� 1)�/2. In this case, u

�
in the energy conservation equation

(12.C.4) is the amplitude of the pump wave at the entrance of the non-linear
medium, and the equation for the amplitude u

�
(z) becomes:

d

dz
u
�
��(u�

�
� u�

�
) (12.C.7)

Equation (12.C.7) can be readily integrated to obtain an expression for the
evolution of amplitude in the non-linear medium:

u
�
(z)� u

�
tanh�

z

(� (12.C.8a)

where ( is the frequency conversion distance given by:

(�
1

�u
�

�
c

$
�
�

n���

�Z
�
I

(12.C.8b)

Frequency conversion distance

where n� n�� n
��, I is the incident power, and Z

�
is the vacuum impedance

(377�). Figure 12.C.1 shows the variation in normalized intensities (u
�

/u
�

)� and
(u
�

/u
�

)� as a function of normalized distance z/(.
We note that after propagating a distance roughly equal to the conversion

length, 50% of the pump wave will have been converted into second harmonic
radiation.

Example
We consider a crystal with a non-linear susceptibility of 10 pm V�� and an index of
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�
for an intensity ratio m� (u

��
/u
��

)� of 1/3.

refraction of 1.5. The intensity of the incident wave (with �� 1 �m) is 10 kW over
an area of 1 mm�. Equation (12.C.8b) then leads to:

(
�
� 8.2� 10�

���
($
�

)
�� /��

n���

�I
 ���

(12.C.8c)

or 1.5 cm.

We now interest ourselves with the more general case involving three wave
parametric interaction �

�
��

�
��

�
. Starting from (12.38) and generalizing the

former change of variables (i.e. A
�
� u

�
e���) we obtain the following system of

non-linear coupled equations:

d

dz
u
�
� �u

�
u
�

sin "

d

dz
u
�
� �u

�
u
�

sin "

d

dz
u
�
���u

�
u
�

sin "

(12.C.9)
d

dz
"
�
���

u
�
u
�

u
�

cos "

d

dz
"
�
���

u
�
u
�

u
�

cos "

d

dz
"
�
���

u
�
u
�

u
�

cos "
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where the phase " is given by "� "
�
� "

�
� "

�
. Seeking the invariants as before,

we readily find:

u
�
(z)�� u

�
(z)�� u�

��

u
�
(z)�� u

�
(z)�� u�

��
(12.C.10)

u
�
(z)�� u

�
(z)�� u�

��

as a statement of energy conservation and:

u
�
(z)u

�
(z)u

�
(z)cos "(z)�� (12.C.11)

for phase conservation.
We are now in a position to discuss an issue which was set aside in Chapter 12.

If three waves �
�

, �
�

, and �
�

are present at the entrance of a non-linear crystal,
how does the system decide which of the following conversions it will perform:
�
�
��

�
��

�
, �
�
��

�
��

�
, or �

�
��

�
��

�
? The answer is provided by the

respective phases of the different waves. More particularly, the various mechan-
isms (sum, difference, and parametric amplification) are now differentiated accord-
ing to the boundary conditions imposed on the various conservation laws
(12.C.10) and (12.C.11).

Let us take as an example sum frequency generation (SFG) for which the two
boundary conditions are:

u
�
(0)� u

��
� u

��
, u
�

(0)� u
��
� u

��
, u
�

(0)� 0 and thus cos "(z)� 0 (12.C.12)

The differential equation in u
�

is then:

dZ�
dU

�
�1�U�

�
�1�mU�

�

(12.C.13)

where Z is the normalized distance Z� z/(
�

, (
�

is the conversion length for the
wave �

�
,U
�

is the normalized amplitude U
�
� u

�
/u
��

, and m is the ratio of the
initial amplitudes m� (u

��
/u
��

)�. The solution to the differential equation in
(12.C.13) can be expressed with the help of a (little known!) function from numeri-
cal analysis: the Jacobian elliptic function, sn(z) (see also Complement 12.F). As a
discussion of the mathematical origin and significance of this function is beyond
the scope of this text, it suffices for our purposes to note that it is tabulated in and
available to most modern mathematical software packages. The integral of
(12.C.13) is then given by:

z� (
�

�+

�
�

dx

�1�x��1�mx�
(12.C.14)

or:
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u
�
(z)� u

��
sn�

z

(
�

,
u�
��
u�
��
� (12.C.15)

The solutions yielding the intensities of the three waves are then:

u
�
(z)�� u�

��
� u�

��
sn��

z

(
�

,
u�
��
u�
��
�

u
�
(z)�� u�

��
� u�

��
sn��

z

(
�

,
u�
��
u�
��
� (12.C.16)

u
�
(z)�� u�

��
sn��

z

(
�

,
u�
��
u�
��
�

Figure 12.C.2 shows the evolution of the normalized intensities for the various
waves u

�
/u
��

, u
�

/u
��

, and u
�

/u
��

assuming an intensity ratio m of 1/3. We see that
the Jacobian function sn(z) is periodic. The physical origin for this modulation is
the periodic exchange of energy between the pump waves and the SFG one. Once
the sum wave �

�
has entirely depleted the pump wave �

�
, the inverse process

occurs, and the pump wave �
�

begins to regain its intensity at the expense of the
sum wave.

This formalism describes in a precise manner the energy exchange mechanism
between the various waves and the role played by their relative phases. Figure
12.C.2 shows how the energy contained in the pump waves �

�
and �

�
combine to

form the sum wave �
�

until complete depletion of the minority wave �
�
, at which

time, the inverse process occurs, reconstituting �
�

waves from �
�

and �
�

waves,
etc.

FURTHER READING

M. Abramowitz and I. Stegun, Handbook of Mathematical Tables, Dover Publications, New
York (1970).

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
Y. S. Shen, The Physics of Nonlinear Optics, Wiley, New York (1984).

12.D Spectral and temporal characteristics of optical parametric
oscillators

Optical parametric oscillation (OPO) shares a great similarity with laser oscilla-
tion. In both cases, optical feedback provided by mirrors induce the oscillations,
and set the conditions on the magnitude of the gain relative to the cavity losses and
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on the resonant cavity wavelengths. We will concentrate here on two aspects
which are unique to OPOs: their gain spectra and their dynamic response.

Parametric gain is imposed by geometrical considerations on the phase match-
ing condition, in contrast to the situation with lasers where the gain is mediated by
quantum transitions which occur at discrete atoms or within the band structure of
a crystal. It is because of this fact that OPOs are extremely useful as tuneable
coherent light sources for spectroscopic investigation of the atmosphere, biology,
etc. Equation (12.33) indicates that the conversion efficiency for a parametric
process such as �

�
��

�
��

�
depends on the phase mismatch �k� k

�
� k

�
� k

�
and is proportional to sinc�(�kL/2), where L is the length of the non-linear
material. The full width at half maximum for the gain curve (i.e. the spectral
acceptance) is therefore given by the condition:

�kL��� (12.D.1)

At exact phase matching, photons in a collinear geometry are seen to satisfy the
dual requirements for energy and momentum conservation:

1

�
�

�
1

�
�

�
1

�
� (12.D.2)

�k
2�
�
n
�
(�
�

)

�
�

�
n
�
(�
�

)

�
�

�
n
�
(�
�

)

�
�

� 0

In this last equation, we did not specify the type of phase matching used. It could
be of type e� o� o in which case n

�
� n

�
(�
�

), n
�
� n

*
(�
�

) and n
�
� n

*
(�
�
), or of

any other type. Furthermore, in the case of quasi-phase matching with period /,
the wavevector 2�// must be added to the phase matching equation. We therefore
seek repercussions in terms of the vector �k of a variation ��

�
. The pump

wavelength �
�

being fixed, the variations in the signal and idler waves are related
via the derivative of the first equation in (12.D.2):

��
�

��
�

��
��
�

��
�

(12.D.3)

The effect on phase mismatch is obtained by differentiating the second equation in
(12.D.2):

�k
2�
�
n
�

��
�

��
�
�
n
�

��
�

��
�
�

dn
�

d�
�

��
�

�
�

�
dn
�

d�
�

��
�

�
�

(12.D.4)

Taking (12.D.1) and (12.D.3) into account, this last equation leads to a full width at
half maximum for the gain curve of:
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Fig. 12.D.1. Gain bandwidth for e� o� o type parametric oscillations in lithium niobate as
a function of signal wavelength using a pump wavelength of 1.064 �m.

��
�
�

��
�

L �n�� n
�
�

dn
�

d�
�

�
�
�

dn
�

d�
�

�
��
��

(12.D.5)

Spectral acceptance for an OPO

We note that the closer we approach the degeneracy condition (i.e. �
�
��

�
), the

broader the gain curve. This behaviour is illustrated in the following example and
in Fig. 12.D.1. In certain situations, it is desirable to obtain as narrow a gain curve
as possible (e.g. in the case of single mode OPOs). It then becomes necessary to
utilize configurations in which the polarizations for the signal and idler waves are
different (e.g. configurations with e� e� o, referred to as type II parametric
interactions). If on the other hand, the polarizations of the signal and idler waves
are identical, the interaction is of type I.

Example
Taking the Sellmeier curves for lithium niobate given in Complement 12.B, the
program below calculates the dependence of gain bandwidth on signal wavelength
using a pump wavelength of 1.064 �m.
ae=4.5820;be=0.099169;ce=0.044432;de=0.021950;
ao=4.9048;bo=0.11768;co=0.04750;do=0.027169;
ne2[l—]:= ae-be/(ce-l ˆ 2)-de*l ˆ 2;ne[l—]:=Sqrt[ne2[l]];
no2[l—]:= ao-bo/(co-l ˆ 2)-do*l ˆ 2;no[l—]:=Sqrt[no2[l]];
lp=1.06;l2=1./(1./lp - 1./l1);
L= 104;
dn[l—] = �l no[l];

��� Abs�
l12

L
(no[l1] = no[l2] + dn[l2] l2 - dn[l1] l1)−1];

Plot [�� , �l1, 1.5, 2�]
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Thus, all allowed cavity modes in the OPO which fall within the envelope of the
gain spectrum for a non-linear crystal will experience amplification. The response
of the OPO will therefore strictly depend upon the type of resonance within the
cavity.

The first case involves an OPO in which only the signal wave �
�

is resonant (i.e.
the singly resonant OPO or SROPO case described in Fig. 12.D.2). All the allowed
frequencies �

��
�mc/2n

�
L

���
separated by the cavity’s free spectral range

(��
-"�

� c/2n
�
L

���
) are amplified, corresponding to the number of modes

N� 2(��
�

/�
�

)(L
���

/�
�

) that are susceptible to oscillation. Taking ��
�
� 0.01 �m,

�
�
� 1.6 �m, and L

���
� 4 cm, 312 allowed modes result. Under continuous-wave

operation conditions (cw OPO), mode competition (see Complements 13.E and
13.I) will allow only the single mode closest to the peak of the gain curve to
oscillate. Frequency tuning can then be achieved by changing the cavity length.
The oscillation frequency varies linearly and continuously with the displacement
of the cavity modes until an adjacent mode becomes closer to the gain curve
maximum. When this happens, the oscillations ‘hop’ to this adjacent mode (a
feature typical of cw SROPOs (see Fig. 12.D.2)). The effective fine tuning range is
therefore equal to the free spectral range.

In a doubly resonant OPO (DROPO), the modes are now determined by the
two conditions:
∑ �

�
��

�
��

�
∑ the eigenmodes �

��
and �

���
both overlap within the OPO’s gain curve.

The two conditions can be represented on a Giordmaine—Miller diagram (see Fig.
12.D.3). The signal and idler frequency axes are oriented in opposite directions and
positioned in a manner so that any pair of vertically aligned frequencies �

��
and

�
���

add together to yield the pump frequency �
�
. Therefore, only those mode

pairs �
��

and �
���

that overlap to within their respective linewidths (��
�
�

��
-"�

/F
�

where i� 1, 2, and F
�

is the finesse of the cavity at frequency �
�
) will be

able to oscillate. Given the dispersion in the non-linear medium, the separation
between modes �

��
and �

���
will change as a function of frequency, and only a few

modes will be able to overlap under the gain curve (even under pulsed conditions —
see Fig. 12.D.3). DROPOs therefore intrinsically favour single mode operation to
a greater extent than do SROPOs. On the other hand, they tend to be less stable.
One of the reasons for this instability is the phenomenon of mode clustering. If the
gain curve is sufficiently broad (often the case!), a pair of non-adjacent cavity
modes can become closer than two adjacent modes (see Fig. 12.D.3). The oscilla-
tion frequencies will then fluctuate between these two mode clusters, leading to
instabilities in the output characteristics of the OPO.

Parametric gain in a non-linear crystal is generally weak and increases linearly
with pump power. It is therefore highly advantageous to operate OPOs in pulsed
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Fig. 12.D.2. Wavelength tuning for a SROPO: (a) all modes which lie within the gain curve
envelope are susceptible to oscillation. In continuous-wave (cw) operation, only the mode
closest to the gain curve maximum oscillates. (b) Variation of the cavity length allows
frequency tuning over the free spectral range.
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Fig. 12.D.3. Giordmaine—Miller diagram for a DROPO. (a) Only those modes which
overlap under the parametric gain curve can oscillate. (b) In general, the modes tend to cluster
together and the oscillation frequencies of the OPO fluctuate between these different values.
As a result, DROPOs tend to be unstable.
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mode where pulses with high peak intensities (produced say by aQ-switched laser)
are used to pump a non-linear crystal. We are thus going to describe the transient
behaviour of an OPO pulsed in the nanosecond regime, i.e. the pump pulse
duration corresponds to few photon cavity lifetimes.

For that purpose, we are going to describe the evolution of different wave
amplitudes during a photon round-trip in the cavity (between t

�
and t

���
). More-

over, we make the following assumptions:
∑ The relative phases of the waves are such that the constant of motion �� 0, i.e

cos "� 0 throughout the structures. This means that all the different phases "
�

stay constant in a non-linear crystal (see (12.C.9)).
∑ The parametric gain is supposed to be sufficiently small, so that (12.C.9) may be

linearized.
With these two assumptions, (12.C.19) may then be written as:

u�
�
(L)� u�

��
L
2��

�L
2
u�
��

L
2� u���

L
2�

u�
�
(L)� u�

��
L
2��

�L
2
u�
��

L
2� u���

L
2� (12.D.6)

u�
�
(L)� u�

��
L
2��

�L
2
u�
��

L
2� u���

L
2�

In an OPO, the �
�

waves are fed back into the cavity input by mirrors of overall
reflectivities r

�
(supposed real for the time being) so that the new inputs at time t

���
are:

u���
�

(0)� r
�
u�
�

(L)� r
��u���

L
2��

�L
2
u�
��

L
2� u���

L
2��

u���
�

(0)� r
��u���

L
2��

�L
2
u�
��

L
2� u���

L
2�� (12.D.7)

u���
�

(0)� f (t
�
)� r

��u���
L
2��

�L
2
u�
��

L
2� u���

L
2��

where f (t) is the pump electric field at the OPO input. At time t
���

, the wave
amplitudes in the middle of the non-linear crystal are now:
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�
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�
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�L
2
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L
2� u���

L
2�

We now introduce the new notation a
�
(t
�
)� u�

� �
L
2� . During a round-trip in the

cavity, the different wave amplitude increments are then:

d

dt
a
�
(t
�
)T
�#
� u���

� �
L
2�� u�

� �
L
2� (12.D.9)

where T
�#

is the round-trip time in the cavity, i.e. T
�#
� 2L/c. Equation (12.D.6)

may now be written:

d

dt
a
�

(t)��
a
�
#
�

� �
�
a
�
a
�

d

dt
a
�

(t)��
a
�
#
�

� �
�
a
�
a
�

(12.D.10)

d

dt
a
�

(t)� f (t)�
a
�
#
�

� �
�
a
�
a
�

OPO dynamic equations

These equations describe the temporal behaviour of an OPO. The different
quantities appearing in (12.D.10) are given by:

1

#
�

�
1� r

�
T
�# (12.D.11)

�
�
� (1� r

�
)
�c
4

The quantities a
�

are the real wave amplitudes at the middle of the non-linear
crystal, related to the photon fluxes through (12.37), i.e. �

�
� a�

�
/2�Z

�
. These

quantities may, however, be negative (corresponding to "���/2 in (12.C.9)), as
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they describe the oscillatory transfer of energy between the various waves as they
interact within the non-linear crystal. Here, f (t) is the pump source term of the
OPO (in amplitude), �

�
are the different non-linear coupling terms, and #

�
are the

lifetimes of the different frequency photons in the cavity.
In order to describe the singly resonant OPO (SROPO) specifically, we must

make the assumption that there is no feedback on the pump and idler waves so
that r

�
� r

�
� 0. In (12.D.10), the idler cavity lifetime #

�
may then be considered as

negligible compared with the signal lifetime (#
�
�T

�#
/(1� r

�
)) and the pump

duration (typically a few nanoseconds). One may thus consider that the idler wave
adiabatically follows the pump and signal variations. This is similar to considering
that da

�
/dt� 0, so that:

d

dt
a
�

(t)��
a
�
#
�

� �
�
a
�
a
�

a
�
� g

�
a
�
a
�

(12.D.12)

d

dt
a
�

(t)� f (t)�
a
�
#
�

� �
�
a
�
a
�

SROPO dynamic equations

with g
�
��L/2.

It is now interesting to solve (12.D.10) in the general case (SROPO, DROPO)
under stationary state conditions, i.e. f (t)� f� constant and da

�
/dt� 0. Equation

(12.D.10) leads to:

a
�
(1� �

�
#
�
�
�
#
�
a�
�

)� 0
(12.D.13)

f�
a
�
#
�

� �
�
a
�
a
�

As was the case with the laser equations in (4.34) and (4.35), this equation admits
two types of solutions:
∑ Below threshold. The signal and idler photon fluxes are null (a

�
� a

�
� 0) and

the pump photon amplitude increases linearly within the cavity as a function of
the pump amplitude (a

�
� f#

�
).

∑ Above threshold. The pump photon flux is clamped to its threshold value given
by A

�����	���
"
� a�

�����	���
"
� 1/(�

�
#
�
�
�
#
�
). The signal photon flux is given by the

second equation (12.D.13):

A
�
� a�

�
�

1

#
�
�
�
#
�
�
�
�

f

f
���	���
"

� 1� (12.D.14)

where the threshold is given by f
���	���
"

� a
�����	���
"

/#
�
. This means that the
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Fig. 12.D.4. OPO response as a function of the square root of pump power.

DROPO pump power threshold is proportional to 1/T
�
T
�
, with T

�
mirror

transmission, which is effectively what we found in (12.62).
Equation (12.D.14) also suggests that the output signal power P

�
is propor-

tional to �P
�

/P
�����	���
"

� 1, as indicated in Fig. 12.D.4. This is markedly
different from the linear P

��
�P

���
behaviour of lasers. This point is generally

missed by many authors and will be discussed in more detail in Complement
12.F.

The following example now illustrates the temporal evolution of a DROPO
as described by (12.D.10). Figure 12.D.5 shows the temporal variation for the
pump and signal waves at the output of an OPO cavity starting from these
equations. The signal grows exponentially starting from a parametric fluor-
escence noise, while the signal and idler waves rapidly deplete the power in the
pump beam.

Example
We study the temporal response of a DROPO pumped using Gaussian (shaped)
pulses. The equations are normalized and solved using MA THEMATICA.
We see that the signal cannot grow without being seeded by a minute quantity of
source photons provided by parametric fluorescence.

g = 5; # = 2; eq1 = ap�[t] == E−(t�)
2 - ap[t] - g as[t] ac[t] ;

eq2 = as� [t] == - as[t] + g ac[t] ap[t] ;
eq3 = ac� [t] == -ac[t] + g as[t] ap[t];
sol = NDSolve[�eq1, eq2, eq3, ap[-5] == 0, as[-5] == 0.001, ac[-5] == 0.001�,
�ap[t], as[t], ac[t]�, �t, -5, 5�];
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Fig. 12.D.5. Temporal profile of pump and signal pulsed amplitudes in an OPO obtained
from the coupled mode equations (12.D.10).

P1 = Plot[Evaluate[ap[t] / . sol, �t, -5, 5�],
PlotStyle� RGBcolor[1, 0, 0], DisplayFunction� Identity];

P3 = Plot[Evaluate[as[t] / . sol, �t, -5, 5�], PlotStyle� RGBColor[0, 0, 1],
DisplayFunction� Identity];
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12.E Parametric interactions in laser cavities

As demonstrated by (12.33) or (12.68), the parametric conversion efficiency is
proportional to pump beam intensity. It would therefore be advantageous if the
parametric interaction could occur within the optical cavity of the pump laser itself
as the pump beam intensity is 1/T (where T is mirror transmission) times greater
than the pump output intensity (see Complement 9.D). We will therefore study the
intracavity non-linear frequency conversion efficiency. In order to simplify our
approach, and to emphasize the more important aspects of the problem, we will
assume that:
1. Phase matching considerations have been taken into account by suitable design

of the cavity, allowing us to focus only on the number of photons in the cavity.
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Fig. 12.E.1. Configuration for intracavity frequency doubling.

2. The wave amplitudes in the cavity are position independent: this approxi-
mation becomes reasonable as soon as the cavity finesses at � and 2� are
greater than a few units.

3. The entire medium is characterized by a single optical index allowing us to
neglect varying effects of refraction.
We will now develop the formalism for intracavity frequency doubling. The

required set-up and relevant notations are illustrated in Fig. 12.E.1. We will
assume that the parametric gain is weak enough to justify the undepleted pump
beam approximation (see Section 12.3). During a time interval dt, the energies
P�dt and P

��dt contained by the � and 2� waves leaving the non-linear medium
are related in terms of photon number P

�
at 2� and P

�
at � in the cavity by:

P�dt�P
�

c�dt
SL

��

(12.E.1)

P
��dt�P

�

c�dt
SL

2��

where c� is the speed of light in the medium, S is the normal cross-sectional area of
the beam, and L is the total cavity length. The variation rates for the numbers of
photons due to the non-linear interaction are given by:

d
dt
P
� �
.%

�
1
2
K

�

P�
�

(12.E.2)
d
dt
P
� �
.%

��K
�

P�
�

where we remember that, two � photons are required to produce a single 2�
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photon. To find an expression for K
�


, we recall that on the one hand, the power
circulating in the cavity and the rate of change in the number of photons are
related by:

P
���

1
S

d
dt
P
�

2���K
�

S
P�
�
�� (12.E.3)

while on the other hand, the intensities P� and P
�� are given by (12.33):

P
��� )P�� (12.E.4a)

where ) is the conversion efficiency (in m�W��):

)� 2
Z�
�

n��n��
(��

�
$
�
L

�

)� (12.E.4b)

Neglecting pump beam depletion in the crystal, the coefficient K
�


follows from
(12.E.3) and (12.E.4):

K
�

� )

c�
SL�

�� (12.E.5)

We now turn our attention to the response of the intracavity laser medium.
The temporal evolution of the medium without the effect of frequency doubling

is given by (4.34) and (4.35) while also taking into account the fact that the laser
medium occupies only a fraction of the cavity.

d
dt
N��

�
(N
�
�N)�K

�
NP

�
(12.E.6a)

d
dt
P
�
�K

�
NP

�
��

����
P
�

whereN is the number of inverted atoms and K
�

is the linear coupling coefficient:

K
�
�
c��

��
SL

(12.E.6b)

In the absence of any parametric interaction, we immediately recover the station-
ary state behaviour. If the number of inverted atoms N is smaller than the
threshold value N

���	���
"
, the number of photons P

�
will be zero and N�N

�
(proportional to the pump power). In the opposite situation, N will clamp to
N

���	���
"
as:

N
���	���
"

�
�

�����
K
�

�
SL

c��
��
#
����

(12.E.7a)

with the number of photons P
�

being given by:
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P
�
�P

���
(r� 1) (12.E.7b)

where P
���
��

�
/K

�
�SL/c�

��
#
�

is the saturation photon number and r is the
normalized pump rate r�N

�
/N

���	���
"
(see Section 4.6). We now need only bring

together the two mechanisms (amplification and frequency conversion) to describe
the cavity response:

d
dt
N��

�
(N
�
�N)�K

�
NP

�

d
dt
P
�
�K

�
NP

�
��

����
P
�
�K

�

P�
�

(12.E.8)

d
dt
P
�
�

1
2
K

�

P�
�
��

����
P
�

At stationary state, the second equation provides a means of relating the number
of inverted atoms to the number of photons P

�
:

N
�
�N

���	���
"
� P

�
(12.E.9a)

with

�
K

�

K
�

(12.E.9b)

The inversion density is therefore no longer clamped! This results from the fact
that the photons � do not saturate the laser transition as they are eliminated
within the cavity by turning into 2� photons. Substituting (12.E.9) into the first
equation in (12.E.8), the number of photons P

�
is given by the solution to the

second-degree equation:

u[(r� 1)�Y]� (1�Y)Y (12.E.10)

where u is the ratio u��
�
/�

����
and Y�P

�
/N

���	���
"
(see (4.36)). The number of

photons leaving the cavity �
����
P
�

is then given by the third equation in (12.E.8),
i.e:

�
����
P
�
�
K

�

2
N�

���	���
"
Y� (12.E.11)

or:

�
����
P
�
�

�
�
�

����
K
�

[�(1� u)�� 4u(r� 1)� (1� u)]�
8u

(12.E.12)

This last quantity essentially depends on the parameter u�K
�


/(�
����
K
�
/�
�
),
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which is nothing else than the non-linear parameter normalized by the linear
cavity parameters. An analysis of (12.E.12) shows that the non-linearityK

�

can be

selected to yield an optimal efficiency, and this at any given pump rate r: it suffices
that u� 1, i.e. for a non-linear coupling coefficient given by:

K
���
P

���
��

����
(12.E.13)

This last equation indicates that an optimal level of non-linear coupling occurs
when the non-linear losses at saturation (K

���
P

���
) match the linear cavity losses.

We see that there is an interest in minimizing the linear losses to keep the
non-linear crystal length to a minimum. The optimal 2� photon flux which can
leave the cavity is:

�
����
P
�
�

1
2
�

����
P

���
(�(r)� 1)� (12.E.14)

We note that this flux is proportional to (�(r)� 1)�: beyond threshold, the bulk of
the pump energy is converted into 2� photons, with the 2� photon flux becoming
proportional to r, whereas the flux at the fundamental frequency is proportional to
�(r). The cavity therefore acts (almost) as a perfect frequency converter. Figure
12.E.2 shows the variations in the normalized inversion population X�N/
N

���	���
"
and 2� photons Z�P

�
/N

���	���
"
as a function of the pump rate r.

Declamping of the inversion population X and the (�(r)� 1)� dependence of the
2� photon number Z are clearly apparent.

The time dependence of the signal is obtained with the help of (12.E.8), written
(neglecting the spontaneous emission term �

�
(N
�
�N) during the optical pulse)

as:

d
dt
X��XY

d
dt

Y� (X� 1)Y�Y� (12.E.15)

d
dt
Z�


2

Y�

Figure 12.E.3 shows the time dependence for the 2� photon flux obtained by
solving the differential equations in (12.E.15). As before (see Section 4.6.2), it was
necessary to seed the medium with a few initial photons to simulate the effect of
spontaneous emission (parametric fluorescence). Figure 12.E.3 also shows that for
strong coupling coefficients (� 1) the pulse lengths become significant but the
overall integral (the pulse energy) is unchanged. This is good news: it means that
small non-linearities or thin non-linear crystals are enough to provide good SHG
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between the non-linear and linear coefficients.

efficiency. In fact, intracavity SHG of 1.06 �m YAG laser has become the work-
horse of today’s high-power visible lasers, totally replacing ion gas lasers.

Example
The MATHEMATICA program below calculates the pulsed behaviour de-
scribed by (12.E.15).
xi=10 ;=.1 ;
eq1= y�[t]==y[t]*(x[t]-1)- y[t] ˆ 2;
eq2= x�[t]== -x[t]*y[t] ;
sol=NDSolve[�eq1,eq2,x[0]==xi,y[0]==0.001�,�x[t],y[t]�,�t,0.,50�];
plot2=Plot[ Evaluate[ y[t] ˆ 2 /.sol,�t,0,50�],PlotStyle-�
�RGBColor[.5,0,.5]�,PlotRange-��0,1�,DisplayFunction-�Identity];
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12.F Continuous wave optical parametric oscillator characteristics

Up to now, OPO characteristics have been analysed assuming a small frequency
conversion efficiency. This allowed us to assume an undepleted pump amplitude in
the crystal and to simplify the theoretical derivations in a very convenient way. In
fact, as we will now see, this approximation is of very poor validity (conversion
efficiencies higher than 93% have been reported!) and we are going to derive the
OPO characteristics without this approximation.

For this purpose, we recall the propagation equations for the phases and
amplitudes of the different fields (see (12.C.9)):

d
dz
u
�
(z)� �u

�
(z)u

�
(z)sin �(z) (12.F.1a)

d
dz
u
�
(z)� �u

�
(z)u

�
(z)sin �(z) (12.F.1b)

d
dz
u
�
(z)���u

�
(z)u

�
(z)sin �(z) (12.F.1c)

d
dz

�
�
(z)��

u
�

(z)u
�

(z)
u
�
(z)

cos �(z) (12.F.1d)

d
dz

�
�
(z)��

u
�

(z)u
�

(z)
u
�
(z)

cos �(z) (12.F.1e)

d
dz

�
�
(z)��

u
�

(z)u
�

(z)
u
�
(z)

cos �(z) (12.F.1f)

where ���
�
��

�
��

�
is the non-linear relative phase shift and � the non-linear

coupling coefficient given by �� ($���/2c)(�
�
�
�
�
�

/n
�
n
�
n
�

)���. From (12.F.1), one
can derive the existence of four quantities that are constant in propagation (three
of which are independent):

�� u
�
(z)u

�
(z)u

�
(z)cos �(z) (12.F.2a)

m
�
� u

�
(z)�� u

�
(z)� (12.F.2b)

m
�
� u

�
(z)�� u

�
(z)� (12.F.2c)
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m
�
� u

�
(z)�� u

�
(z)� (12.F.2d)

These constants of motion are determined by the boundary conditions. Moreover
the conservation of energy is easily written in the following way:

�
�
u
�

(z)�� �
�
u
�

(z)�� u
�
(z)��

2Z
�
P


�
�

� p


(12.F.3)

where �
�
��

�
/�
�

are the OPO quantum defects and P


is the total optical power
flowing inside the cavity.

The cavity induces a feedback effect for the different fields that are recirculated,
implying the following self-consistency equations in the steady state regime for the
field amplitudes E

�
between the crystal entrance z� 0 and the crystal exit z�L:

E
�
(0)� r

�
e��������������E

�
(L) (12.F.4)

where r
�
��R

�
and "

�
are the reflectivity coefficient and dephasing of the mirror

for signal and idler waves, respectively; and L�
�

the cavity length outside the crystal
for mode i. On the other hand, (12.F.2) and (12.F.3) guarantee that the input and
output powers are equal and are given by:

p
��
�

2Z
�
P

��
�
�

� u�
��
� u�

��
� (1�R

�
)�
�
u�
��
� (1�R

�
)�
�
u�
��
� p

���
(12.F.5)

where u
��
� u

�
(0) and u

��
� u

�
(L).

When the OPO is operating above threshold in the steady state regime, the
oscillation frequencies of the signal and idler waves are determined by the energy
conservation relation �

�
��

�
��

�
and by the round-trip equations, (12.F.4), for

the different field amplitudes. As a result, the frequency tuning characteristics of
the OPO strongly depend on the values and the resonant nature of the different
fields in the cavity, as we will see below. We will now investigate the solutions of
these coupled equations in the SROPO and DROPO configurations, respectively.

12.F.1 Singly resonant OPO

For the SROPO configuration, we thus suppose that the reflectivity of the idler is
zero, i.e. r

�
� 0. The signal self-consistency equations read:

u
�
(0)� r

�
u
�

(L) (12.F.6a)

u
�
(0)� 0 (12.F.6b)

�
�
(0)��

�
(L)� "

�
� k

�
L�

�
�
L�
c

(12.F.6c)

keeping in mind that the total phase of the electric field inside the non-linear
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crystal is �
�

(z)� k
�
z. Condition (12.F.6) implies that the constant of motion � is

�� 0 in (12.F.2a), and therefore, since u
�

(L)u
�

(L)u
�
(L)� 0 above threshold, that

cos �(z)� 0. Threshold is thus obtained once phase �(z) is identically (�/2)� p�,
where p is an integer. The sign of sin � (i.e. the parity of integer p) is of great
importance in (12.F.1a—c): it tells whether the energy flows from the pump to the
signal or vice versa.

One also deduces from (12.F.1d—f) that the three phases �
�
(z) (i� 1, 2, 3) are

separately constant and, in particular, that �
�
(L)��

�
(0). Equation (12.F.6c) then

has a simple consequence:

k
�
L�

�
�
c

L�� "
�
� 2m�, where m is an integer (12.F.7a)

One thus retrieves in the present general case the simple and intuitive condition
that the SROPO oscillates only when the signal field is resonant in the cavity, which
imposes a comb of possible signal frequencies �

�
, or longitudinal modes, like in a

laser, given by the implicit equation:

�
�
�m

2�c
L�� n(�

�
)L

(12.F.7b)

Now, using (12.F.6a) and (12.F.6b), the flux conservation equations, (12.F.2),
read:

m
�
� u�

��
� p

��
(12.F.8a)

m
�
� u�

��
�R

�
u�
��
� u�

��
� u�

��
(12.F.8b)

u�
��
� u�

��
�R

�
u�
��
� p

��
(12.F.8c)

where both pump and signal amplitudes at the crystal output (respectively u
��

and
u
��

) are to be determined as a function of the input power u�
��

. Assuming, for the
time being, that the energy flows from the pump to the signal, (12.F.1b), describing
the evolution of the idler wave, is now:

d
dz
u
�
���(m

�
� u�

�
)(m
�
� u�

�
) (12.F.9)

which may be formally integrated as:

�L�
�����

�
�

du
�

�(m
�
� u�

�
)(m
�
� u�

�
)

(12.F.10)

This latter expression has a well known solution in terms of Jacobian functions:

604 Complement to Chapter 12



u
�
(L)� i�m

�
sn�i�m

�
�L ��

m
�

m
�
� (12.F.11)

In order to define the notation (which differs depending on authors), we have taken
the following definition for the inverse of the Jacobian function sn:

a
	

�
�

dt

�(a�� t�)(b�� t�)
� sn���

x
b �
b�
a�� (12.F.12)

Inverse Jacobian function

Now using the flux conservation condition for the pump over the crystal length
(Eq. (12.F.8b)), (12.F.11) reads:

sn��i�L�p
�� ��R�

u�
��
p
��
�� 1�

1
R
�

(12.F.13)

Equation (12.F.13) is an implicit equation that yields the value of the signal
amplitude u

��
at the crystal output as a function of input power p

��
.

Let us first find the SROPO oscillation threshold: in this case the signal ampli-
tude u

��
� 0 with a non-zero pump amplitude u

��
� 0. Since sn(ix�m) � i sinh(x)

when m� 0, one derives from (12.F.13) the value of the normalized pump thresh-
old p

#
:

p
#
��

cosh��(1/�R
�

)
�L �

�
(12.F.14)

which is effectively the value obtained in the linearized theory for SROPO (Eq.
(12.49)); a theory which is obviously valid when the signal has a vanishing value in
the crystal. Introducing the normalized variables X� p

��
/p
#

and Y� u�
��

/p
#
, the

implicit equation which yields the normalized signal power Y at the crystal output
as a function of normalized input power X is now:

sn��i cosh���
1

�R
�
��X��R�

Y
X�� 1�

1
R
�

(12.F.15)

The normalized output signal power Y� is the product of Y by the mirror trans-
mission, i.e:

Y�� (1�R
�

)Y (12.F.16)

Equation (12.F.15) holds for any value of pumping power and its solution depends
on a single parameter: the signal reflectivityR

�
. It is easily solved using a symbolic

computation program. As an example, Fig. 12.F.1 shows the Y� versus X curves
(i.e. normalized P

���
�P

��
characteristics) for a value of signal reflectivity

R
�
� 90%.
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� 0), and an unbalanced OPO (R

�
� 0.9,R
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� 0.2).

For comparison purposes, the intensities are normalized relative to the balanced DROPO
threshold power.

For high-mirror reflectivities, i.e. when �� 1�R
�
� 0, an asymptotic expres-

sion may be derived from (12.F.15). Using the approximation cosh��(1/
�1� �)) ���, (12.F.15) may be written as:

sn�i��X��
Y�
�X�� i�� (12.F.17)

The asymptotic value of this latter expression is rather tricky to determine when
�� 0. It may be shown that, as soon as the reflectivityR

�
exceeds 80%, (12.F.17) is

very well approximated by a universal relation, independent of the reflectivity:

X�
Y�

sin��Y�
(12.F.18)

Close to threshold (X� 1), one can derive a Taylor development from this
expression:

Y � 6(�X� 1) (12.F.19)

which, with output power at �
�

given by P
�����

� (1�R
�

)�
�
u�
��

/2Z
�
, leads to the

relation:
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SROPO cw Pout − Pin characteristics

The value of the proportionality factor 6 in (12.F.20) is quite surprising, but can be
derived directly by stating that the signal field E

�
is almost clamped in the cavity

and that the pump (respectively idler) fields E
�

(respectively E
�
) is then a cosine

(respectively sine) function of position in the cavity.
Close examination of (12.F.15) also indicates that the output pump power can

be completely depleted (u
��
� 0, or equivalently X�Y�) for an input power p

���
given by the relation:

i�L�p
���
� sn���i	

1
R
�

� 1 ��
R
�

1�R
�
� (12.F.21)

which, after some cumbersome elliptic function algebra, leads to:

X
���
�
p
���
p
#

��
1

cosh��(1/�R
�

)�
� 1�R

�
R
�

K���
1�R

�
R
�
� (12.F.22)

where K is the elliptic integral K(m)� '�
�

dt/[(1� t�)(1�mt�)]���. Figure 12.F.2
shows the variation of the saturation intensityX

���
as a function of reflectivity R

�
.

This numerical study shows that X
���

is weakly dependent on R (from 0.5 to 0.99)
i.e.X

���
�K�(0)� (�/2)�� 2.4. For input power higher than this value, part of the
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signal and idler is converted back into pump power in the crystal. The input pump
power p

���
is thus an optimum for which the OPO efficiency is 100%, i.e. all the

input pump power is converted into signal and idler waves.

12.F.2 Doubly resonant OPO: the balanced DROPO

For the DROPO, the self-consistency equations are now:

u
�
(0)� r

�
u
�

(L) (12.F.23a)

u
�
(0)� r

�
u
�

(L) (12.F.23b)
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�
� k
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�
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c
� 2m

�
� (12.F.23c)
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�
(0)��

�
(L)� "

�
� k

�
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�
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L�
�

c
� 2m

�
� (12.F.23d)

where we have left the possibility of having two different cavity lengths for the
signal and idler waves (L�

�
, L�
�

). Concerning the phase conditions, above threshold
none of the signal, idler, and pump fields is vanishing at some point of the crystal,
which implies that the constant of motion � can take any non-zero value: therefore
there is no constraint on the value of the relative phase �(z).

Concerning the conditions on the amplitude (12.F.23a) and (12.F.23b), the flux
conservation equation, (12.F.2d) gives:

(1�R
�
)u
�

(L)�� (1�R
�

)u
�

(L)� (12.F.24)

which is nothing else than the equality of the idler and signal photon fluxes at the
output of the OPO.

We will first assume, for simplicity’s sake, that both reflectivities are equal, i.e.
R
�
�R

�
(for instance at degeneracy): this is designated as the balancedDROPO. In

that case, u
�
(z)� u

�
(z)� u(z) and �

�
(z)��

�
(z). Equation (12.F.23c) leads to the

phase condition:

"
�
� k

�
L�

�
�
L�
�

c
� 2m

�
�� "

�
� k

�
L�

�
�
L�
�

c
� 2m

�
�� �� (12.F.25)

The system may now oscillate in detuned configurations, as the two sides of
(12.F.25) are not necessarily equal to zero. However, the signal and idler wave
detunings �� must be equal with respect to the cold cavity resonance (��� 0).
Condition (12.F.25) together with photon energy conservation �

�
��

�
��

�
form an implicit equation which imposes given values for the signal and idler
frequencies to be chosen among a comb of possible values depending on the two
integers m

�
and m

�
. This comb is continuously translatable along the frequency

axis while changing the detuning ��.
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Equations (12.F.1a—c) show that the transfer of energy between the pump and
parametric waves is maximum for sin �(z)� 0, which means a zero value for the
constant �. In that particular case, similar to the SROPO, the individual phases
�
�
(z) are constant in the crystal and the detuning �� is zero. The converse (i.e. a

zero detuning leading to a zero constant �) can also be shown. This is the case of
exact double resonance for the signal and idler waves in the cavity. It is obtained, in
practice, by tuning cavity lengths L�

�
and L�

�
into resonance, such as in a dual

cavity DROPO. It can be shown, however, that the DROPO can oscillate even
when this condition is not met, but with an enhanced threshold compared with the
exact resonance case. With this latter restriction in mind, let us suppose that we are
in the exact double resonance case, so that �� 0.

Since m
�
� 0, the power conservation equation, (12.F.2d) now reads:

p

� u(z)�� u

�
(z)� (12.F.26)

Evolution of the signal wave is now given by:

�L�
��

�
,!��

du

u�(p

� u�)

(12.F.27)

where u
�
� u(L). This integrates trivially to give:

log�
1

�R�� log�
�p


��p


�Ru�

�
�p


��p


� u�

�
���L�p


(12.F.28)

The threshold is once again obtained when the idler signal u
�
� 0 with p


� 0. This

yields the threshold power for this balanced DROPO:

�L�p
#
� log�

1

�R� (12.F.29)

Now the intracavity flux p


is related to p
��

and u
�

through the relation (12.F.26),
i.e. p


� p

��
�Ru�

�
. Using the same notation as in the SROPO case (X� p

��
/p
#

and
Y� u�

�
/p
#
), the P

���
�P

��
relation of (12.F.28) may then be written in normalized

form:

log�
�X�RY��X

�X�RY��X� (1�R)Y�� log�
1

�R� (�X�RY� 1) (12.F.30)

Equation (12.F.30) is only valid if the output signal flux Y� is smaller than the
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pump flux, i.e. Y�� (1�R)Y�X. The equality Y��X is obtained for a satura-
tion power p

���
given by (12.F.30), i.e:

p
���
� p

#
(1�R)�1�

log(1��1�R)

log(1/�R) �
�

(12.F.31)

At this value, the pump output power u
��

is then zero. Variation of the normalized
saturation power as a function of mirror reflectivities R�R

�
�R

�
is shown in

Fig. 12.F.2 where it is compared with the SROPO values. Figure 12.F.2 shows
that, for reflectivity R in the 0.9—1 range, p

���
is about 4 p

#
. At this value, i.e. four

times above threshold, the OPO is 100% efficient. For input power above this
value, signal power is reconverted into the pump wave: in that case, �(z) changes
from �/2 to��/2 in (12.F.18). The calculation may then be completed and is left as
an exercise.

Figure 12.F.1 now shows the P
���
�P

��
characteristics of balanced DROPOs

for mirror reflectivity values of 90% for both signal and idler waves. One can
expand (12.F.30) into a series to obtain the universal P

���
�P

��
relation for a

degenerate DROPO, which holds below saturation as soon as the reflectivity
exceeds 90%:

Y�� 4(�X� 1) (12.F.32)

or else

P
���
�
�

� 4
P
#

�
�
�	

P
��
P
#

� 1� (12.F.33)

Balanced DROPO cw Pout − Pin characteristics

Clearly, one finds that the OPO efficiency equals 1 whenP
��
�P

���
� 4P

#
, which is

consistent with (12.F.31).

12.F.3 Doubly resonant OPO: the general case

Finally, we shall briefly give below the equations describing DROPO in the
general regime (R

�
�R

�
), which are useful for practical applications but rather

cumbersome to derive. Assuming an exact double resonance (�� 0), combining
(12.F.1b) with (12.F.2) yields:

�L�
���

�
,!����

du
�

�(m
�
� u�

�
)(m
�
� u�

�
)

(12.F.34)

where, taking into account the flux conservation relation (12.F.24), the constants
m
�

and m
�

are now given by:
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Using the Jacobian function defined in (12.F.12), Eq. (12.F.34) now reads:
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This last equation effectively yields Eq. (12.F.13) in the SROPO case (R
�
� 0). The

expression for the threshold power p
#

is easily obtained with u
��
� 0, i.e:

�L�p
#
� log�
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�
��1�R
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which is somewhat different from the usual expression derived in Eq. (12.61). Once
again, the OPO reaches its optimum operation condition (yield� 100%) when the
condition p

��
� (1�R

�
)u�
��

is met, that is when:
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which allows one to trace the normalized value of saturation pump powerX
���

as a
function of reflectivities R

�
and R

�
, i.e. intermediate between the SROPO and

degenerate DROPO cases (see Fig. 12.F.2). The normalized P
���
�P

��
relation in

normalized form is rather cumbersome and reads:
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From this latter expression, all the different experimental situations developed
above can be obtained, with some algebraic difficulty, to rederive the balanced
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DROPO case. Figure 12.F.1 shows the numerical results for P
���
�P

��
character-

istics obtained for R
�
� 90% with an idler reflectivity R

�
� 20%.

FURTHER READING

M. Abramowitz and I. Stegun, Handbook of Mathematical Tables, Dover Publications, New
York (1970).

E. Rosencher and C. Fabre, JOSA B (to be published 2001).
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13 Light emitting diodes and laser diodes

13.1 Introduction

In Chapter 6, we saw that a semiconductor driven away from thermodynamic
equilibrium can emit light (in addition to blackbody radiation) when excited
carriers recombine from one band to another. We also derived the Bernard—
Durrafourg condition, which the energy distributions of the carrier populations
must satisfy before optical amplification can occur. We will now show how this
light emission can be put to use in electroluminescent diodes (alternatively known
as light emitting diodes or LEDs) and laser diodes. In doing so, we will draw upon
the contents of no less than five of the previous chapters:
∑ Chapter 4, which describes the physics of laser oscillations;
∑ Chapter 7, which describes the various optical emission mechanisms in semicon-

ductors;
∑ Chapter 8, which describes the physics of semiconductor heterostructures and

quantum well structures;
∑ Chapter 9, which describes waveguiding in optical heterostructures;
∑ Chapter 10, which describes carrier injection mechanisms in p—n diodes.
This chapter is fairly complex (and exciting!) in that it brings into play many of the
different physical concepts elaborated over the course of this book. While making
frequent use of material developed in other chapters, we will take the time to recap
many of the key concepts to allow the reader to progress through this chapter
without breaking stride on too many occasions.

13.2 Electrical injection and non-equilibrium carrier densities

Light emission in a semiconductor usually proceeds from electron—hole recom-
bination in regions where they are in excess in comparison with levels allowed by
thermodynamic equilibrium. (The only exception to this case is the unipolar
quantum cascade laser, which we will encounter later in Complement 13.H.)
Electron—hole recombination naturally occurs in a forward biased p—n junction
where we see that minority carriers can coexist with majority carriers over distan-
ces of the order of L

)
(the diffusion length). This is the phenomenon referred to as

electrical injection (Chapter 10). We will consider such a junction in which both
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Fig. 13.1. Optical emission in a semiconductor results from the recombination of
electron—hole pairs in regions where both carrier types coexist (e.g. as in a p—n junction).

electron J
�
/q and hole J

�
/q (in cm�� s��) fluxes converge (where J

�
and J

�
designate

the electron and hole current densities, and q is the absolute value of the electronic
charge). Given the requirement of charge neutrality, we have J

�
� J

�
� J (see Fig.

13.1).
The problem now is to figure out the volumetric density of the non-equilibrium

carriers n
�

and n
�

in the junction. This will allow us to calculate, with the help of
quasi-Fermi levels (7.67), the stimulated (7.41) and spontaneous (7.47) emission
rates in the structure. To do so, it is sufficient to write under stationary state
conditions, that the total recombination rate R

���
(in cm�� s��) in the volume V

exactly equals the incident flux of carriers flowing through the surface S, i.e.
VR

���
� SJ

�
/q� SJ

�
/q�SJ/q. For no other reason than to simplify the required

notation, we will assume that doping near the junction is negligible in comparison
with the non-equilibrium carrier density. This guarantees that n

�
� n

�
� n.

The total recombination rate R
���

that compensates for the flux entering the
junction region reflects contributions from at least four different mechanisms
addressed in the preceding chapters:
∑ the non-radiative recombination rate A

��
n due to the presence of deep level

defects, surface defects, . . . (see Section 6.5 and Complement 5.D);
∑ spontaneous radiative recombination Bn�, where B is the bimolecular recom-

bination coefficient given by (7.61) and (7.62);
∑ the Auger recombination term C

*�#
n� given in Complement 6.D;

∑ the stimulated recombination rate R
��
N

��
, where R

��
(�R

���
) is the stimulated

recombination coefficient (7.41) and N
��

is the photon density.
To begin, we will focus on the behaviour of the device far below laser threshold, i.e.
we will neglect simulated emission (N

��
� 0). The carrier density is then given by

the stationary state condition:

J
�
qd
�
J
�
qd
�
J

qd
�A

��
n�Bn��C

*�#
n� (13.1)
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where d�V/S is the effective thickness of the junction, i.e. the distance over which
electron—hole recombination takes place. It is clear in (13.1) that the recombina-
tion terms are not equivalent. The first and last terms do not generate light (i.e.
they are non-radiative), whereas the second term describes the spontaneous
emission in the structure. We thus regroup these terms in the following manner:

1

t
��

�A
��
�C

*�#
n�

1

t
��"

�Bn (13.2)

1

t
���

�
1

t
��

�
1

t
��"

where t
��"

, t
��

, and t
���

are the radiative, non-radiative, and total recombination times,
respectively. The non-equilibrium carrier density is then given by:

n�
Jt

���
qd

(13.3)

This very simple formula is one of the major results of this chapter. We note:
∑ The total recombination time t

���
depends on the carrier densities and, therefore,

on the operation conditions. Often, this time is determined by the residual
doping (in this case, we replace the carrier density n in (13.3) by the doping
concentrationN

�
). In most instances, this quantity will be a constant determined

by experiment.
∑ The Auger term C

*�#
n� depends explicitly on the carrier densities and becomes

increasingly important as these concentrations increase.
∑ For a given current density the non-equilibrium carrier density is dramatically

enhanced as the thickness of the active region decreases. For a homojunction,
this thickness d is given by L

)�
�L

)�
where the diffusion lengths of the minority

carriers L
)�

(electrons in the p region) and L
)�

(holes in the n region) are given by
(10.41) and typically equal anywhere from 1 to 10 �m (see Fig. 13.2). On the
other hand, this thickness can be reduced to less than 100 nm in a heterostruc-
ture, and down to a few nanometers in a quantum well (see Fig. 13.2).

Once we have determined the non-equilibrium carrier density in (13.3), we can
calculate the positions of the quasi-Fermi levels for each carrier type with the help
of (7.67).

Having done so, one of three possible cases will emerge:
∑ spontaneous emission dominates over stimulated emission, and the diode is in

the electroluminescent or LED regime;
∑ the medium is inverted (see the Bernard—Durrafourg criterion in (7.26b) and
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Fig. 13.2. For a given carrier flux, the density of electron—hole pairs is far greater in a
heterojunction (b) than in a homojunction (a) where these carriers can diffuse more readily.

(7.69)) but the cavity losses are superior to the gain in the medium, and the diode
is in the optical amplification regime (and is referred to as a superluminescent
diode);

∑ stimulated emission dominates over spontaneous emission, and the cavity losses
are exactly compensated by the medium gain placing the device in the laser
oscillation regime (i.e. making it a laser diode).

We will interest ourselves for the time being with first case.

Example
An Al

����
Ga
����

As/GaAs heterostructure with a thickness d� 10 nm possesses
under certain conditions a total recombination time of 5 ns. A 1 mA current
crossing a 10 �m� 100 �m junction area results in a non-equilibrium carrier
density (13.3) of:

n� 10��A� 5� 10� s/(10�� cm�� 1.6� 10��C� 10�� cm)
�3.1� 10�	 cm��

As this carrier density exceeds the effective density of states in the conduction band
N


(�4.3� 10�� cm��), the electron gas is degenerate and the quasi-Fermi level for
the electrons (5.56b) is:

E
3�
�E


� (1.05� 10��� J)�/(2� 0.067� 0.9� 10��� kg)(3� ��

� 3.1� 10��m��)���/1.6� 10��C� 116 meV

Alternately, the hole density p(�n) is less than the effective density of states in the
valence bandN

0
(�1.3� 10� cm��), and so the quasi-Fermi level is given by (5.47)

as:
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E
3�
�E

0
� 0.0259 eV� ln(1.3� 10�/3� 10�	)� 38 meV

As the energy spread between the electron and hole Fermi levels is greater than the
bandgap, i.e:

(E
3�
�E


)� (E

3�
�E

0
)� 116� 38 meV� 0

the system is inverted according to the Bernard—Durrafourg criterion.

13.3 Electroluminescent diodes

13.3.1 Electroluminescence

As the excess carriers build up in the junction region, they distribute themselves in
the conduction and valence bands, occupying increasingly elevated energy states
(see Fig. 13.3). Using a single valence band model, the carrier distributions can be
described in terms of the quasi-Fermi levels (see Section 7.6) E

3
(for electrons in

the conduction band) and E
30

(for the holes in the valence band) as:

E
3
�E


� kTF�

����
n

N

�

(13.4)

E
30
�E

0
� kTF�

����
n

N
0
�

where F�
���

is the inverse of the Fermi—Dirac integral F
���

, given by:

F
���

(u)�
1

�(3/2)

�

�
�

x���

1� e�	���
dx (13.5)

As discussed in Section 7.4, this displacement from equilibrium (as described by
the quasi-Fermi levels for the electrons and holes) produces an increase in sponta-
neous emission with a spectral rateR

����
(h�) per unit time, volume, and energy (for

photons with energy h�) given by (7.47):

R
����

(h�)�
1

#
!

�
�
(h�) f


(h�)[1� f

0
(h�)] (13.6)

where for quantities appearing in this last equation, we recall the definitions
introduced in Chapter 7:
∑ #

!
is the spontaneous radiative lifetime in the emitting material, which can be

assumed to be relatively independent of the energy of the emitted photons. This
quantity is characteristic of a given semiconductor and depends upon its physi-
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Fig. 13.3. Optical transitions in a semiconductor are vertical (i.e. k conserving) in energy.
The states E


(h�) and E

0
(h�) are joined by optical transitions involving photons with energies

h�: CB, conduction band; VB, valence band.

cal parameters (effective carrier masses, Kane matrix elements, etc.) as described
by (7.37b).

∑ �
�
(h�) is the joint density of states given in (7.19). It counts the ‘number’ of states

that satisfy the energy h��E

(k)�E

0
(k) and momentum (constant k) conserva-

tion requirements for transitions between states with energy E
0
(k) in the valence

band and E

(k) in the conduction band (see Fig. 13.3).

∑ f

(h�) and f

0
(h�) are the Fermi—Dirac functions describing the occupation of the

states connected by the optical transitions, i.e. satisfying (7.25b,c):

f

(h�)�

1

1� exp�
E

(h�)�E

3
kT �

(13.7a)

E

(h�)�E

�
�
m
�
m


(h��E
�
)

and
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0
(h�)�

1

1� exp�
E
0
(h�)�E

30
kT �

(13.7b)

E
0
(h�)��

m
�

m
0

(h��E
�
)

As a general rule, in the case of electroluminescent diodes, the excess carrier
density is sufficiently weak to justify approximating the Fermi—Dirac functions by
Boltzmann functions (i.e. the quasi-Fermi levels are far from the band extrema). As
seen in Chapter 7, in this case the spectral spontaneous emission rate can be
considerably simplified yielding (see (7.52a)):

R
����

(h�)�K
����

(h��E
�
)���exp��

h��E
�

kT � (13.8)

whereK
����

is given by:

K
����

�
(2m

�
)���

���#
!

exp�
�E

3
�E

�
kT � (13.9)

and �E
3

is the difference between the quasi-Fermi levels �E
3
�E

3
�E

30
. Clear-

ly, as the excess carrier density n increases, the factors exp(E
3

/kT) and exp(�E
30

/
kT ) rise as well, so that the spectral rateR

����
(h�) is proportional to n�, which is not

surprising. The spontaneous emission lineshape is given by (13.8). It is trivial to
show that the maximum intensity is emitted at h�

�	��
�E

�
� kT/2 and that the full

width at half maximum �h�� 1.8 kT (see Fig. 13.4).
As �

�	��
and h�

�	��
are related by �

�	��
(�m)� 1.24/h�

�	��
(eV), we immediately

deduce that the full width at half maximum in terms of wavelength �� is related to
�
�	��

by:

��� 1.45��
�	��
kT (13.10)

Figure 13.5 shows the spectral densities emitted by LEDs fabricated from various
semiconductors. As predicted by (13.10), the emission spectrum becomes narrower
in terms of wavelength as the emission energy moves from the infrared to the
ultraviolet ends of the spectrum.

13.3.2 Internal and external efficiencies for LEDs

We will now shift our attention from the spectral distribution R
����

(h�) of the
emitted energy to the total intensity R

����
corresponding to the evaluation of the

integral of (13.6) over the entire semiconductor band structure. This integration
was carried out in Section 7.5. At that time, we were able to show that the radiative
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Fig. 13.4. Spectral distribution of the spontaneous emission rate. The width of the spectrum
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as predicted by (13.10). From S. M.

Sze: Physics of Semiconductor Devices, copyright © Wiley Interscience, New York (1981),
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recombination rate for the case where the carrier densities are far from being
degenerate (as is the case with LEDs) is given (see (7.62) and (7.65)) by:

R
����

�Bn
�
n
�
�

n

t
��"

(13.11)

where t
��"

is the radiative recombination time andB is the bimolecular recombina-
tion coefficient which relates to the radiative lifetime #

!
according to (7.62). In this
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situation, the total photon flux � released by the volume V of the junction takes
the particularly simple form:

��R
����

V
S
�

n

t
��"

d (13.12)

We then introduce the coefficient )
�
, which is given by the ratio:

)
�
�
t
���
t
��"

�
1

1� t
��"

/t
�� (13.13)

Internal quantum efficiency

This coefficient )
�

is the internal quantum efficiency for the LED. It gives the
percentage of electron—hole pairs that can successfully release their stored energy
in the form of emitted photons immediately following recombination. Given (13.3),
we see that the flux of emitted photons is given by:

�� )
�

J

q
(13.14)

This last equation clearly shows the role played by the internal quantum efficiency
in terms of effectively transforming a carrier flux J/q into a photon flux �.

In spite of this, not all the light emitted by a p—n junction can escape the
semiconductor. In fact, electroluminescent emission is not directional, it is Lam-
bertian. Figure 13.6 shows all the optical mechanisms that contribute to diminish-
ing the total efficiency of an LED:
∑ "

�
rays (i.e. making small angles with the surface normal vector) travel across

semiconductor material, which will absorb some portion of the emitted light.
Clearly, this absorption can be minimized in a heterojunction by choosing
constituent semiconductors for the n and p regions with bandgaps in excess of
the photon energy of the light released by the structure. Nonetheless, a small
portion of the small-angle light rays still experience partial reflection by the
semiconductor—air interface. The fraction )

"�	

of normally incident light trans-

mitted by the interface (i.e. the dielectric efficiency) is given by Fresnel’s equation
to be:

)
"�	

� 1�

(n
��
� 1)�

(n
��
� 1)�

�
4n

��
(n

��
� 1)�

(13.15)

where n
��

is the optical index of the semiconductor material. For GaAs
(n

��
� 3.6), the transmission efficiency )

"�	

is 0.7. This efficiency becomes greater

as the semiconductor’s optical index becomes smaller (i.e. as the diodes emit at
shorter wavelengths). This is, for instance, well verified for blue-emitting GaN
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Fig. 13.6. The light rays that form an angle "
�

with the normal surface vector of the LED
experience partial Fresnel reflection, whereas those rays making an angle greater than "

�
experience total internal reflection.

diodes for which n
��
� 2.3 and )

"�	

� 0.85.

∑ "
�

rays emitted outside the cone defined by the critical angle "


are completely
reflected. If the process ended there, the efficiencies for LEDs would be cata-
strophically low. In that case, the percentage of emitted light would only be 4%!
In fact, LEDs are helped along by a second phenomenon known as photon
recycling. A portion of the back-reflected photons are absorbed, forming elec-
tron—hole pairs; and, as such, through subsequent recombination events, stand a
chance of being re-emitted ultimately to escape the semiconductor—air interface.
All these processes combine to yield an effective transmission efficiency )

�
which,

when multiplied by the internal quantum efficiency, yields the fraction of elec-
tron—hole pairs converted into photons capable of escaping the LED. The
external powerP

	��
is then given by the product of the external photon flux by he

energy of the emitted photons:

P
	��
� )

	��

J

q
h� (13.16)

where )
	��

is the external quantum efficiency given by )
	��
� )

�
)
�
. It is customary

to introduce the responseR (W A��) for an LED as the ratio of the emitted light
power density divided by the forward bias junction current density J, i.e.
R�P

	��
/J such that:

R� )
	��

h�
q
� )

	��

1.24

�
�	��

(13.17)

LED response (WA−1) at a particular

peak emission wavelength (�m)

We can now inquire about the energetic efficiency of an electroluminescent diode.
If the series resistance for the diode is weak, the required applied voltage to obtain
emission will be of the order of a semiconductor bandgap, i.e. h�/q. The electrical
power invested in the diode is then J� h�/q (W cm��). Equation (13.16) gives us
the energy efficiency of the diode P

	��
/(J� h�/q) or ,)

	��
. The energy efficiency is

therefore close to the external quantum efficiency )
	��

(to within the series resis-
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tance), i.e. of the order of 20%. This is to be compared with the energy efficiency of
,1% (in the visible spectrum) for an incandescent light bulb where the remaining
,99% of the electrical energy is dissipated as heat.

Examples
1. A GaAs/Al

����
Ga
����

As LED emits at a peak wavelength of 0.87 �m. Its
internal quantum efficiency is 50% and its dielectric efficiency )

"�	

is 20%. The

response of this LED is therefore:

R� 0.5� 0.2� 1.24 �m/0.87 �m� 0.14 W A��

Assuming a pump current of 20 mA, the diode will emit 2.8 mW of optical
power.

2. An InGaN/GaN diode emits at a peak wavelength of 0.4 �m. The internal
efficiency is 50%, but its dielectric efficiency is 40% (the optical index of GaN is
2.3). The response of this diode is therefore:

R� 0.5� 0.4� 1.24 �m/0.4 �m� 0.62 W /A��

With a pump current of 20 mA, the diode will emit a total external power of
12.4 mW — clearly superior to that achieved by the GaAs/AlGaAs LED.

3. The bimolecular recombination coefficient B determined for GaAs is given in
Table 7.1, Section 7.5 (B� 7.2� 10��� cm� s��). Assuming a heterostructure
doping level N

)
� 2� 10�� cm��, the radiative recombination time t

��"
is then

given by (7.65) to be t
��"
� 1/BN

)
� 7 ns. Assuming a non-radiative recombina-

tion time of 5 ns, the internal quantum efficiency is then 42%.

13.3.3 A few device issues

LED diodes have three principal uses: display panels, lighting, medium rate
optical communications. They are fairly economical to deploy as they can be
manufactured in parallel en masse. Figure 13.7 shows a typical device configur-
ation for an electroluminescent diode. In this example, layers of GaAs

	
P
��	

are
epitaxially deposited onto a GaP wafer. The composition x is then varied from
x� 0 (GaP) to x� 0.35 (E

�
(GaAs

����
P
����

)� 0.62 eV), allowing gradual lattice
matching between the substrate and the electroluminescent layer. A layer of SiO

�
is then deposited over the entire wafer surface, and patterned using standard
lithographic techniques to open holes into the dielectric layer. P-type dopant
atoms are then diffused through the openings in the SiO

�
and a metallic layer is

finally deposited on the top surface (making contact with the p-type material) and
on the rear of the substrate. As the GaP is transparent to the emitted light, light
travelling towards the substrate is reflected by the backside metallization towards
the openings in the top metallization layer. This increases the external efficiency of
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Fig. 13.7. Device structure for a LED with a transparent substrate.

the electroluminescent diode. All that is left to do is to dice the wafer into pieces to
isolate the LEDs (or ‘chips’) and to mount them individually in windowed canis-
ters. Assuming typical LED surface dimensions of 100� 100 �m�, we can expect
on the order of 200 000 discrete devices from a 20 cm� wafer (i.e. from a ‘2 inch
wafer’ in microelectronics’ jargon).

As spontaneous emission in a semiconductor occurs isotropically, light emission
in an LED is Lambertian (i.e. varies as cos " — see Fig. 13.8a). In order to increase
the directionality of this emission (i.e. to increase the LED’s brilliance), the
component is generally encased in a parabolic lens fashioned out of epoxy resin
(see Fig. 13.8).

Finally, the LED response times are equal to the total recombination time t
���

.
As mentioned elsewhere, these times lie typically between 1 and 50 ns correspond-
ing to modest bandpass frequencies of the order of a few hundred MHz.

13.4 Optical amplification in heterojunction diodes

The emphasis in Section 13.3 was on spontaneous emission. In Chapter 7, how-
ever, we saw that if a semiconductor is driven sufficiently far from thermodynamic
equilibrium, it may become possible to create a population inversion between the
electrons in the conduction band and the holes in the valence band. We were even
able to establish the transparency condition, i.e. the required concentration of
charge carriers n

������
in the bands to make the material effectively transparent to

radiation, and beyond which the material begins to exhibit amplification (see
(7.69)). Translated in terms of an electrical injection current using (13.3), the
material becomes transparent when electrically driven with a transparency current
density J

������
given by:
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Fig. 13.8. (a) Electroluminescent emission is Lambertian. (b) To increase the brilliance of
LEDs, the devices are encased in epoxy resin fashioned into parabolic lenses.

F�
����

J
������

t
���

qdN

��F�

����
J
������

t
���

qdN
0
�� 0 (13.18)

where N


and N
0

are the effective state densities in the conduction and valence
bands, respectively. When driven beyond this transparency threshold, photons
with energy h� that fulfil the Bernard—Durrafourg criterion:

E
�
� h��E

3
�E

30
(13.19)

will experience optical amplification. The gain for an amplifying medium �(h�) was
calculated in Section 7.3 within the context of optical susceptibility and in Section
7.4 during the discussion of rate equations. These results are sufficiently important
as to warrant our repetition of them here. The gain is given by:

�(h�)� �
�
(�)[ f


(h�)� f

0
(h�)] (13.20a)

where �
�

is the empty conduction band absorption (i.e. under zero current) given
by:

�
�
(�)�

q�x�
0

�
�
�
�
�n

��
�

2m
�

� �
���

�(��E
�
/�) (13.20b)

We recall that f


and f
0

are the Fermi—Dirac functions given in (13.7), x
0

is the
dipolar matrix element given by (7.11), m

�
is the reduced effective mass (7.13), n

��
is

the index of refraction for the semiconductor, and �
�

is the vacuum wavelength for
an electromagnetic wave of frequency �.

Equation (13.20a) can also be written in a form which better resembles the
equations for the atomic transition laser introduced in Chapter 4:

�(h�)�
��

8�#
!

�
�
(h�)[ f


(h�)� f

0
(h�)] (13.20c)

It is clear that in (13.20c), the factor �
�
(h�)( f


� f

0
) plays the role of g(h�)(N

�
�N

�
)

in the equations for the atomic transition laser.
Therefore, as the current density J passing through the diode becomes more

important, the carrier density n given by (13.3) increases. This causes the
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Fig. 13.9. Population inversion, and optical amplification in a semiconductor medium. This
figure illustrates Eq. (13.20): (a) represents the two energy bands involved, (b) shows the
associated Fermi—Dirac distributions for the quasi-Fermi levels in the conduction and valence
bands, (c) shows the gain curve for the medium (thick dark curve) resulting from the product of
the absorption �

�
(h�) (thin curve) and the filling factor f


� f

0
(thick grey curve). The symbols �

and � denote photons with energies satisfying and not satisfying the Bernard—Durrafourg
condition, respectively.
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Fig. 13.10. Gain for a 100 nm GaAs/AlGaAs heterostructure (assuming a radiative lifetime
of 5 ns, and an internal quantum efficiency of 0.5 giving t

���
� 2.5 ns) as a function of injection

current density in the junction. The transparency current in this case sits around 760 A cm��.

quasi-Fermi levels given in (13.4) to penetrate further into the bands resulting in a
broader and larger gain curve (13.20a) — see Fig. 13.9. Figure 13.10 shows the
resulting gain curves for various injection current levels. As is already known from
Section 7.6, and Fig. 7.7, the maximum gain �

���
(one of the most important points

on these curves, as only those modes closest to �
���

will lase) increases nearly
linearly with carrier density n above the transparency threshold n

������
. It is there-

fore customary to approximate the complex dependence of �
���

on n by a linear
function:

�
���

� �
��

n

n
������

� 1� (13.21)

where �
�

is obtained by a fitting procedure. For a density n between 0 and n
������

,
the medium is absorbent. For n� n

������
, the medium becomes transparent and the

dependence of �
���

on n is largely reproduced.
Equation (13.3) allows us to rewrite this expression in terms of the electrical

injection current density J. The maximum gain �
���

is then given by:

�
���

� �
��

J

J
������

� 1� (13.22a)

where the transparency current is given by (13.18) and related to n
������

through:

J
������

�
qd

)
�
t
��"

n
������

(13.22b)
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Fig. 13.11. Variation in the maximum gain for a semiconductor junction as a function of
injection current density using the linear approximation model.

Example
We consider the amplification afforded by a double heterojunction GaAs/AlGaAs
laser diode. Under experimental conditions, the radiative recombination time t

��"
is found to be 5 ns. Figure 7.7 shows the transparency threshold carrier density
n
������

to be 1.2� 10�	 cm��. We will further suppose for the diode: a quantum
efficiency of 50%, a GaAs active-region thickness of d of 100 nm, a width of 10 �m,
and a length of 300 �m. The transparency threshold current J

������
is then:

J
������

� 1.6� 10��C� 10�� cm� 1.2� 10�	 cm��/(0.5� 5� 10� s)
�760 A cm�� or 23 mA in the diode

For a carrier density n of 2.4� 10�	 cm�� (i.e. a level twice above threshold) and
corresponding to an injection current of 46 mA, the maximum gain is 300 cm��.
This leads to a gainG in the structure of exp(3� 10� cm��� 3� 10�� cm) or 8100.

Semiconductor optical amplifiers (SOAs) are used as amplification stages at the
outputs of laser diodes (referred to in this case as monolithic optical amplifiers —
MOPAs). The challenge in this case is to keep the amplifiers from lasing. To this
end, the exit windows are treated with antireflection coatings (R� 10��) to inhibit
optical feedback. Furthermore, to maximize the energy that can be extracted from
these devices, the amplifier cavity is tapered. This makes the cavity unstable,
thereby impeding the formation of stationary optical modes at the amplification
wavelength (see Fig. 13.12).
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Fig. 13.12. Operation of a semiconductor optical amplifier. (a) The incident wave (provided,
for instance, by the output of a laser diode) is amplified by the forward biased junction. One of
the main challenges in designing an SOA is to produce a device which provides high gain
without it lasing on its own. (b) Antireflection coatings and a tapered cavity geometry are used
to impede the formation of stationary optical modes at the amplification wavelength.

13.5 Double heterojunction laser diodes

13.5.1 Laser threshold

A semiconductor p—n junction pumped electrically beyond its transparency
threshold, will be able to amplify those electromagnetic modes (i.e. photons) that
satisfy the Bernard—Durrafourg criterion. As described in Section 4.4, the medium
will exhibit laser oscillations if it is subjected to optical feedback. Several methods
exist that can provide the required feedback and are described in Complement
13.A. The simplest method involves using the natural dielectric mirror provided by
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Fig. 13.13. Semiconductor injection laser with two cleaved mirrors.

the semiconductor—air interface. In this case, the semiconductor cavity is defined
by cleaving the semiconductor crystal at two different locations along the same
crystallographic plane resulting in perfectly parallel mirrors (see Fig. 13.13). The
semiconductor—air interface yields a dielectric mirror with a reflectance R

�
given

by:

R
�
�

(n
��
� 1)�

(n
��
� 1)�

(13.23)

For GaAs, n
��
� 3.6 and the reflectance is R

�
� 0.32. This value may seem low in

comparison with mirrors used in other types of lasers (e.g. gas lasers, ion lasers,
. . .). The gain made available by semiconductors (up to several thousand cm��),
however, is considerable in comparison with the levels produced in alternate laser
media. As a result, the deposition of high-reflectivity mirrors is not a requirement
for observing laser oscillations in semiconductor devices. The physical origin of
this large gain in semiconductors can be seen by comparing the expressions for
gain in a dense medium (�

�
(h�)( f


� f

0
)��/8�#

!
) and in an atomic medium

(g(h�)(N
�
�N

�
)��/8�#

!
):

∑ The density of available emission centres in semiconductors (some 10�	 cm��)
greatly exceeds the levels available in gas media lasers (,10�� cm��).

∑ The optical cross-sections are much larger for electrons in bands than for
electrons in atomic orbitals. Therefore, at wavelengths of ,1 �m, the radiative
lifetime is typically 1 ms in ion or gas lasers, whereas it is only of the order of a
few nanoseconds in semiconductors. This behaviour results from the delocalized
nature of conduction electrons in condensed matter.
We saw in Section 4.4 that laser oscillations emerge when the gain in the

amplifying medium tends to exceed the cavity losses in the optical resonator.
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Fig. 13.14. Electron—hole recombination proceeds in the region with the smallest bandgap
and hence the highest index of refraction. In addition to providing gain, the low bandgap
semiconductor therefore also acts as an optical confinement region for the amplified optical
modes.

There are two types of losses:
∑ Intrinsic losses �

�
resulting from photon loss through the mirrors (necessary to

some level as light must be able to escape the laser cavity!) — this was described in
(4.21b) as:

�
�
�

1

2L
ln

1

R
��
R
��

(13.24a)

where we have allowed for the possibility of different reflectances (R
��

and R
��

)
at each of the mirrors. By making one of the mirrors totally reflecting, the
threshold for laser oscillation is reduced. L is the cavity length.

∑ Parasitic loss �
�

resulting from free carrier absorption in the contact layers,
roughness scattering, etc.

The condition for achieving laser threshold is then (see (4.21b)):

�
���	���
"

(h�)� �
�
�

1

2L
ln

1

R
��
R
��

(13.24b)

This last expression does not take into account the fact that the amplified modes
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(the photons) must also satisfy Maxwell’s equations in the heterojunction. Corre-
spondingly, this structure also acts as awaveguide. In a double heterostructure, the
potential barriers (which have a larger bandgap than the quantum well material)
possess a smaller index of refraction so that the electromagnetic waves remain
trapped within the large index material (and, most importantly, within the gain
region — see Fig. 13.14). We saw in Chapter 9, that the electromagnetic field is
confined within the structure along the Ox axis normal to the interfaces and that
the propagation coefficient 

�
depends on the transverse mode indices (see, for

example, (9.13)). The proportion of energy which is effectively present in the
amplifying region is given by the confinement factor � (see (9.27)):

��

�

�
��

�E(x)��dx

��

�
��

�E(x)��dx

(13.25)

Therefore, only a fraction � of the electromagnetic energy experiences amplifica-
tion (see also Section 8.7.2) assuming both the barriers and wells are subject to the
same losses. The condition for laser threshold is therefore modified, and becomes:

�
���	���
"

(h�)�
1

�����
1

2L
ln

1

R
��
R
��
��

1

�
(�
�
� �

�
) (13.26a)

Threshold condition for a heterojunction laser

We will now focus our attention on the maximum gain given by (13.22a), this last
equation can be put into a more explicit form in terms of the threshold current
density J

���	���
"
:

�
��

)
�
t
��"

qdn
������

J
���	���
"

� 1��
1

�����
1

2L
ln

1

R
��
R
��
� (13.26b)

As the confinement factor � decreases with the thickness of the double hetero-
structure d (see (9.30b)), we see that an optimum value for d exists. This situation is
illustrated in Fig. 13.15 and contrasted against the corresponding variation in
threshold current density for a homojunction laser diode. The large differences in
the threshold current densities result on the one hand from the weak optical
confinement in homojunction lasers and on the other from the reduced volume of
material in the narrower heterostructures which needs to be inverted (see Fig.
13.2).

632 Light emitting diodes and laser diodes



Active zone thickness, d

T
hr

es
ho

ld
 c

ur
re

nt
, J

th
re

sh
ol

d

Double
heterostructure

Homojunction

Fig. 13.15. Dependence of the threshold current density as a function of active region
thickness d. Heterojunctions possess intrinsically lower threshold current densities due to
improved overlap of the optical mode with the gain medium and increased carrier
confinement.

Example
We consider a GaAs/Al

	
Ga
��	

As heterojunction laser diode with a well thickness
d of 100 nm. The radiative lifetime is 5 ns and the internal quantum efficiency at
threshold is 50%. The diode is 500 �m long by 5 �m wide, and possesses a totally
reflecting mirror. The Al fraction x in the barriers is sufficiently large to make the
confinement factor �� 1. The loss per mirror �

�
is then:

�
�
� ln(1/0.32)/(2� 5� 10�� cm)� 11.4 cm��

We will assume the parasitic losses �
�

to be 10 cm��, making �
���
� 21.4 cm��. The

system will begin to lase once the maximum gain �
���

in the forward biased diode
exceeds �

���
. Looking at Fig. 13.10, this corresponds to a threshold current density

J
���	���
"

of 800 A cm�� (or given the surface area of the device, a threshold current
I
���	���
"

of 20 mA).

The photon lifetime in a semiconductor cavity is given (see (4.23a,b)) by:

#

�

1

����
1

2L
ln

1

R
��
R
��
� c�

(13.27)

where c�� c/n
��

is the speed of light in the material. Assuming null parasitic losses,
a typical device length L of 500 �m and mirror reflectances of 1 and 0.32, yields a
photon lifetime of 5 ps. We therefore note that a consequence of weak optical
feedback is a very short cavity lifetime for photons.
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13.5.2 Output power

As long as the transparency threshold has not been reached, the diode behaves
exactly as a LED, releasing spontaneous emission in all possible directions.
Between the transparency threshold and the onset of laser oscillation,
(J

�����
�J� J

���	���
"
), stimulated emission dominates over spontaneous emission.

In this case radiative emission becomes directional as the gain e� promotes
emission along directions close to the diode axis (the diode is referred to as being
superluminescent). Once the maximum in the gain curve �

���
attains the threshold

value �
���	���
"

, the electromagnetic modes (as we shall see later on) corresponding
to this maximum will be amplified along the layer sandwiched between the double
heterojunctions. Once this threshold has been surpassed, the carrier densities in
the junction are clamped to their threshold values n

���	���
"
(see (4.22a,b)). In this

case, condition (13.26) requiring equality between the gain and the cavity losses is
satisfied. All additional carriers injected into the diode (in actuality, only a fraction
of these as determined by the internal quantum efficiency )

�
) will recombine

immediately under the effect of stimulated emission. We will see, however, that as
the current density rises above J

���	���
"
this quantum efficiency rapidly tends

towards unity.
Experiment shows that, when driven beyond laser threshold, the semiconductor

behaves as a homogeneous medium (see Section 4.6). The mode corresponding to
the gain maximum sees its gain decrease until it exactly matches the cavity losses
(see Fig. 4.6). The photon flux in the cavity can then be obtained by setting the
saturated gain and the cavity losses equal to one another �(h�)� �

�
(h�)/(1��/

�
���

) (see (4.10)). This leads to (4.26a,b) or (4.28a,b). We will rederive this result,
however, for the particular case of a semiconductor medium.

We return to the rate equations, (13.1), between the incident current in the
junction J and the carrier density n, without this time forgetting to include the
stimulated emission rate R

��
s:

J

qd
�A

��
n�Bn��C

*�#
n��R

��
s (13.28)

where s is the volumetric density of the photons in the cavity. Above laser
threshold, the gain in the medium is clamped to its threshold value �

���	���
"
, as are

the carrier densities (i.e. n� n
���	���
"

). Equation (13.28) can then be written:

J

qd
�
n
���	���
"
#
���	���
"

�R
��
s (13.29a)

where #
���	���
"

is given by:

#
���	���
"

�
1

A
��
�Bn

���	���
"
�C

*�#
n�
���	���
"

(13.29b)
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We then introduce the threshold current density J
���	���
"

:

J
���	���
"

�
qd

#
���	���
"

n
���	���
"

(13.30)

which, once substituted into (13.29), leads to R
��
s� (J�J

���	���
"
)/qd. To find the

stimulated emission rateR
��

, we recall that the population variation rate dn/dt due
to competition between absorption and stimulated emission is given by dn/dt� c�
�s�R

��
s (see (3.72a)). Once the gain becomes clamped, the stimulated emission

rate becomes R
��
� �

���	���
"
c�. Substituting this last expression into (13.29), we

obtain the photon density in the cavity:

s�
1

qd�
���	���
"

c�
(J�J

���	���
"
) (13.31a)

This last expression indicates that all the current above threshold is consumed by
stimulated emission. Complex mechanisms may lie at the origin of current leakage
via non-radiative channels such as surface recombination (see Chapter 10), ballis-
tic carriers which travel across the heterostructure without recombining, etc. To
take these mechanisms into account, we introduce the internal quantum efficiency
)
�
, allowing us to rewrite (13.31a) as:

s� )
�

1

qd�
���	���
"

c�
(J�J

���	���
"
) (13.31b)

The laser output power P
���

is then given either by (4.29a) or (4.30a). We recover
this result by writing the output power as a product of: photon density in the cavity
s, energy carried per photon h�, effective mode volume Lwd/�, and escape rate of
photons from the cavity c��

�
. Using this chapter’s notation, the output power may

be written:

P
���
� (������

	�	�#!
)(������
"	����!

)(	  	����	 ��"	
��
��	

)(������ 	����	
���	

)
(13.32)

� (h�) (s) �Lw
d

�� (c��
�

)

Given (13.26) and (13.31), we finally obtain:

P
���
� )

�

�
�

�
�
� �

�

h�
q

(I� I
���	���
"

) (13.33)

where I is the current I�JLw so that:

635 13.5 Double heterojunction laser diodes



Current, I

O
ut

pu
t o

pt
ic

al
 p

ow
er

,  
P o

I
threshold

P   =   (I  -                  ) I  threshold
h
qs d

Saturation

Fig. 13.16. P—I characteristics for a laser diode. The phenomenon of saturation is explained
in Complement 13.F.
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h�
q
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"

) (13.34)

Output power from a laser diode as a

function of pump current

In this last expression, the external quantum efficiency )
	��

is given by:

)
	��
� )

�

�
�

�
�
� �

�

� )
�

ln(1/R
�

)

�
�
L� ln(1/R

�
)

(13.35)

We will now introduce a very important concept for semiconductor laser diodes:
the differential external quantum efficiency )

�
. This is the variation in the external

photon flux dP
���

/h� due to a variation in the diode current dJ/q:

)
�
�

dP
���

/h�
dJ/q

(13.36)

or, taking (13.34) and (13.35) into account:

)
�
� )

�

1

1� �
�
L/ln(1/R

�
)

(13.37a)

In this simple approach, the quantum efficiencies )
	��

and )
�

are equivalent as
P

���
(J) is linear. Clearly, this will not hold in general. It is common practice, in

characterizing semiconductor lasers, to plot )��
�

as a function of laser cavity length
L (this is achieved by cleaving lasers of different length and measuring them
individually). Equation (13.37a) then allows one to extract the internal quantum
efficiency )

�
and parasitic losses �

�
for the specific devices (see Fig. 13.17).
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Fig. 13.17. Inverse differential quantum efficiency as a function of laser cavity length L.

Equation (13.34) determines the optical output power of the laser. It is interest-
ing to compare this output power to the electrical power injected into the diode.
Assuming the lack of any parasitic resistance, the voltage required to achieve the
necessary diode injection current is of the order of the semiconductor bandgap
E
�
/q or V � h�/q. The electrical power is then P

	

� IV� Ih�/q, so that:

P
���
P

	


� )
	���1�

I
���	���
"
I � (13.37b)

This last ratio gives the ‘wall-plug’ efficiency. As long as the structure possesses a
good quantum efficiency and is pumped well above threshold, semiconductor
heterojunction lasers are characterized by excellent electrical to optical power
conversion efficiencies (especially when compared with gas lasers which have
efficiencies usually less than 1%).

Example
Returning to the example in Section 13.5.1, we consider a GaAs/Al

	
Ga
��	

As laser
diode (with d� 100 nm, �� 1, t

��"
� 5 ns, )

�
� 0.5, L� 500 �m, but this time

possessing two mirrors withR
�
� 0.32). We find that the losses due to the mirrors

are �
�
� ln(1/0.32)/(5� 10�� cm)� 22.8 cm��.

Assuming the parasitic losses �
�

to be 10 cm��, the total losses �
���

then become
32.8 cm��. This results in a differential quantum efficiency at threshold )

�
of

0.5� 22.8/32.8 or 35%.

13.6 Quantum well laser diodes

13.6.1 Optical amplification in a quantum well structure: general case

We saw in the preceding section that the threshold current is to a large part
proportional to the thickness of the active region in the laser diode (i.e. the width of

637 13.6 Quantum well laser diodes



the potential well formed by the double heterojunction). To decrease the threshold
current further, one is naturally drawn to decrease the size of the active region
down to quantum length scales (i.e. to make use of potential wells that are so
narrow as to confine and quantize the motions of carriers in directions perpen-
dicular to the heterointerfaces). We spent some time exploring the physics of such
quantumwells in Chapter 8. We recall here the important results from this chapter.

The electron and hole wavefunctions in quantum wells are given by the product
of three terms: the periodic portion of the Bloch wavefunctions, which result from
the fact that the carriers belong to the extrema of a particular semiconductor band
(u

(r) for electrons, u

0
(r) for holes with k� 0 for a model involving a single valence

band with extrema at �); a portion that describes the free motion of carriers
parallel to the well interfaces (e�k��

r
�, where r

�
and k

�
are, respectively, the position

and wavevectors of the wave in the plane of the quantum well); and a portion that
describes the quantization of motion perpendicular to the heterointerfaces. There-
fore, the wavefunctions for electron states in a subband n and heavy hole states in a
subband m may be written as:

�e
�
(k

�
)
� u


(r)e�k�

r
�e
�
(z)

(13.38)
�hh

�
(k

�
)
� u

0
(r)e�k�

r
�hh

�
(z)

The envelope functions e
�
(z) and hh

�
(z), are one-dimensional states with energies e

�
and hh

�
, and are solutions to the one-dimensional Schrödinger equations:

H

�e
�

��

p�
�

2m


�V
�
(z)� �e�
� e

�
�e
�



(13.39)

H
0
�hh

�

��

p�
�

2m
��

�V
��

(z)� �hh�
� hh
�
�hh

�



where V
�
(z) and V

��
(z) are the electron and heavy hole potentials (see Fig. 13.18).

We recall that increasing energies in such diagrams are ‘upwards’ for electrons and
‘downwards’ for holes. All these concepts can be extrapolated to the light-hole and
spin-orbit bands, but add considerable complexity to the required notation (as a
result, we shall not treat these subbands in this chapter). Equations (13.38) and
(13.39) show that the electrons and holes are distributed over energy subbands
(additionally, these subbands run parallel to each other for a given carrier type).
The extrema of these subbands (e

�
and hh

�
) are obtained from the Schrödinger

equations, (13.39), and are:

e
�
(k

�
)� e

�
�

��k�
�

2m
 (13.40)

hh
�

(k
�

)� hh
�
�

��k�
�

2m
��
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(see Fig. 13.18). The density of states in each subband are constant, implying that
the state densities for electrons and heavy holes are (see (8.41a,b)):

�
�
��

(E)��
�
��

�
�
���

"(E� e
�
)�

m


���
�
�
���

"(E� e
�
)

(13.41)

�
�
���

(E)� �
�
���

�
�
���

"(E� hh
�

)�
m
��

���
�
�
���

"(E� hh
�

)

where " is the Heaviside function.
The optical interband transitions bridge states with identical k

�
. A photon with

energy h� therefore couples states in the conduction subband n with states in the
valence subband m related by:

h��E
�
� e

�
� hh

�
�

��k�
�

2m
�

(13.42)

where m
�

is the reduced effective mass given by 1/m
�
� 1/m


� 1/m

��
(see Fig.

13.18). The optical gain in this system for an electromagnetic wave with frequency
� was calculated in Section 8.7. It was obtained by summing the contributions due
to optical transitions between the valence subbandsm and conduction subbands n
having a wavevector k between k and k�dk. These result in a carrier inversion
density of:

d(N

�N

0
)���

�
�
�	

(k)

d
� f �


[E


(k)]� f �

0
[E

0
(k)]�dk (13.43)
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The gain �(h�) can be obtained by integrating over k the contribution made by
(13.43) to the optical susceptibility and by summing over all involved subbands.
This result appears in (8.86a), but is rewritten here in a manner better suited to the
present discussion:

�(h�)� �
�


�
�

�����

I
���

[ f �

(h�)� f �

0
(h�)]"(h��E

�
� e

�
� hh

�
) (13.44)

where I
���

are the overlap integrals ��n�m
�� and f �


and f �
0

are the Fermi distribu-
tions in subbands n and m:

f �

(h�)�

1

1� exp�[E�

(h�)�E

3
]/kT�

(13.45a)

E�

(h�)�E

�
� e

�
�
m
�
m


(h��E
�
� e

�
)

and

f �
0

(h�)�
1

1� exp�[E�
0

(h�)�E
30

]/kT�
(13.45b)

E�
0

(h�)��
m
�

m
0

(h��E
�
� hh

�
)

The absorption coefficient �
�


(cm��) is the absorption for a quantum well with
zero population (i.e. under null current conditions) and is given by:

�
�

�

2�q�x�
0
m
�

�
�
n
��
�
�
��d

(13.46a)

where �
�

is the vacuum emission wavelength. As discussed at length in Section
8.7.2, (13.46a) represents the attenuation coefficient for light crossing a quantum
layer of thickness d at normal incidence. The coefficient �

�

is therefore expressed

in terms of cm��. This concept of an attenuation length in a quantum well is not
particularly satisfying. As quantum well thicknesses are very thin in comparison to
the attenuation length 1/�

�

, the attenuation given by d�

�

does not depend on the

thickness of the quantum well (rigorously this only holds if there is a single
confined level in the well). We therefore make use of the attenuation rate per well (a
dimensionless quantity) A

�

� d�

�

given by (8.86b):

A
�

�

2�q�x�
0
m
�

�
�
n
��
�
�
��

(13.46b)

Attenuation coefficient for one quantum well

This last formula involves the manipulation of impressively large quantities. In
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Fig. 13.19. A forward biased p—n diode containing a single quantum well.

order to expressA
�


in terms of parameters with similar magnitudes, we introduce
the two following energies: an interband energy E

0
� ��k�

0
/2m

�
, where k

0
is the

wavevector k
0
� 2�/x

0
, and an electrostatic energyE

����
� q�/4��

�
�
�

. The attenu-
ation rate A

�

is then:

A
�

�

16��
n
��

E
����
E
0

(13.47)

This last equation allows one to estimate the attenuation rates in quantum wells
rapidly by drawing upon quantities with similar magnitudes. The following
example illustrates the convenience afforded by this expression.

Example
We will calculate the attenuation rate for a GaAs quantum well. We recall the
relevant parameters for GaAs:

m

� 0.067m

�
; m

0
� 0.46m

�
; m

�
� 0.058m

�
x
0
� 6.14 Å/�2� 4.3 Å (see Tables 7.1 and 8.1)

n
��
� 3.3

�
�
� 0.8 �m

Equation (13.46b) yields an attenuation rate of:

A
�

�

2�(1.6� 10��C)�� (4.3� 10���m)�� 0.058� 0.9� 10���kg

0.8� 10��m� 3.3� 8.85� 10���Fd m��� (1.05� 10��� J s�)
� 0.6%

This calculation is cumbersome to say the least! What this really means is that
MKSA units are not ideally suited to such a problem. This then is the motivation
for rewriting (13.47) in terms of more easily manipulated quantities. Evaluating
E
0
� 3.99 eV and E

����
� 1.8 meV, we readily obtain the same result.

13.6.2 Transparency threshold

We consider a p—n diode containing a single quantum well (see Fig. 13.19). By
forward biasing this diode, injected carriers accumulate in the well. The carrier
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density per unit area n
#

can be obtained in the same manner as in (13.3), i.e:

n
#
� p

#
�
Jt

���
q

(13.48)

With a sufficiently elevated current, we obtain a population inversion leading to
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transparency in the quantum well (see Fig. 13.20). Close to transparency, the
quasi-Fermi levels begin to penetrate the subbands. Only the n�m� 1 subbands
are involved, and the gain may be written simply as:

�(h�)� �
�


[ f �


(h�)� f �
0
(h�)]"(h��E

�
� e

�
� hh

�
) (13.49)
Optical gain due to the first e1−hh1 transition

Clearly, the spectral gain must be convoluted with a Lorentzian to take into
account broadening mechanisms. The quasi-Fermi levels E

3
and E

30
are given by

the conditions:

n
#
�

�

�
��

�
�
��

(E) f �

(E)dE

(13.50)

n
#
�

�

�
��

�
�
���

(E)[1� f �
0

(E)]dE

These conditions can be calculated exactly by recalling that �
�
�	

and �
�
���

are
constants given by (13.41). Therefore, for electrons, (13.50) is written:

n
#
� �

�
��

��

�
�����

1

1� exp[(E�E
3

)/kT]
dE (13.51)

where we have taken the energy at the top of the valence band to be zero. Setting
exp((E�E

3
)/kT )� u and exp((E

�
� e

�
�E

3
)/kT)� u


, this last expression takes

the form:

n
#
� �

�
��
kT

��

�
�

1

u(1� u)
du� �

�
��
kTln�1�

1

u

� (13.52)

so that:

n
#
� n


ln�1� exp�

E
3
�E

�
� e

�
kT ��

(13.53)

n
#
� n

0
ln�1� exp �

hh
�
�E

30
kT ��

where n


and n
0

are the two-dimensional critical densities given by:
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kT�

m
�
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���
(13.54)

n
0
� �

�
���
kT�

m
��
kT

���

We will see that the transparency and threshold densities can be expressed as a
product of these two-dimensional critical densities by a factor close to 1, typically
between 1 and 5.

The method for calculating the gain is as follows: given a current density J, we
find the carrier density given by (13.48), then the quasi-Fermi levels according to
(13.53), and finally the gain with the help of (13.49) and the Fermi functions (13.45).
Figure 13.21 shows the gain curve (13.48) as a function of photon energy for
increasing carrier densities. We note an abrupt increase in the gain for
h��E

�
� e

�
� hh

�
. This is far more abrupt than is the case with a regular

heterojunction and results from the staircase profile of the density of states in a
two-dimensional structure (as opposed to �E occurring in a three-dimensional
structure). Therefore, the maximum gain �

���
is obtained when h��

E
�
� e

�
� hh

�
, i.e:

�
���

� �
�


[ f �


(h��E
�
� e

�
� hh

�
)� f �

0
(h��E

�
� e

�
� hh

�
)] (13.55)

Equations (13.53) and (13.45) allow one simply to relate the value of the Fermi
function to the carrier density n

#
:

1� e��#��� 1�
1

1� exp[(E
3
�E

�
� e

�
)/kT]

� f �


(E
�
� e

�
) (13.56a)

Similarly:

644 Light emitting diodes and laser diodes



1.0

0.8

0.6

0.4

0.2

0.0

m
ax

1086420

Reduced surface density (ns /nc )

R = 6.8

R = 1

2D
/

Fig. 13.22. Normalized gain (relative to the absorption �
�


) as a function of normalized
carrier surface density (relative to the two-dimensional critical carrier density n


).

e��#��0� f �
0

(hh
�

) (13.56b)

The maximum gain (13.55) can then be written:

�
���

� �
�


(1� e��#��� e��#�!0�) (13.57)
Modal gain of a quantum well as a

function of carrier density (cm−1)

where R
0

(�m
��

/m

) is the ratio of the effective masses for carriers in the conduc-

tion and valence bands. Figure 13.22 shows the variation in maximum gain as a
function of reduced carrier surface density n

#
/n


with R� 6.8 (for GaAs) and
R� 1. We see that the gain increases rapidly once the transparency condition has
been reached, but saturates quickly. This results from the form of the two-dimen-
sional density of states. From (13.57) the transparency threshold is reached once
the maximum gain becomes positive, i.e. when the transparency threshold n

��
is

reached:

e������� e�����!0�� 1 (13.58)

ForR
0
� 1, we have n

��
� n


ln(2). The transparency current is always related to n


by a numerical factor close to 1. This explains the importance of the concept of the
two-dimensional critical density n


. Figure 13.22 shows the transparency condition

for different values of R
0

. We note that it is advantageous to have closely matched
effective masses between the valence and conduction bands. This is in fact the
motivation for growing strained laser structures (we will explore these structures in
Complement 13.B).

It is worth noting that in the literature, the variation in maximum gain �
���

as a
function of carrier surface density is often taken to be logarithmic:
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�
���

� �
�

ln�
n

n
��
� (13.59)

where the constant �
�

depends only on the effective mass ratio R
0

and is obtained
by a fitting procedure (see below). This last formula leads to behaviours close to
those predicted by (13.57) for values of n which approach the transparency
threshold. This equation holds the advantage that it introduces the transparency
threshold in a simple fashion into the gain formula. Note the difference from the
similar, but linear, relation (13.21) for three-dimensional laser diodes.

Example
1. We will employ the following MATHEMATICA program to verify the

equivalence of (13.57) and (13.59):
f=1-Exp[-x]-Exp[-x/R]
R=6.8
plot1=Plot[f,�x,.5,5�]
FindRoot[f==0,�x,1�]
x0=x/.%
g=Log[x/x0]
plot2=Plot[0.48*g,�x,.5,5�]
Show[plot1,plot2]
Figure 13.23 compares the two expressions. By fitting, we additionally find that
�
�
� 0.48�

�

.

2. For GaAs, the two-dimensional state densities are:

�
�
��

�m

/���� 2.8� 10�� cm�� eV��

�
�
���

�m
��

/���� 1.9� 10�� cm�� eV��

The two-dimensional critical density in the conduction band is n

� �

�
��
kT or

2.8� 10�� cm�� eV��� 0.0259 eV� 7.25� 10�� cm��. Figure 13.22 shows
that, in GaAs, n

��
� 1.6n


� 1.16� 10�� cm��. In a 100 Å wide quantum well,

this corresponds to a transparency threshold density of 1.16� 10�	 cm��. This
result is very close to that obtained for bulk material. In fact, the advantage of
using quantum wells does not involve decreasing the threshold carrier densities,
but rather in decreasing the transparency current densities and hence the
threshold current densities.

The gain curve for a quantum well laser is in fact very complex. As the carrier
densities increase in the wells, the electrons and holes populate higher energy states
in the subbands and bring into play complex transitions: first the e

�
—hh

�
transi-

tions, then e
�
—hh

�
, etc. Figure 13.24 shows the results for a calculation which takes

all of these different transitions into account.
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13.6.3 Laser threshold for a quantum well laser

Figure 13.25 shows the configuration for a quantum well laser with separate
confinement layers for both carriers and photons (referred to as a separate confine-
ment heterostructure laser or SCH laser). The Al

	
Ga
��	

As/GaAs quantum well has
been introduced into a lower index cavity (also composed of Al



Ga
��


As but with
y� x) to confine the photons generated by the quantum well. The electromagnetic
field is amplified along the quantum well layer. As described in Section 13.5.1
(see (13.26)), weak overlap between the guided wave and the
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Fig. 13.25. Optical mode, composition, and band profiles for a separate confinement
heterostructure quantum well laser.

quantum well leads to a reduction in the gain from � to ��, where � is the optical
confinement factor given by (13.25). Given (13.59), the condition for achieving laser
oscillations in a quantum well laser may be written:

��
�

ln�
n
���	���
"
n
��
�� �

�
�

1

2L
ln

1

R
��
R
��

(13.60)

where, in accordance with the usual notation, �
�

is the parasitic absorption, L is
the cavity length, and R

��
and R

��
are the mirror reflectances. The confinement

factor is given by the ratio �� d/d
��"	

, where d
��"	

is a measure of the space
occupied by the optical mode (see Fig. 13.25 and Section 9.4). The threshold
current density J

���	���
"
is then given by (13.38). Assuming that the time t

���
depends only slightly on n (which is in fact a fairly crude approximation), the
characteristic gain—current is then given by:

�
���

(J)���
�

ln�
J

J
��
� (13.61a)

Logarithmic approximation for optical gain in a quantum well (cm−1)

where clearly the transparency current density J
��

(A cm��) is described by:

J
��
� q

n
��
t
���

(13.61b)
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Example
We will make use of the same physical system employed in the two previous
sections, i.e. a 100 Å thick GaAs quantum well. The cavity is 500 �m in length and
possesses a mirror with R� 100% and another with R� 32%. The parasitic
losses are 10 cm��. The threshold gain is therefore given by �

�
� 1/2Lln(R

#
)�

21.4 cm��. The width of the mode d
��"	

is 5000 Å. The effective gain ��
�

�A

�

/

d
��"	

is 0.55� 10��/5000 Å or 110 cm��. To obtain the laser threshold current, we
need to find the ratio for n/n


such that 1� exp(�n/n


)� exp(�n/n


R)� 21.4/

110, or n� 1.3� 10�� cm�� (R� 6.8 and n

� 7.25� 10�� cm��). Assuming a

lifetime of 5 ns and a surface area of 5� 500 �m, we find a threshold current of
1 mA, i.e. a factor of 10 less than obtained for the heterostructure laser featured in
Section 13.5.1.

13.6.4 Scaling rules for multi-quantum well lasers

We now compare the behaviour of heterojunction and single quantum well lasers.
As we noted in previous sections, the required carrier densities at the transparency
and laser thresholds are almost identical whether one considers a bulk semicon-
ductor laser or a quantum well laser. On the other hand, the required current
densities decrease in proportion to d, the width of the amplification region. Also,
we noticed that the gain rises more rapidly as a function of drive current in a
quantum well system owing to the two-dimensional density of states (see Figs.
13.10 and 13.22). On the down-side, the optical gain saturates more rapidly as a
function of pump current for single quantum well lasers (at least until other
quantum well transitions such as e

�
—hh

�
come into play); while in bulk semicon-

ductor heterojunction devices, the gain simply continues to rise. These characteris-
tics are summarized in Fig. 13.26.

We are now in a position to ask what the optimal number of quantum wells
N
! 

would be to decrease the threshold current density to a minimum. Clearly, as
the number N

! 
increases (corresponding to the inclusion of multiple quantum

wells in what is referred to as a multi-quantum well structure), the larger the gain
and the losses occurring in the laser medium will be compensated for with greater
ease. On the other hand, if the number of quantum wells is too large, the required
threshold current density will increase in proportion to N

! 
. There is therefore

some optimal number of quantum wells which results from these opposing trends.
To determine this optimum number, we define the following quantities:

∑ G
�

, the maximum gain for a single quantum well laser:

G
�
���

�
ln�

J
�

J
����
� (13.62)

where J
����

is the transparency current density for a single quantum well and J
�
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Fig. 13.26. Comparison of gain—current curves between bulk and single quantum well
heterojunction lasers.

is the pump current density for the structure.
∑ G

+
, the gain for a structure identical to the previous one, but possessing N

quantum wells. Assuming coupling with the electromagnetic wave is identical
for all wells, we have:

G
+
�NG

�
�N��

�
ln�

J
�

J
����
� (13.63)

If J
+

is the pump current density for the multi-quantum well structure, we must
have:

J
+
� q

Nn
#

t
���

�NJ
�

(13.64)

Substituting J
�

in (13.63) by its value given in (13.64), we obtain for the variation in
optical gain as a function of the number of quantum wells N:

G
+
�N��

�
ln�

J
+

NJ
����
� (13.65)

Figure 13.27 compares the gain—current curves (G
+

) obtained forN� 1, 2, 3, and 4
wells. The transparency threshold is seen to increase in proportion to N.

The laser threshold current density is obtained by setting the gain (13.65) equal
to the losses (13.60), i.e:

J
���	���
"�+

�
NJ

����
)

exp�
1

N��
�
����

1

2L
ln

1

R
��
R
��
�� (13.66)
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Fig. 13.27. Normalized gain for an N well multi-quantum well structure as a function of
pump current density (normalized to the transparency current density for a single quantum
well laser). The threshold current density increases in proportion to N.

where we have introduced the quantum efficiency ). This last expression allows
most aspects of multi-quantum laser cavities to be optimized. The optimal number
of wells can be obtained by setting dJ

+
/dN� 0, leading to:

N
���
� Int�

1

��
�
����

1

2L
ln

1

R
��
R
��
��� 1�

cavity losses

single well gain
(13.67)

where Int is the integer function. The interpretation of this last formula is straight-
forward. The current I

���	���
"�+
is the product of (13.66) with Lw (where w is the

width of the structure) and possesses a minimum as a function of the cavity length.
The optimal length is obtained by taking the derivative of I

���	���
"�+
with respect to

L yielding:

L
���
�

1

2N��
�

ln
1

R
��
R
��

(13.68)

Example

We consider a multi-quantum well laser with the following characteristics:

Single well parameters: �� 0.1, �
�
� 100 cm��

Cavity parameters: �
�
� 10 cm��, R

��
� 1,R

��
� 0.32

Assuming a 500 �m long cavity, we obtain a loss of 21.4 cm�� and a gain per well of
10 cm��. The optimal number of quantum wells N

���
is 3.

In the case of a cavity possessing a single quantum well, the optimal length
would be 570 �m.
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13.7 Dynamic aspects of laser diodes

The temporal characteristics of laser diodes can be investigated following a similar
approach to that employed in Section 4.7. Laser diodes, however, present a certain
number of novel characteristics which must be included in the coupled dynamic
equations (4.34) and (4.35). We rewrite these equations modified to include the
particularities associated with laser diode operation.

dn

dt
�
J

qd
�

n

t
���

� c�g(n)s(n� n
��

)

(13.69)
ds

dt
� c�g(n)s(n� n

��
)��

s

#


Dynamic equations for a semiconductor laser cavity

The first two terms in the leading equation describe the supply of electron—hole
pairs provided by the injection current, and the pair losses resulting from all
recombination mechanisms with the exclusion of stimulated emission. The third
term tallies the contribution due to stimulated emission and is equal to the photon
density in the cavity (cm��) multiplied by the product g(n)(n� n

��
), (where (n� n

��
)

corrects for the required transparency density for a semiconductor laser); c�� c/n
��

is the group velocity for photons in the semiconductor through which one can
establish the relationship between photon flux and density (see Chapter 4). The
term g(n) (cm�� cm�� or cm�) describes the variation of dynamic gain as a function
of carrier density:

g(n)�
d�
dn

(13.70a)

and is the characteristic slope of the �(n) curve (see Fig. 7.8 for heterojunction lasers
and Fig. 13.22 for quantum well lasers). For heterojunction lasers, this gain is a
constant given by (13.21):

d�
dn
�

�
�

n
������

(13.70b)

whereas for a quantum well laser, the dynamic gain is given by (13.59), or:

d�
dn
�

�
�
n

(13.70c)

where n� n
#
/d. Comparing (13.69) and (4.1), we note that the dynamic gain is a
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concept in close analogy to the optical cross-section �
��

in atomic systems. It would
not be an exaggeration to consider the dynamic gain as an optical cross-section for
each electron in the semiconductor medium. We will see that this optical cross-
section for a semiconductor is considerable: a few 10��� cm� compared with
10�� cm� in ion-doped lasers (Cr, Nd, . . .). It explains the very large amplification
coefficients characteristic of semiconductor lasers.

In the second equation of (13.69), the first term reflects photon creation into the
waveguided mode (hence the involvement of �). The second term represents the
cavity losses (light scattering, mirror losses, etc.) through an effective photon
lifetime #


which we recall equals (see (4.24) and (13.27)):

#

�

1

c�[�
�
� (1/2L)ln(1/R

��
R
��

)]
(13.71)

The calculation of dynamic response for a laser diode proceeds along classical lines
(see Section 4.7). We will assume that the gain g(n)� g is independent of n for small
signals. We then designate as n

�
and s

�
the stationary state electron—hole pair and

photon densities, respectively. These are given by the stationary solutions to
(13.69):

n
�
� n

��
�

1

c�g�#
 (13.72)

s
�
��#

�
J
�
qd
�
n
�
t
���
�

Using these equations, we easily recover the results obtained in (13.34) for the laser
output power as a function of drive current. We are in fact interested in the small
signal dynamic response for a current modulation J� J

�
� �j (with �j� J

�
). We

therefore write the carrier pair and photon densities in the form of n� n
�
� �n and

s
�
� �s. Neglecting second-order terms, we find the following system of differential

equations in the small signal limit:

d�n
dt

�
�j
qd
� �n�

1

t
���

� c�gs
���

1

�#


�s

(13.73)
d�s
dt
��c�gs

�
�n

where we have made use of (13.72). We then study the harmonic response of the
system by taking:

�j�Re[�j(�)e���]; �n�Re[�n(�)e���]; �s�Re[�s(�)e���] (13.74)

The system of differential equations in (13.73) then leads to:
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�s(�)

s
�

�
(�j/qd)�c�g

���� [(1/t
���

)� c�gs
�
]i�� c�gs

�
/#


(13.75)

The small signal frequency response is given by:

��s(�)��
�s(0)

(#

/c�gs

�
)�[��� (c�gs

�
/#

)]����[(1/t

���
)� c�gs

�
]�

(13.76)

This response is maximized at a relaxation frequency �
!

of:

�
!
� 2� f

!
�	

c�gs
�

#


�
1

2�
1

t
���

� c�gs
��
�
�	

c�gs
�

#


(13.77a)

Relaxation frequency for a semiconductor laser

and a damping coefficient �
!

given by:

�
!
�
c�gs

�
2

�
1

2
#

��
!

(13.77b)

The physical origin for the oscillations and relaxation was discussed previously in
Section 4.7.1. This corresponds to the oscillatory exchange of energy between the
electron—hole pairs and the photon population, which are strongly coupled
through stimulated emission. More precisely, as the electron—hole density in-
creases, so does the gain, which triggers an increase in the photon density, which
leads to an increased rate of stimulated emission, which decreases the carrier
population (i.e. through recombination), . . . leading to oscillations in these quanti-
ties. Relaxation results from photon loss (by parasitic absorption or through
mirror loss), and is described by #


in (13.77b). Figure 13.28 shows the temporal

response of a semiconductor laser. The behaviour predicted by (13.76) is repro-
duced experimentally showing a rise in the frequency response towards a maxi-
mum value, with a subsequent decrease proportional to f��. Equation (13.77a) also
predicts an increase in the relaxation frequency with pump current given the
dependence of f

!
on s���

�
. Finally, we note that the maximum utilization frequency

(i.e. the frequency for which ��s(�)�� ��s(0)� and therefore near f
!

) increases with
the slope g(n) (or g(J)). Quantum well laser diodes therefore possess a significant
advantage over bulk heterojunction lasers given their superior dynamic gain.

Example
We seek the relaxation frequency for a GaAs/AlGaAs heterojunction laser. The
relevant parameters are:

Output power, P
���
� 10 mW

Photon energy, h�� 1.4 eV
Output mirror reflectances, R

��
� 1; R

��
� 0.32
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Fig. 13.28. Frequency response for an InGaAs/InP laser diode. (Courtesy of E.
Goutain@THALES.)

Optical mode area A�wd
��"	

, where w (the cavity width)� 2 �m, and d
��"	

(the effective mode thickness)� 0.1 �m, giving A� 2� 10� cm�
Cavity length, L� 200 �m
Parasitic loss, �

�
� 10 cm��

Optical index, n
��
� 3.3

Quantum efficiency, )� 1
Dynamic gain g, given in Fig. 7.8 is 3� 10��� cm�

The photon density s
�

is given by (13.32), which we rewrite here as:

P
���
A
� (1�R)

c

n
��

��s
�

(13.78)

leading to a photon density s
�

of 3.6� 10�� cm��. The photon lifetime in the cavity
is 1/c�(�

�
� 1/2Lln(R)) or 2.8 ps. The relaxation frequency is then:

f
!
�

1

2�	
3� 10�� cm s��/3.3� 3� 10��� cm�� 3.6� 10�� cm��

2.8� 10��� s
� 9.4 GHz

13.8 Characteristics of laser diode emission

13.8.1 Spectral distribution

Figure 13.29 shows the spectral emission from a laser diode for different pump
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currents. Below threshold (Fig. 13.29a), the spectral dependence of the emission
follows the gain curve in the medium, and is modulated according to the allowed
Fabry—Pérot modes in the cavity (see Fig. 4.9). As the laser cavity used in this
experiment has a cavity length of 300 �m and a peak emission wavelength � near
0.85 �m, the anticipated cavity mode spacing (��� ��/2n

��
L or 0.36 nm) is found

to be in accordance with the experiment. In Fig. 13.29b, the cavity modes that
experience gain in excess of the threshold requirement undergo laser oscillation.
As intraband scattering mechanisms are extremely rapid (0.1 ps), semiconductors
tend to act as homogeneous media and favour single mode emission. In spite of
this, a number of concurrent causes can provoke multimode emission (e.g. spectral
hole burning, spatial hole burning (see Chapter 4), filamentation, . . .).

To obtain single mode operation, distributed Bragg mirrors are often incorpor-
ated into the device structure. These are known as distributed feedback (DFB)
lasers and form the subject of Complement 13.A. Another possibility involves
reducing the size of the cavity so that the cavity mode spacing exceeds the width of
the gain curve. Given a typical gain bandwidth �� of 100 nm, this requires a cavity
length of L� ��/2n

��
�� or 1 �m. Such short cavities can be formed along the

epitaxial deposition axis. Devices fabricated with this geometry are referred to as
vertical cavity surface emission lasers (VCSELs) and are examined in Complement
13.C.

Finally, we recall that the light emitted by a laser diode below the transparency
threshold is incoherent (see Chapter 4). In fact, edge emitting LEDs are laser
diodes that possess gain levels below the laser oscillation threshold. In certain
cases, the diode facets are even treated with antireflection coatings to suppress
optical feedback and keep these devices from lasing under high injection current
levels. Nevertheless, once the devices are driven beyond the transparency thresh-
old, stimulated emission will dominate over spontaneous emission. In this regime,
LEDs emit extremely brilliant (albeit incoherent) electroluminescence. Such devi-
ces are referred to as superluminescent LEDs.

13.8.2 Spatial distribution

Calculation of the spatial distribution of the luminescent energy emitted by a laser
diode is challenging, requiring the application of numerical techniques which we
will outline below. Most notably, one makes use of the far-field approximation. We
recall this approximation now.

A distribution of oscillating charges with frequency � gives rise to an amplitude
distribution for the electric field E

� 
(r�) (E

� 
is the near-field) across a small opening

lying in the z� 0 plane, where r� runs along the major axis of the emission aperture
(see Fig. 13.30). The far-field E

  
at a distant point r away from the opening is the

Fourier transform of near-field, or more specifically:
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Fig. 13.29. Emission spectrum from a GaAs/Al
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Ga
��	�

As quantum well laser diode (a)
below and (b) above laser threshold. (Courtesy of J. Nagle@THALES.)

E
  

(r)�
�ike���

4�
ur� �

��	���#

dr�e��k�r�[�2n�E
� 

(r�)] (13.79)

where n in the unit normal vector to the opening, ur is the unit normal vector in the
direction of r, and k��/cur is the vacuum wavevector in the r direction (see Fig.
13.30).
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Fig. 13.30. Diagram for calculating the far-field power distribution of a semiconductor laser.

The emitted power is then given by P(r)� (1/2)Z
�
�E

  
(r)��, where Z

�
is the

vacuum impedance (Z
�
� 377�). The spatial distribution of the emitted intensity

is of particular interest along two directions:
∑ Along the growth axis. In this case, the angular variation (as a function of "

�
) is

given by:

P
  

(r)	 cos� "
� �

���

�
����

���

�
����

e��������	�E� 
(x�, y�)dx�dy� �

�
(13.80)

where l is the effective mode width (see Fig. 13.31). In a laser waveguide
structure, the electromagnetic field is principally distributed between �d

��"	
/2

and �d
��"	

/2. Taking for the near-field E
� 

(x, y) the function C(x, d
��"	

/2)�
C(y, l/2), where C(x, a)� 1 between �a and �a and 0 elsewhere, the Fourier
transform (13.80) can be written:

P
  

(r)�P
���

sinc��
2�
�
�

sin "
�

d
��"	
2 � (13.81)

Thus, we see that all the energy is confined between the angles ��
�

/2d
��"	

and
��

�
/2d

��"	
. This result can be obtained by approximating the confined mode as

a Gaussian beam with width W
�
� d

��"	
/2 (see (4.E.5)). The divergence of the

beam is then �
�

/�W
�
� 2�

�
/�d

��"	
� �

�
/2d

��"	
.

∑ Direction parallel to the heterointerfaces. The angular distribution is then:
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Fig. 13.31. Angular distribution for light emerging from the fundamental mode of a
semiconductor waveguide.

P
  

(r)	 cos� "
� �

���

�
����

���

�
����

e��������
�E� 
(x�, y�)dx�dy� �

�
(13.82)

and the beam divergence is �
�

/2l.

Expressions (13.80) and (13.82) are extremely useful in allowing one to treat more
general cases than the approximation dealt with above. Figure 13.31 summarizes
the present results. For cases involving higher index modes, one obtains increased
angular dispersions with correspondingly reduced intensities.

For a typical laser structure with a width of 5 �m and an effective mode
thickness d

��"	
� 1 �m, the angular divergence along the growth axis is of the

order of (1 �m/1 �m) radians or ,60°, and (1 �m/5 �m) radians or ,10° along the
direction parallel to the heterointerfaces. The spatial distribution of emission from
a semiconductor component is therefore generally elliptical in nature, with a
preponderance of angular divergence along the growth axis. This implies the
necessity of corrective optics in applications which require properly collimated
light beams (e.g. compact disk lasers, efficient coupling into optical fibres, etc.).
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Complement to Chapter 13

13.A Distributed feedback (DFB) lasers

As discussed in Section 13.8, semiconductor lasers can oscillate simultaneously
over multiple longitudinal modes. Such multimodal operation, however, is unde-
sirable in a number of applications as it leads to: temporal broadening in optical
fibres, collimation problems, etc. It is therefore advantageous in these instances to
be able to select the single mode that will undergo laser amplification, by employ-
ing extremely wavelength selective mirrors. Such a mirror can be implemented
using distributed feedback. This idea consists of incorporating within the laser
cavity, a modulated waveguide structure with period / (see Fig. 13.A.1). This
periodic perturbation, in a manner similar to a Bragg mirror (see Complement
9.D), acts as an extremely selective frequency filter. The formalism for describing
an optical mode in a spatially modulated waveguide was presented in Comple-
ment 9.B. We recall the principal results here.

We will label as A�
�

(z) and A�
�

(z), respectively, the amplitudes for the right and
left propagating optical modes l, with a propagation constant 

�
. The periodic

modulation induces an energy transfer between the left and right propagating
waves as described by the system of equations in (9.B.6):

d

dz
A�
�

(z)� igA�
�

(z)e������

(13.A.1)
d

dz
A�
�

(z)��igA�
�

(z)e�����

where � is the phase mismatch term given by:

��
�
�

�
/

(13.A.2)

Only those modes, l, with �� 0 can propagate within the structure. We desig-
nate as �

9
and 

9
the frequencies and propagation constants which satisfy the

Bragg condition �� 0. The coupling constant g (not to be confused with the
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Fig. 13.A.1. Cross-section of a distributed feedback laser. The Al fractions in the diagram are
merely suggestive of plausible layer compositions.

gain!) which describes the coupling efficiency between the left and right propagat-
ing waves may be expressed in the form of (9.B.6b) as:

g�
��
�

8p
�

��

�
��

�
5

(x)E
�
(x)�dx (13.A.3)

where � is the frequency of the electromagnetic wave, �
5

(x) is the (modulated)
relative permittivity function in the grating region, E

�
(x) is the electric field dis-

tribution for the lth mode, and p
�

is the normalization constant necessary for
having a homogeneous equation (p

�
� 1 W m��). An approximate expression for g

is given in (9.B.16) for the case of a highly confining waveguide. To account for the
presence of the gain medium (with modal gain �), (13.A.1) takes the modified form:

d

dz
A�
�
� igA�

�
e������� �A�

�
(13.A.4)

d

dz
A�
�
��igA�

�
e������ �A�

�

To solve this system of equations, we perform the variable transformation:

A�
�
� a�

�
e��

(13.A.5)
A�
�
� a�

�
e��

which leads to the new system of equations:
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d

dz
a�
�
� iga�

�
e����������

(13.A.6)
d

dz
a�
�
��iga�

�
e����������

(13.A.6) is formally identical to the set of equations in (13.A.1) given the transform-
ation ���� i�.

We can therefore employ the result from Complement 9.B. To do so, we need to
specify the boundary conditions for the amplitudes in the guide. We will assume
the wave to be incident from the left with amplitude a�

�
(0)� a

�
at the grating

entrance (z� 0, see Fig. 13.A.1), and that no wave is incident from the right at the
guide exit (z�L) so that a�

�
(L)� 0. Equation (9.B.10) may then be written�:

a�
�

(z)� a
�

g

i(�� i�)sh(�L)� �ch(�L)
e���������sh[�(z�L)]

(13.A.7)

a�
�

(z)� a
�

e���������
i(�� i�)sh(�L)� �ch(�L)

��ch[�(z�L)]� i(�� i�)sh[�(z�L)]�

where this time, the coefficient � is given (see (9.B.9b)) by:

���g�� (�� i�)� (13.A.8)

The presence of the ��z term in the exponential takes into account amplification
within the waveguide. The denominators in (13.A.7) express the mirror-like role
played by the periodic modulation. The denominators vanish if:

� cosh�L� (�� i�)sinh �L (13.A.9a)
Threshold condition for a DFB laser

In fact, if this last expression is satisfied, the system will yield a non-zero output
even for the situation involving zero input (a

�
� 0) — this is what characterizes

laser oscillation. To obtain some understanding of the repercussions of this
condition on the gain and phase matching requirements, we will analyse (13.A.9)
for the Bragg frequency �

9
, i.e. for �� 0:

	1��
g

��
�
� tanh(�g�� ��L) (13.A.9b)

As the gain � tends towards infinity, both sides of this last equation approach
unity, but one from 1�and the other from 1�. Clearly, (13.A.9b) cannot be satisfied
and �� 0 no longer represents a propagating mode, i.e. the gain introduces new

� sh� sinh, ch� cosh.
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Fig. 13.A.2. Contour plot for (13.A.9) in the plane �L� �L. Solutions of this equation are
located at the centres of the closed curves.

conditions for phase matching. It is therefore necessary to solve (13.A.9) in the
complex plane.

Figure 13.A.2 shows a contour plot for 1/��cosh �L� (�� i�)sinh�L�� for
gL� 0.5. The (extremely useful) MATHEMATICA program used to obtain
this plot is listed below:
gL=0.5;
deltaL= Sqrt[gL ˆ 2+(y-I*x) ˆ 2];
Den= 1/Abs[deltaL* Cosh[deltaL]-(y-I*x)*Sinh[deltaL]];
ContourPlot[Den, �x,0,15�,�y,0,6�, PlotPoints-�100,
ContourShading -�False,AspectRatio-�.7]
We note that the required gain—length product �L to achieve threshold increases
with the degree of excursion from the Bragg condition �L� 0. This means that
distributed feedback favours only small deviations from the Bragg condition. To
understand this behaviour better, we will solve (13.A.9) for the case involving
strong gain, i.e. �
 g.

Equation (13.A.9a) may be written:

e����
1� �/(�� i�)

1� �/(�� i�)
(13.A.10a)

which can be developed into:

e��������������������������4�
�� i�
g �

�
(13.A.10b)

since from (13.A.8) we have:
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�� i�

�	1��
g

�� i��
�
� 1�

1

2�
g

�� i��
�

(13.A.10c)

We will begin by analysing the phase requirements for (13.A.10b) that will allow
the lth mode to oscillate:

2 arctan
�

�
�
�

� 2�
�
L�

g��
�
L

��
�
���

�

� (2m� 1)� (13.A.11)

Once the gain � becomes large in comparison to the phase difference, (13.A.11)
simplifies considerably giving:

�
�
L ��m�

1

2�� (13.A.12)

The oscillation modes closest to the Bragg mode are those corresponding to
m� 0, i.e. �

�
L� �/2 and m��1, or �

�
L���/2, which is not very different

from what we observe in Fig. 13.A.2 (�
�
L � 2). To express this condition in terms

of allowed wavelengths, it is necessary to remember that 
�
� 2�n

	  
/�, where n

	  
is

the effective guide index for the lth mode (see Chapter 9) and that the Bragg
wavelength �

9
� 2n

	  
/ is the resonant wavelength for the grating. Using (13.A.2),

the two modes closest to the Bragg conditions are:

2n
	  

�
�

�
1

/
�

1

2L
(13.A.13a)

2n
	  

�
��

�
1

/
��

1

2L

or, since 1/L� 1//:

�
�
� �

�
��n

	  

/�
L

(13.A.13b)

�
��
� �

�
� n

	  

/�
L

The wavelength spacing between the two allowed modes is:

��� 2n
	  

/�
L

(13.A.14)

which is the same result that would have been obtained for the case of two mirrors
separated by a distance L.

Still following (13.A.10b), the condition on the gain at threshold is given by:
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Fig. 13.A.3. Solutions to (13.A.15) with gL� 0.5 showing the necessary gain �L to achieve
laser oscillation in the m� 0, 1, and 2 modes. Distributed feedback significantly favours single
mode operation at m� 0 as it most closely approaches the Bragg condition.

e���� 4
(�
�
L)�� (m� 1/2)���

(gL)�
(13.A.15)

Equation (13.A.15) is an implicit function of �
�
, and Fig. 13.A.3 shows the points

that satisfy (13.A.15) assuming gL� 0.5. It is clear that distributed feedback
encourages the fundamental modes (l� 0,�1), with the result that distributed
feedback lasers favour to a large extent single longitudinal mode laser oscillation.

Neglecting parasitic losses �
<
, the condition for laser threshold is obtained for

�
���	���
"

L � 2. Expression (13.26a) �
���	���
"

��1/2Lln(R
��
R
��

) indicates that this
optical feedback corresponds to mirror reflectances given by R

��
R
��
�

e��� 0.02. This is not very far from the thresholds required for cleaved cavity
lasers where for the GaAs/air interfaces, R

��
R
��
� 0.32�� 0.1. Clearly, the re-

quired gain at threshold �
���	���
"

can be diminished by increasing the coupling
constant g, as this would correspond to using higher reflectivity mirrors. The
coupling constant can only be increased by bringing the gratings closer to the
active region of the laser. This can lead to significant losses, however, as position-
ing of the grating too close to the active region will diffract light into radiative
(‘leaky’) guide modes. The optimization of such structures generally requires the
use of numerical simulations.

13.B Strained quantum well lasers

The maximum gain �
���

for an amplifying medium employing quantum wells was
given by (13.57) to be:
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�
���

� �
�


(1� e��#��� e��#�!0�) (13.B.1)

where �
�


is the cold cavity absorption for the medium (i.e. without carrier
injection, J� 0) given by (13.46); n

#
is the two-dimensional carrier density (in

cm��) in the quantum well conduction and valence bands; n


is the critical
two-dimensional density in the conduction band (Eq. (13.54)); andR

0
is the ratio of

the effective massesm
0
/m


, wherem

0
is the effective mass of states in the first valence

band filled by current injection. This subband was justifiably assumed in Chapter
13 to be the heavy hole subband (with effective mass m

��
), as we saw in Chapter 8

that the lifting of degeneracy placed this subband above the others (i.e. above the
light hole and spin orbit subbands). As is indicated in Fig. 13.23, the transparency
density and, hence, the transparency current, both lessen as the ratio of the
effective masses decreases. Figure 13.21 explains this effect: for equivalent carrier
densities, the quasi-Fermi level penetrates more readily into the valence subband
as its effective mass (and hence its associated density of states) becomes smaller. In
other words, the smaller the effective mass in the valence subband, the more easy it
is to satisfy the Bernard—Durrafourg condition.

We thus have a vested interest in working with effective hole masses that are as
small as possible. Such flexibility is not possible, however, within the framework of
a particular semiconductor system where, by construction, the heavy hole sub-
band always dominates. Yablonovitch and Kane therefore proposed a method of
inverting the heavy hole and light hole bands using mechanical strain to decrease
the transparency current in semiconductor quantum well laser diodes. This can be
achieved by incorporating strained quantum well layers into the device structure.

As an example, we consider an In
���

Ga
�
As/InP quantum well with a composi-

tional fraction u that deviates from the lattice matched value for InP (i.e.
�a� a

�
� a(u)� 0 for u� 0.468). During growth, the InP substrate forces the

deposited InGaAs to assume the same positions along the growth surface as would
normally be occupied by a continuation of the InP lattice. In the case of non-lattice
matched layers, this accommodation is possible as long as the elastic strain energy
remains less than the InGaAs/InP binding energy. The layer thickness for which
both of these energies become equal to one another is referred to as the critical
thickness l


.

For layer thicknesses less than l

, the mechanical strain resulting from the lattice

mismatch is a tensor with elements given by:

�� �
		
� �




�

�a
a
�
a
�
� a(u)

a
� (13.B.2)

�
��
��2

�
1��

�

where Ox and Oy are both directions in the plane of the quantum well and Oz lies
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Fig. 13.B.1. (a) If the lattice constant of bulk In
���

Ga
�
As (dependent upon the particular

value of u) is larger than that of InP, this material, when deposited epitaxially upon an InP
substrate, will be compressively strained. In the inverse case involving a(u)� a

�
, the resulting

InGaAs layer would be tensely strained. These conclusions hold only as long as the layer
thickness for a particular composition of In

���
Ga

�
As remains inferior to the critical thickness

l

.

along the growth direction. The Poisson modulus, � (equal to ,1/3 for most III—V
semiconductors), figures in (13.B.2) and describes the elasticity of the medium.
When a(u)� a

�
, the well is compressively strained; and when a(u)� a

�
, the well is

tensely strained (see Fig. 13.B.1).
Mechanical strain in InGaAs forces the constituent atoms to occupy positions

that are not accessible in the unstrained structure. As a result, the overlap integrals
between the atomic orbitals change and the band structure of the strained InGaAs
differs from that of the unstrained material.

Without strain, the forbidden gap in In
���

Ga
�
As at 300 K is given by:

E
�
(u)� 0.324� 0.7u� 0.4u� (eV) (13.B.3)

The quadratic correction, which adds to the linear interpolation between the InAs
and GaAs bandgaps, is referred to as the bowing parameter. In the presence of
strain, perturbation calculations show that the bottom of the conduction band
shifts by �E


:

�E

(u)� e


(�
		
� �




� �

��
)� 2e



�a(u)

a
�
�1�

�
1��� (13.B.4)

where e


is the deformation potential for the conduction band and happens to be
negative (e


��5 eV) for InGaAs. Similarly, the top of the valence band shifts in

energy, but by differing amounts for the heavy hole and light hole valence bands:
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Fig. 13.B.2. In the In
���

Ga
�
As/InP system, depending on the sign and the magnitude of the

strain, the light hole band may sit below, at, or above the position of the heavy hole band.

�E
��

(u)��P(u)�Q(u)
(13.B.5a)

�E
��

(u)��P(u)�Q(u)

with

P(u)��e
0
(�
		
� �




� �

��
)��2e

0

�a(u)

a
�
�1�

�
1� ��

(13.B.5b)

Q(u)��
e
#

2
(�
		
� �




� 2�

��
)��e

#

�a(u)

a
�
�1� 2

�
1� ��

where e
0

and e
#

are the valence band deformation and shear deformation poten-
tials, respectively, for InGaAs (with e

0
� 1.2 eV and e

#
��1.8 eV). Expression

(13.B.5a) with the physical constants given above shows that under tensile strain,
the heavy hole and light hole bands will be inverted relative to each other within
the band structure. Figure 13.B.2 summarizes the different possibilities.

Thus, one of the main effects of strain is to lift the heavy hole/light hole
degeneracy at k� 0 for bulk InGaAs. The situation is a little more complex in
quantum wells, however, as the lifting of the degeneracy due to the quantum
confinement effect is larger for light holes than for heavy holes. Inversion of heavy
hole and light hole subbands is a product of a subtle equilibrium between these
two degeneracy lifting mechanisms. Figure 13.B.3 shows the subband structure
obtained for an InGaAs/InP quantum well as a function of strain.

In fact, the final effect on the transparency current falls short of being spectacu-
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subband gradually moves from sitting below hh

�
to above hh

�
.

lar (a few tens of a per cent) but can be important nonetheless for long wavelength
devices (e.g. for telecommunications applications at 1.55 �m).

Example
(Consult the associated table on p. xvii.)
We consider a 110 Å thick In

����
Ga
����

As/InP quantum well. As a(0.53)�
a(0.47)� a

�
, the quantum well is tensely strained. In fact, by linear interpolation:
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a
��*�

� 6.0584 Å; a
1�*�

� 5.6533 Å
a(0.53)� 0.53� 5.6533 Å� 0.47� 6.0584 Å� 5.8437 Å
as a

��+
� 5.8688 Å, �a/a

�
� [a

�
� a(u)]/a

�
� 4.277� 10��

The effective masses can also be obtained by linear interpolation between InAs
and GaAs:

m

� 0.53� 0.067� 0.47� 0.023� 0.0463

m
��
� 0.53� 0.5� 0.47� 0.4� 0.453

m
��
� 0.53� 0.087� 0.47� 0.026� 0.0583

which leads to R
���
�m

��
/m


� 9.78 and R

���
�m

��
/m


� 1.259.

The bandgap for unstrained bulk InGaAs is given by (13.B.3) to be
E
�
� 0.807 eV. The mechanical physical parameters for this system are:

�� 0.33, e

��6.2 eV, e

0
� 1.1 eV, e

#
��1.7 eV

The conduction band therefore shifts by 2� (�6.2)� 4.277� 10�� eV
��0.053 eV. The coefficients P(0.53) and Q(0.53) are, respectively, �2�
1.1 eV� 4.277� 10�� eV��9.4 meV and 2� 1.7 eV� 4.277� 10�� eV�
14.5 meV. The displacements in the heavy hole and light hole valence subbands
due to the strain are given by (13.B.4), i.e. �E

��
��P�Q��5.1 meV and

�E
��
��P�Q��23.9 meV (see Fig. 13.B.4). The light hole subband lh

�
there-

fore resides above the heavy hole subband hh
�

. The effective bandgap is then given
by the energy separation e

�
� lh

�
� 0.800 eV, allowing laser emission at

�� 1.55 �m.
A reduction in the transparency carrier density can be obtained by comparing

the solutions to the implicit Eq. (13.B.1) for R
���

and R
���

, or (n/n

)
���
� 1.79 and

(n/n

)
���
� 0.78. This results in a lowering of the transparency density by a factor of

2.3.
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For emission at 1.55 �m, the unstrained quantum well should be of the order of
60 Å in thickness. The transparency current gain between the strained and un-
strained structures is then only 60/110� 2.3 or 1.3 and is in agreement with
experiment.

FURTHER READING

S. L. Chuang, Physics of Optoelectronic Devices, Wiley Interscience, New York (1995).
E. Yablonovitch and E. O. Kane, J. Lightwave Technol LT-4, 504 (1986).

13.C Vertical cavity surface emitting lasers (VCSELs)

Edge emitting semiconductor lasers present a certain number of inconveniences.
To begin with, they tend to be multimodal (principally due to spatial hole burning
— see Fig. 4.11). This behaviour generates noise, most notably as a result of mode
hopping due to small thermal fluctuations. Additionally, the laser emission is
divergent making efficient coupling to optical fibres, for example, a significant
technological challenge (see Fig. 13.31). Some of these inconveniences can be
side-stepped by using vertical cavity surface emitting lasers (VCSELs — pronounced
‘vixels’).

The underlying concept is quite simple. A laser cavity is fashioned along the
epitaxial growth axis allowing controlled deposition of extremely thin layers (with
thicknesses less than a micrometre) and perfectly parallel cavity mirrors (precise to
within a monolayer). The mirrors are Bragg reflectors formed by epitaxially
depositing alternating semiconductor layers of appropriate thickness and compo-
sition. Metallic mirrors are not employed for several reasons: sufficiently high
quality epitaxial deposition of metals onto III—V semiconductors is not possible,
metals absorb infrared light and would adversely affect the threshold currents in
such devices. Figure 13.C.1 shows a typical VCSEL consisting of: a Fabry—Pérot
cavity (see Complement 9.D) defined by a bottom Bragg mirror with N

�
quarter-

wave GaAs/AlAs bilayers doped n type and possessing a very high reflectance
(�99.9%), a half-wave cavity �/2, and an upper Bragg output mirror with N

�
quarter-wave GaAs/AlAs bilayers doped p type and possessing a high reflectance
(�99%).

13.C.1 Conditions for achieving threshold in a VCSEL

We can easily estimate the performance characteristics of VCSELs starting with a
few simple considerations. A VCSEL can be approximated as a Fabry—Pérot
cavity of thickness L� �/2n

��
sandwiched between two metallic mirrors. The
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Fig. 13.C.1. A VCSEL consisting of quantum wells grown in a Fabry—Pérot cavity
sandwiched between two Bragg mirrors. The figure shows the distribution of the
electromagnetic field within the cavity.

cavity mode spacing is in this case ��� c�/2L� c�/� (c�� c/n
��

), i.e. �h�� 1.3 eV
for L� 0.16 �m assuming typical values of n

��
� 3 and �� 1 �m. As the mode

spacing is much larger than the gain bandwidth, the laser operates in a single
longitudinal mode (see Fig. 13.C.2).

The threshold for laser oscillation is then given by:

��
���	���
"

� �
�
�

1

2L
	  

ln
1

R
��
R
��

� �
�
�

1

2L
	  

(T
��
�T

��
) (13.C.1)

whereR
��

, T
��

,R
��

, and T
��

are the reflectances and transmittances for the upper
and lower mirrors, respectively; �

�
is the parasitic absorption; and � is the overlap

coefficient between the electromagnetic wave and the quantum well. L
	  

is the
effective cavity length: in the case of a VCSEL, this includes the distance over
which the wave penetrates into the Bragg mirror or, alternatively, the distance
over which the photons enter into the mirrors through tunnelling. While the
calculation of L

	  
is not simple, we will see that the determination of its value is not

primordial in being able to estimate the performance characteristics of VCSELs.
The principal aspects of VCSELs are resumed in (13.C.1): while the overlap

coefficient � is fairly weak, this can be compensated for by using mirrors with low
transmittances. We are in a position to estimate each of these parameters. The
transmittances T

�
for Bragg mirrors were calculated in Complement 9.D (see

(9.D.39)):
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(13.C.2)

where n
�

and n
�

are the optical indices of the Bragg mirrors’ constituent layers.
The overlap coefficient � is given by the integral (9.27):

��

���

�
����

�E(z)��dz

��

�
��

�E(z)��dz

(13.C.3)

where d is the thickness of the active region. In order to estimate this integral, we
have made use of the approximation to (9.D.26) that consists of taking the field
E(z) as a stationary wave:

E(z)�E
�

cos�
�z

L
	  
�, �L

	  
/2� z�L

	  
/2 (13.C.4)
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and E(z)� 0 otherwise. This last approximation neglects the electromagnetic field
beyond the tunnelling distance of the photon in the Bragg mirrors. Integral
(13.C.3) can then be easily calculated:

��
dE�
�

��

�
��

E�
�

cos�(�z/L
	  

)dz

(13.C.5)

and leads to:

�� )
d

L
	  

(13.C.6)

where )� 2 for approximation (13.C.4) but in general resides between 1 and 2.
Integral (13.C.3) shows the importance of the location of the amplifier relative to
the antinode of the electromagnetic mode. If the quantum well was situated at a
node, rather than at an antinode, the effective gain �� would be virtually null. This
result can also be obtained using (4.C.12) (derived during the study of elec-
trodynamic laser equations in Complement 4.C) and by taking (13.C.4) for E(z) as
the only allowed mode in the cavity. Substituting (13.C.5) into (13.C.1) and
neglecting parasitic losses, the required gain at threshold is given by:

T
��
�T

��
� 2)d�

���	���
"
(13.C.7)

Threshold condition for a VCSEL

We are now ready to determine the typical conditions for VCSEL operation. We
will focus on the GaAs/AlGaAs system as it is by far the most commonly used
material system for implementing these devices. The active medium of our VCSEL
will be assumed to be a 100 Å (d� 10�� cm) thick quantum well. We want the
threshold current to be 1.2 mA for a 30 � 30 �m� device (i.e. a threshold current
density J

���	���
"
� 136 A cm��). Assuming a lifetime t

���
of 1.6 ns, this results in a

two-dimensional carrier density of n
�
� J

���	���
"
t
���

/q, or 1.36� 10�� cm�� (see
(13.3)). The threshold gain is then given by (13.57) to be:

d�
���	���
"

�A
�


(1� e��#��� e��#!0��) (13.C.8)

where the coefficients �
�

d�A

�

� 0.55%, n


� 7.25� 10�� cm��, and R

0
� 6.8

is as obtained in the example in Section 13.6.1. This gives d�
���	���
"

� 4.9�
10���

�

, i.e. �

���	���
"
� 490 cm��. Equation (13.C.7) then yields a sum for

T
��
�T

��
of 9.8� 10��. Taking T

��
�T

��
and using (13.C.2), we see that we can

select a stack comprising 30 GaAs/AlAs bilayers for the bottom mirror and 30
bilayers for the upper mirror (further assuming �� 1 �m, n

�
� 3.4, and n

�
� 2.96).
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Fig. 13.C.3. Variation of a GaAs/AlAs VCSEL threshold current as a function of the
number of Bragg mirror pairs (S� 30� 30 �m�).

Figure 13.C.3 shows the calculated decrease of threshold current as a function of
the number of Bragg mirror pairs.

13.C.2 VCSEL performance

In addition to single mode operation, VCSELs possess other advantages, such as
low threshold currents and reduced output beam divergence. The divergence of the
output beam can be easily calculated using (4.E.5) for Gaussian beams:

"�
�

�W
�

(13.C.9)

where W
�

is the width of the output beam. For a VCSEL with a diameter of 10 �m
(or W

�
� 5 �m) operating at a wavelength of 1 �m, we obtain a divergence of 1/5�

radians, or 4° in all directions.
The low threshold current results primarily from the small volume of material

which needs to be inverted. In the case of a ridge waveguide laser without
antireflection coatings on the facets, a 200 �m long cavity is generally required for
sufficient gain. Assuming a quantum well thickness of 100 Å, and a device width of
3 �m, this corresponds to an active volume of 6 �m�. This is to be compared with
an active volume of 100 Å� (10 �m)� or 1 �m� in the case of a VCSEL. The
threshold currents can be further reduced by oxidizing the device side walls to
increase the lateral electrical and optical confinement. VCSELs with 3 �m diam-
eter cavities fabricated in this manner have demonstrated threshold currents of the
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order of a few �A (still corresponding, however, to threshold current densities of
the order of 100 A cm��!).

FURTHER READING

Special issue on semiconductor lasers, IEEE J. Quantum Electron. June (1991).

13.D Thermal aspects of laser diodes and high power devices

One of the particularities of laser diodes in comparison with gas or ion lasers in
solid matrices (such as Nd: YAG) is that the active material in which the carriers
recombine (radiatively or otherwise) occupies a minute fraction of the total struc-
ture. A laser diode with a quantum efficiency )� 1� (� 1, therefore dissipates a
portion (P of the total power as heat in a small volume of material. This can lead
to significant heating of the material, which can perturb the operational character-
istics of the device and even result in device failure (chemical degradation, melting,
etc.). We will now sketch the theoretical framework that will allow us to examine
this heating and its effects on the device characteristics of laser diodes. For
simplicity, we will limit our treatment to a one-dimensional model.

Our starting point will be theNewton—Fick law, which states that the heat flux �
(W) across a boundary in a material possessing an inhomogeneous temperature
distribution (see Fig. 13.D.1) is proportional to the temperature gradient at that
location, i.e:

�(x)����T (x) (13.D.1)
The Newton–Fick law

where � is the thermal conductivity in W cm��K��. This heat flux leads to a
variation in the internal energy E

���
(J cm��) of each volume element, and can be

expressed in terms of energy conservation as:

�
�t
E

���
(x, t)���(x, t)� 0 (13.D.2)

From thermodynamics, this internal energy may be written:

E
���
� �c

�
T (13.D.3)

where � is the volumetric density (in g cm��) and c
�

is the specific heat of the
material (J K�� g��). If the material possesses internal heat sources distributed
according to S(x, t) (W cm��), the ensemble of Eqs. (13.D.1)—(13.D.3) leads to
Fourier’s heat equation:
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Fig. 13.D.1. Illustration of Newton—Fick law.
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The Fourier heat equation

where D is the thermal diffusion coefficient (cm� s��) given by:

D�
�
�c
�

(13.D.5)

Thermal diffusion coefficient

We will now seek solutions of the Fourier equation for two illustrative examples,
which will enable us to understand the thermal characteristics of laser diodes
better.

Emissive surface in an infinite medium: transient response
This example describes the transient response of a laser diode in the absence of a
heat sink. We define an effective surface heat source, which includes all the
dissipative mechanisms occurring in the structure (ohmic contacts, free carrier
absorption, non-radiative recombination, . . .) as a result of a current pulse:

S(x, t)� (P�(x)H�(t) (13.D.6)

where �(x) is the Dirac delta function (cm��) andH�(t) is the boxcar function, which
equals 1 between 0 and # and zero otherwise (dimensionless). For all time t, the
variation in the slope of T (x) anywhere across the emissive surface can be obtained
by integrating (13.D.4) between �� and �� and by recalling that T must be
continuous at x� 0:

�!

�
�!

�T
�t

dx�D

�!

�
�!

��T
�x�

dx�
(P
�c
�

H�(t)
�!

�
�!

�(x)dx (13.D.7)

or
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��
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�c
�

H�(t) (13.D.8)

where we have assumed the medium to be symmetric about x� 0. This last
expression implies that the heat flux (P is shared equally by both sides of the
junction as a heat flux D�T/�x.

In order to solve (13.D.4), we take the temporal Laplace transform:

D
��
�x�

T� (x, s)� sT� (x,s)��
(P
�c
�

�(x)�
1� e�#�
s � (13.D.9)

where the term in square brackets is the Laplace transform of the boxcar function.
The homogeneous solution to the left-hand side of the equation is of the form (for
x� 0):

T� (x, s)�A(s)e��#�)	 (13.D.10)

The function A(s) can then be obtained from condition (13.D.8), such that:

A(s)�
1

2

(P

�c
�
�D

1� e�#�
s���

(13.D.11)

This allows us to write the temporal Laplace transform for the temperature
distribution as:

T� (s)�
1

2

(P

�c
�
�D

e��#�)	
1� e�#�
s���

(13.D.12)

The inverse Laplace transform of this last expression exists but is fairly compli-
cated (as we will see later on). We will interest ourselves for the time being with
heating of the junction, i.e. with the situation at x� 0. The inverse Laplace
transform of (13.D.12) for x� 0 is trivial and is given by:

T (t)�
(P

�c
�
��D��t��t� #� (13.D.13)

The maximum temperature T
���

therefore occurs at the end of the current pulse (at
t� #), which is not surprising:

T
���

�
(P�#

�c
�
��D

�
(E

<
���c

�
L
)

(13.D.14)

In writing (13.D.14) we introduced the energy of the light pulse E
<
�P# and a

thermal diffusion length L
)
� (D#)���. Written in these terms, (13.D.14) is easy to

understand: the heating that takes place results from the dissipation of a quantity

678 Complement to Chapter 13



1.0

0.8

0.6

0.4

0.2

0.0
20   10+

3  151050

Distance (cm)

t = 1 s

t = 1 ms

t = 10 s

t = 100 s

Te
m

pe
ra

tu
re

 (
K

)

Fig. 13.D.2. Evolution of the temperature increase in a GaAs laser diode as a function of
distance from the junction for various times after a 200 W cm�� thermal pulse of 100 �s
duration.

of heat (E
<

into a layer of material with thickness L
)
��. This equation also shows

that in this configuration, the diode heats continuously as a function of the pulse
duration # and leads inevitably to device destruction if the pulse is too long. It is
therefore necessary to find a means of dissipating heat from the junction region.
Figure 13.D.2 shows the complete solution for the thermal distribution as a
function of time as given by the inverse Laplace transform of (13.D.12), i.e:

T (t)�
(P

2�c
�
�D

[ f (t)� f (t� #)]

(13.D.15)

f (t)� 2	
t

�
exp��

x�

4Dt��
x

�D
erfc�

x

2�Dt�
where erfc is the complementary error function 1-erf, for the conditions given in
the following example.

Example
The relevant physical constants for GaAs from Table 13.D.1 are:

�� 5.32 g cm��
c
�
� 0.35 J g��K��

�� 0.46 W cm��K��
D� 0.25 cm� s��

For a diode dissipating an amount of heat (P (W cm��), with a pulse length of #
(�s), the temperature increase is given by:

T
���

� 6� 10��(P(#(�s))���
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Table 13.D.1. Thermal constants for GaAs and InP: 
 is the mass density, c
�
the

specific heat, � the thermal conductivity, and D the thermal diffusion coefficient

Material � (g cm��) c
�

(J g��K��) � (W cm��K��) D (cm�� s��)

GaAs 5.32 0.35 0.46 0.25
InP 4.787 0.34 0.67 0.41

A 100 W laser bar has a width of 1 cm and a length of 500 �m. Assuming a heating
coefficient ( of 10% implies a heat load of (P� 2� 10�W cm��. A 1 ms pulse
width leads to a temperature increase of 3.8 K, while after 1 s the junction tempera-
ture has risen to 120 K, leading to irreversible damage of the laser diode.

Thermal dissipation on both sides of the junction under continuous operation
In order to prevent heat build up, thermal dissipaters must be placed on either side
of the junction, at for instance x��L and x��L. The heat equation, (13.D.4),
which describes the thermal response, remains the same except that different
boundary conditions are used (T (L, t)�T (�L, t)� 0 for all time t). Expecting
such a system to possess a stationary solution, the stationary Fourier equation for
T may be written:

�
��T�

�x�
�

(P
�

�(x) (13.D.16)

Thanks to the first integral in (13.D.8), this last equation can be integrated without
difficulty, yielding T (x)� ((P/2�)(L�x) for x� 0. The steady state temperature
drop between the source and the thermal dissipater is therefore linear. The increase
in the junction temperature relative to the heat sink is therefore:

�T
���

�
(PL
2�

(13.D.17)

which may be interpreted as the capacity of the heat dissipater to extract a power
of (P/2 over a distance L given a thermal conductivity � for the material. It is then
clearly advantageous to be able to minimize the distance between the heat dissi-
pater and the junction.

In general, (13.D.17) may be written as:

�T
���

�R
��
(P (13.D.18)

where R
��

is the thermal impedance of the system (cm�K��W��).
For the case of a heat sink situated a distance L from the junction (see Fig.

13.D.3), the thermal resistance is given by (13.D.18) to be:
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Fig. 13.D.3. The presence of a constant temperature heat sink located a distance L from the
junction imposes a steady state temperature on the junction.

R
��
�

L
�

(13.D.19)

Thermal impedance for a heat sink situated

a distance L from a junction (cm2 K−1W−1)

Example
Continuing from the previous example: we calculate the stationary temperature
increase for the same junction, this time with the presence of a heat dissipater
located 5 �m from the junction. We calculate a thermal resistance of 5� 10�� cm/
0.46 W cm��K�� or 1.1� 10�� cm�K��W��. The associated temperature in-
crease, �T

���
equals 2� 10�W cm��� 1.1� 10�� cm�K��W�� or 0.22 K. Com-

paring this quantity to the previous value of 3.8 K, gives some indication of the
advantage gained by using heat dissipaters.

Aside from the danger of melting the laser diode, the consequences from
allowing the junction temperature to increase unchecked are numerous. First,
given thermal expansion of the semiconductors, the bandgaps decrease with
increasing temperature and the emission wavelength of the device redshifts. For a
typical GaAs/AlGaAs laser diode, the emission wavelength will redshift by ap-
proximately 3.2 Å K��. This may have a dramatic influence in applications in
which the laser diodes are used to pump a laser material; the redshift will lead to a
decrease of the overlap between the laser diode wavelength and the ion optical
cross-section (see Complement 4.E).

Another effect associated with increasing temperatures, is a rise in the required
overall threshold current, I

���	���
"
. The physical mechanisms responsible for this

are innumerable (Auger effect, thermal activation of non-radiative recombination
mechanisms, . . .). The dependence of I

���	���
"
on the device temperature can be

681 13.D Thermal aspects of laser diodes and high power devices



m
ax

Fig. 13.D.4. Maximum operating temperatures for semiconductor lasers emitting between
1.5 and 5.5 �m: (") type I, III—V Sb heterostructures, (�) type I, III—V Sb multiple quantum
well structures, (�) type II and III, III—V Sb heterostructures, (�) lead salts, (�) HgCdTe
heterostructures, (�) quantum cascade lasers. (A. Joullié, private communication.)

modelled according to the phenomenological relationship:

I
���	���
"

� I
�

e���� (13.D.20)

where the phenomenological parameter T
�

is referred to as the characteristic
temperature of the laser. As a rule of thumb, the larger the bandgap of the
semiconductor and the deeper the wells, the higher the corresponding characteris-
tic temperature T

�
and the more stable the device will be in regards to temperature.

Table 13.D.2 shows typical T
�

s obtained for a variety of material systems. Laser
diodes fabricated from GaAs/AlGaAs heterostructures possess characteristic tem-
peratures of ,100 K, whereas mid-infrared lasers fashioned from InGaSb/InAs
have T

�
values of ,30 K indicating that they only operate at low temperatures.

Figure 13.D.4 shows the maximum operational temperatures for laser diodes with
emission wavelengths situated between 1.5 and 5.5 �m.

Table 13.D.2. Characteristic temperatures for laser diodes implemented in various
material systems

Heterostructure Wavelength (�m) T
�

(K)

GaN/InGaN 0.40 180
GaAs/AlGaAs 0.85 150
InGaAs/GaAs 0.98 90
InGaAs/AlGaAs/InP 1.55 60
InGaSb/InAs/GaSb 3—4 35

682 Complement to Chapter 13



13.E Spontaneous emission in semiconductor lasers

In all preceding derivations, we have neglected the influence of spontaneous
emission on the behaviour of semiconductor lasers. As semiconductors provide
ample gain, significant amplification of spontaneous emission occurs (referred to
asASE or amplified spontaneous emission). It turns out that ASE plays a fundamen-
tal role in determining the elementary device characteristics of laser diodes. We
devote the present section to examining its influence on laser diode operation.

The system of equations (13.69) describes the coupling between the carrier
density n and the photon density s in the cavity. As we indicated in Complement
4.A, to take spontaneous emission into account, we need only add a term (indepen-
dent of the number of photons s) for the additional photon generation R

����
.

Equation (13.69) then becomes:

dn

dt
�
J

qd
� �

���
n� c�gs(n� n

��
)

(13.E.1)
ds

dt
� c�gs(n� n

��
)�� �


s�R

����

The radiative emission rate was calculated in Chapter 7 and is given by Eq. (7.61)
R

����
� �

����
n. In this formula, �

����
is the spontaneous emission rate given by

�
����

�Bp, where p (�n if we hold to our assumption that all radiative recombina-
tion occurs in the undoped region) is the density of holes and B is the bimolecular
recombination coefficient. We must nonetheless take into account the fact that all
the photons emitted in the active region are not released into guided modes (see
Fig. 13.E.1). Only a fraction  of all spontaneously emitted photons (referred to as
the spontaneous emission factor) will be coupled into the waveguide and amplified.
The calculation for obtaining this  coefficient is rather involved and not particu-
larly reliable. It is therefore customary to treat it as an adjustable parameter (i.e.
determined from curve fitting) with a value lying between 10�� and 10�� for ridge
waveguide lasers.

At stationary state, (13.E.1) provides the electron and photon densities:

s�
R

����
�

��c�g(n� n

��
)
� 

�
����

�

��c�g(n� n

��
)
n

(13.E.2)
J

qd
� �

���
n� c�g(n� n

��
)s

The first of these two equations is particularly useful and expresses the fact that the
laser oscillations build up from spontaneous emission once the gain begins to
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Fig. 13.E.1. Of all spontaneously emitted photons in the structure, only a fraction  are
released into the guided mode and subject to amplification.

exceed the cavity losses. The threshold density n
���	���
"

is then given by:

n
���	���
"

� n
��
�

�


�c�g
(13.E.3)

The second equation in (13.E.2) can be expressed more concisely by introducing
the dimensionless variables:

x�
n

n
��

; y�
J

J
��

and ��
n
���	���
"
n
��

� 1�
�


�c�gn
��

(13.E.4)

where J
��
� qd�

���
n
��

is the transparency current density. We thus obtain an
implicit relationship between the carrier density and the pump current, written in
this more compact notation as:

y�x�

�
)
x(x� 1)

��x
(13.E.5)

where ) is the quantum efficiency given by )� �
����

/�
���
� #

���
/#

����
. To find the

dependence s(J) of the photon density on the pump current, we need only solve this
implicit equation and substitute its solution into the first equation in (13.E.2),
yielding:

s� n
��
(�� 1)

�
����
�


x

��x
(13.E.6)

Equations (13.E.5) and (13.E.6) are the two parametric equations in x, which will
allow us to calculate the characteristics s(J). If � 0, we recover the laser diode
response described in the bulk of Chapter 13, where the carrier density n increased
in proportion to the electrical current J� q�

���
dn below threshold and clamped

abruptly to n� n
��

above threshold. If � 0, the behaviour is more gradual as
depicted in Fig. 13.E.2.
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Fig. 13.E.2. Evolution of the photon density s (normalized by the transparency threshold
carrier density n

��
) as a function of pump current density (normalized by the transparency

current density J
��

) for different values of the spontaneous emission factor . Other implicit
physical parameters are as listed in the following example.

Example
The curves in Fig. 13.E.2 were calculated assuming a quantum efficiency ) of 0.5, a
cavity lifetime #


of 2 ps, a spontaneous lifetime #

����
of 2 ns, a confinement factor �

of 0.5, a transparency density n
��

of 1.25� 10�	 cm��, and a dynamic gain g of
2.5� 10��� cm� or �� 1.352. The MATHEMATICA program given below can
be used to obtain the laser characteristics near threshold.
beta=.;gamma=0.5;tauc=1/(2. 10 ˆ -12);taus=1/(2. 10 ˆ -9);
eta=0.5;g=2.5 10 ˆ -16; ntr=1.25 10 ˆ18;nop=3.3;
c�=3. 10 ˆ 10/nop;
alpha=1+ tauc/(gamma*c�*g*ntr);
R=taus/tauc;
betap=(alpha-1)*beta*R;
eq1= yp == alpha*zp/(zp+betap)+beta/betap*zp*
(alpha*zp/(zp+betap)-1);
sol=Last[Solve[eq1, zp]];
t=zp/.sol;
Needs[‘‘Graphics�Graphics�’’]
beta=10 ˆ1-4;
plot1=LogPlot[t,�yp,.01,2�]
beta=10 ˆ -3;
plot2=LogPlot[t,�yp,.01,2�]
beta=10 ˆ -5;

685 13.E Spontaneous emission in semiconductor lasers



plot3=LogPlot[t,�yp,.01,2�]
Show[plot1,plot2,plot3]

Figure 13.E.2 can be interpreted as follows: below threshold, photons are
spontaneously released into the guided mode of the cavity (in this regime the laser
diode behaves as an LED). Above threshold, the photon density grows spectacu-
larly (as previously described in Complement 4.A). Furthermore, in Fig. 13.E.2 the
threshold effect becomes increasingly subdued as  tends towards 1.

This picture has been further refined by Yamamoto and colleagues. This author
pointed out that the dynamic gain g is itself given by g�S/#

����
, where S is the

surface area of the sample. Introducing this expression into (13.E.5) and (13.E.6), he
was able to show that, as  tends towards 1, the laser threshold tends towards 0.
From this observation evolved the concept of the zero threshold laser in which all
spontaneously emitted photons contribute to laser emission in the amplified
mode.

It is interesting to use the present model to describe the multimodal behaviour
of semiconductor lasers near threshold. To do so, we will assume a certain number
of modes m are simultaneously available in the cavity. These modes possess a
frequency spacing ��

���
of c�/2L. Each mode m is then described by an equation of

type (13.E.1), with the additional possibility that the parameters g and  vary
according to the mode index:

dn

dt
�
J

qd
� �

���
n��

�

c�g
�
s
�

(n� n
��

)

(13.E.7)
ds
�

dt
� c�g

�
s
�

(n� n
��

)�� �

s
�
� 

�
�
����
n

Laser equations for homogeneous gain

Note that in these equations all the modes share the same inversion population n;
which, by definition, means that the laser medium is assumed homogeneous. We
assume a Lorentzian gain curve, see Fig. 13.E.3:

g�
g
�

1� [(�� �
�
)/��]�

� g
��1��

�� �
�

�� �
�

� (13.E.8)

Clearly, as seen in Chapters 7 and 13, semiconductor gain media intrinsically
possess more complex gain curves. This formula therefore only offers an approxi-
mation to the exact situation (it compares, however, quite favourably with experi-
ment). Writing the total number of amplified modes as 2M� 1 (with M���/
��

���
), i.e. those for which g� 0, Eq. (13.E.8) gives the amplification factors for

each of the modes m (where m ranges from �M to �M):

g
�
� g

��1��
m

M�
�

� (13.E.9)
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Fig. 13.E.3. Parabolic envelope approximating the gain curve for a semiconductor laser.
The number of amplified modes is 2M� 1.

The system of equations in (13.E.7) can be solved in exactly the same manner as
before, leading to an implicit equation for the normalized current density y�J/J

��
as a function of normalized carrier density x� n/n

��
:

y� x�
)
�
x(x� 1)

��5
�

���5

1� (m/M)�

(�� 1)� (x� 1)[1� (m/M)�]
(13.E.10a)

Allowing the number of modes 2M� 1 to tend towards infinity, this last equation
can be rewritten as:

y� x�
)
�
x

��

�
��

1� u�

[(�� 1/x� 1)� 1]� u�
du (13.E.10b)

which can be integrated exactly to give:

y� x� 2
)
�
x�

1

�
(1� ��)arctan�

1

��� 1� (13.E.11a)

with � being defined as:

���
�� x

x� 1
(13.E.11b)

These equations are to be interpreted in terms of the absolute values of complex
numbers if ��� 0. Similarly, the photon density s

�
for the mth mode is obtained

according to the stationary value of the second equation in (13.E.7), i.e:

s
�
� s

�

1

1�
x� 1

��x�
m

M�
�

(13.E.12)
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transparency threshold carrier density n
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) as a function of pump current density J (normalized

by the transparency current density J
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) for a spontaneous emission factor  of 10��. Other
relevant physical parameters are given in the following example.

where s
�

is the photon density at the peak of the gain curve given by (13.E.6) or:

s
�
�

�
����
�


(�� 1)n
��

x

��x
(13.E.13)

Here, to simplify matters, we have assumed that the spontaneous emission factor 
is mode independent.

Several conclusions can be drawn from this approach. To begin, although we
have assumed that this system is homogeneously broadened, we note (see Fig.
13.E.4) that several laser modes can coexist in the cavity. Emission in these modes
is seeded by spontaneous emission (as described by , note that if � 0, s

�
� 0).

Furthermore, as the pump current becomes large (y�� ), the normalized carrier
density x tends towards � and becomes clamped. Whereas the photon density s

�
in

the central mode tends towards infinity, the photon density in the mth mode
saturates according to:

s�
�
� 

�
����
�


(�� 1)n
��

�
�� 1�

M

m�
�

(13.E.14)

The relative intensity in the lateral modes therefore falls to naught in comparison
with the central mode intensity. This behaviour is reproduced experimentally and
is presented in Fig. 13.E.5.

Example
As an extension to the previous example, the MA THEMATICA program listed
below can be used to calculate the response of a multimode laser as a function of
pump current near threshold.
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Fig. 13.E.5. Longitudinal mode spectrum for an InGaAs/InP heterostructure laser for
various pump currents. (From W. Streifer, D. R. Scifres, and R. D. Burnham, Appl. Phys. Lett.
40, 305 (1982).)

M=10;
beta=10 ˆ -3;
x=alpha-u;
z=betap*(alpha/u-1);
eps=Sqrt[u/(alpha-1-u)];
y=Abs[x+2*beta*x*((1+eps ˆ 2)/eps*ArcTan[1/eps]-1)];
m=1;
z1=z*1/(1+((x-1)/(alpha-x)*(m/M)ˆ 2));
tabley1=Table[�y,z1�,�u,10 ˆ -6,10 ˆ -4,10 ˆ -6�];
tabley2=Table[�y,z1�,�u,10 ˆ -4,10 ˆ -2,10 ˆ -4�];
tabley3=Table[�y,z1�,�u,10 ˆ -2,1.,10 ˆ -2�];
tablep=Join[tableyp1,tableyp2,tableyp3];
p2=LogListPlot[tablepy]
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13.F Gain saturation and the K factor

We saw in Chapter 4 (Eq. (4.10)) that the gain in a gas or ion laser is saturable, i.e.
that the gain as a function of photon density s in such a cavity may be written
�(s)� �

�
/(1� s/s

���
), where �

�
is the cold cavity gain (cm��). This saturation serves

to stabilize the laser gain to its steady state value (see Fig. 4.6). By setting the losses
at threshold �


(�1/c�#


) equal to the above equation for �(s), the photon density as

a function of pump current can be derived. This saturation results from competi-
tion between the pump rateR and the two available mechanisms for depopulating
the excited level: stimulated emission and carrier recombination (radiative or
non-radiative). The same effect occurs in semiconductor lasers where these two last
mechanisms involve interband transitions (see Fig. 13.F.1). We easily find the
photon saturation density to be s

#����	�
� 1/c�gt

�����	�
, where c� is the speed of light in

the material, g is the differential gain, and t
�����	�

� t
���

is the interband recombina-
tion time (see Eq. (13.69)). Comparing this expression with (4.9), we see the
similarity between the roles played by the differential gain g in semiconductor
lasers and the optical cross-section �

��
in atomic lasers.

This interband saturation is only a saturation in terms of power in optical
amplifiers (as in MOPA amplifiers, for example). In laser diodes, however, the
output power in this approach remains linear as a function of the pump current.
Taking typical values of c�� 10�� cm s��, g� 10��� cm�, and t

���	�
� 1 ns, we

obtain an interband saturation density of the order of 10�� cm��. There is another
saturation mechanism which results from intraband relaxation (see Chapter 6 and
Fig. 13.F.1). The characteristic intraband relaxation times are of the order of a
picosecond (t

�����
� 1 ps). Using the expression s

#������
� 1/c�gt

�������
, this leads to

intraband saturation densities of the order of s
#������

� 10�� cm��. This last type of
saturation can be considered as instantaneous in dynamic equations for semicon-
ductor lasers and is given by diverse expressions such as:

�(n, s)�
�(n)

1� s/s
#������

�
�(n)

1� �s
(13.F.1a)

or

�(n, s)� �(n)(1� �s) (13.F.1b)
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Fig. 13.F.1. Interband and intraband relaxation mechanisms giving rise to the relaxation
times t

�����	�
and t

�������
: CB, conductance band; VB, valence band.

where � is the gain suppression coefficient and is of the order of a few 10��� cm�. The
photon density is therefore always small in comparison to 1/�. We will therefore
use the second formula (13.F.1b) as it leads to simpler results.

In order to include this novel effect in describing the function of a laser, we
return to (13.69) and include in it an expression for saturated gain (13.F.1b), i.e:

dn

dt
�
J

qd
� �

���
n�G(n, s)s

(13.F.2)
ds

dt
� [�G(n, s)� �


]s

where G(n, s)� c��(n, s) is an emission rate (s��), whereas �

� 1/#


and �

���
� 1/t

���
are the cavity loss and non-radiative recombination rates, respectively. To illus-
trate the influence of the saturation term � on the stationary behaviour of the laser,
we choose a model for the gain in the laser medium such as �(n)� g(n� n

��
), where

we recall that n
��

is the transparency density.
At stationary state, the number of photons s

�
is given by the non-trivial solution

to the system of equations in (13.F.2) obtained by writing dn/dt�ds/dt� 0 for
s� s

�
and n� n

�
, i.e:

J
�
qd
�
n
�
t
���

� c�g(n
�
� n

��
)(1� �s

�
)s
�

(13.F.3)

�c�g(n
�
� n

��
)(1� �s

�
)�

1

#
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Fig. 13.F.2. Characteristic output power versus injection current plot for a laser diode driven
beyond its linear regime.

Eliminating n
�

from both equations, we obtain the second degree equation:

s
�
�

�
t
���
c�g

s
�

1� �s
�

�
�#


qd

(J�J
���	���
"

) (13.F.4)

where we have used for J
���	���
"

:

J
���	���
"

�
qd

t
���

n
���	���
"

�
qd

t
���
�n���

1

�c�g#

� (13.F.5)

When � is small, we return to the situation described in (13.72), i.e. a linear
dependence of s on the current density J, once J exceeds J

���	���
"
. When the

current J becomes large, so that �s
�

is no longer negligible in comparison to 1, the
photon density s

�
becomes sub-linear, as required by the (easily obtained) solution

to the second degree equation (13.F.4). Figure 13.F.2 presents the resulting de-
pendence of output power on pump current.

The dynamic behaviour of the laser can be obtained by writing n� n
�
� �n,

J�J
�
� �J, and s� s

�
� �s, where the variations in the parameters a (either n, J,

or s) are harmonic functions, i.e. ,�ae���. The recombination term G(n, s)� c�
g
�
(n� n

��
)(1� �s) can be expanded as:

G�G
�
�G

�
�n�G

#
�s (13.F.6a)

where the expansion terms are given by:
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G
�
� c�g

�
; G

#
���c��

�
(13.F.6b)

We therefore expand (13.F.2) by only keeping the first-order terms and by ap-
plying the equilibrium conditions (13.F.3), which can be written here as �G

�
� �


and J

�
/qd� �

���
n
�
�G

�
s
�

, giving:

�J
qd
� �n(i���

�
)� �s(G

#
s
�
�G

�
)

(13.F.7)
�n�G

�
s
�
� �s(i���G

#
s
�

)� �s(i���
#
)

where we have introduced the damping terms:

�
�
� �

���
� c�g

�
s
�

; �
#
� ��c��

�
s
�

(13.F.8)

�
�

is the damping already obtained in Section 13.7 (Eq. (13.77b)) and describes the
losses in the system (i.e. photon leakage from the cavity and non-radiative carrier
recombination). �

#
is a new term and is due to the saturation. The system of

equations in (13.F.7) can be solved simply, as in (13.75), to obtain the temporal
response for a laser diode:

�s
�J
�

�G
�
s
�

/qd

(i���
�
)(i���

#
)��G

�
G
�
s
�

(13.F.9)

where we have neglected G
#
s
�

in comparison with G
�
. Being interested only in the

response of the amplitude of the laser diode, (13.F.9) can be put into the form:

�
�s
�J ���

�G
�
s
�

qd � �
1

(�
�
�
#
��G

�
G
�
s
�

)���� i�(�
�
��

#
) � (13.F.10)

and may be approximated as:

�
�s
�J �

�
��

�#


qd �
� ��

!
(��
!
���)� (2��

!
)�

(13.F.11)

In this last expression, we have introduced the following notation:
∑ the (angular) relaxation frequency �

!
given by:

�
!
� (�G

�
G
�
s
�

)����	
c�g
�
s
�

#


(13.F.12)

∑ �
!

, or the damping coefficient for the laser diode:

�
!
�

1

2
(�
�
��

#
) (13.F.13)

which we express as a function of the resonance frequency f
!

as:
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Fig. 13.F.3. Calculated frequency response for a laser diode with parameters given in Table
13.F.1. As a result of saturation, the maximum emitted power by the laser diode decreases and
the resonance relaxation curves begin to broaden.

�
!
�

1

2�Kf �!�
1

t
���
� (13.F.14)

by means of the K factor, which is a time (generally expressed in ns) given by:

K� 4���#�
�
c�g
�
� (13.F.15)

Expressions (13.F.11)—(13.F.15) show that the laser diode resonance relaxation
curves broaden in proportion to �

!
, which in turn increases more rapidly with the

internal photon density s
�

(i.e. with the internal power) than is predicted by the
simple theory of Section 13.7 (see Fig. 13.F.3). The experimental plot of ‘resonance
width �

!
as a function of resonance frequency f �

!
allows one to determine the

carrier lifetime t
���

and the gain suppression coefficient �. The experimental data,
shown in Fig. 13.F.4, clearly shows that the K factor is dominated by the gain
saturation effect. Assuming a typical value for � of 5� 10��� cm�, �/c�g

�
equals

5� 10��� cm�/(3� 10��� cm�� 9� 10 cm s��) or 18 ps, which clearly domi-
nates over the cavity lifetime #


(about 1 to 2 ps) in the expression for the K factor

(13.F.15).
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Table 13.F.1. Parameter values used for the calculations presented in Fig. 13.F.3

Output power p
� 

Wavelength h� 0.8 eV �� 1.55 �m
Cavity length L 250 �m
Cavity width Z 2 �m
Mode Width d

��"	
0.2 �m

Total Well Width d 0.05 �m
Mode Volume V

��"	
1.2� 10��� cm� V

��"	
�LZd

��"	
Active Volume V

�����	
2.5� 10��� cm� V

�����	
�LZd

Overlap Factor � 0.1
Optical Index n

��
3.4 c�� c/n

��
Mirror Reflectance R

�
0.3 R

�
� (n

��
� 1)�/(n

��
� 1)�

Spontaneous emission
factor

 5� 10��

Mirror absorption
coefficient

�
�

48 cm�� �
�
��ln(R

�
)/L

Parasitic absorption
coefficient

�
<

20 cm��

Photon
Density (cm��) s

�
3� 10�� p

� 
p
� 

� s
�
V

��"	
� h��

�
c�/2

Number S
�

3.6� 10� p
� 

S
�
� s

�
�V

��"	
Lifetime #


1.6 ps 1/#


� (�

�
� �

<
)c/n

��
Differential gain g

�
2.5� 10��� cm�

Transparency density n
��

1� 10�	 cm��
Threshold density n

#
3.7� 10�	 cm�� �g

�
(n
#
� n

��
)� (�

�
� �

<
)

Number of carriers at
threshold

N
#

9.2� 10� N
#
� n

#
V

�����	

Stimulated emission
coefficient

B 10��� cm� s��

Non-radiative lifetime t
���

2 ns
Radiative lifetime #

��"
2.7 ns #��

��"
�Bn

#
Spontaneous emission rate r

����
1.7� 10�� s�� r

����
�V

�����	
/#

��"
� r

����
V

�����	
Saturation coefficient � 10��� cm��
Damping coefficient �

�
(5� 6.6 p

� 
)10	 s�� �

�
� 1/t

���
� c�g

�
s
�

�
#

1.9� 10 p
� 

s�� �
#
� �s

�
/#


Relaxation
Frequency f

!
3.2� 10 (p

� 
���� s�� �

!
� 2�f

!
� (c�g

�
s
�
/#

)���

Damping �
!

1.3� 10 p
� 

s�� �
!
� (�

�
��

#
)/2
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Fig. 13.F.4. Dependence of resonance width �
!

of the frequency response for a laser diode as
a function of the square of the resonance frequency f

!
. The slope of this graph yields theK

factor from which the gain suppression coefficient � may be derived, while the y-intercept
allows determination of the carrier lifetime. (From R. Olshansky, P. Hill, V. Lanzirera, and W.
Powasinik, IEEE J. Quantum Electron. QE–23, 1410 (© 1987 IEEE).

13.G Laser diode noise and linewidth

We saw in Complement 4.D how spontaneous emission, being the product of a
quantum transition and hence intrinsically unpredictable, can be represented
within the dynamic laser equations by means of Langevin forces. These forces are
random temporal processes (or stochastic processes) which possess an autocorrela-
tion function amplitude obtained by reconciling (see 4.D.12b) the dynamic equa-
tions in (4.D.3) with the rate equations in (4.A.13). In this latter case, spontaneous
emission is taken into account by replacing the emission term c��

��
sn by c�

�
��

(s� 1)n. Two decoupled differential equations are thus obtained for the ran-
dom intensity I and phase � variables (see (4.D.15)). The same formalism can be
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applied to laser diodes. The calculated spectral widths, however, are much nar-
rower than those observed experimentally. It was C. Henry who was able to
explain this phenomenon successfully by noting that a semiconductor laser diode
is a mismatched resonator by virtue of the fact that the random intensity and phase
variables are correlated through coupled variations in the gain and optical index. In
other words, fluctuations in the optical index of the semiconductor also cause a
fluctuation in the resonance wavelength of the cavity leading to a broadening of
laser linewidth. This effect is unique to semiconductor materials. We continue here
with a presentation of C. Henry’s model.

Anticipating the importance of relative permittivity on propagation of the
electromagnetic field, we can no longer content ourselves with studying the
electromagnetic fluctuations at a single point (at x� 0, for instance) as was the
case in (4.D.3). We begin, therefore, with a description of the electromagnetic field
in terms of a random temporal envelope (see (4.D.14)):

E(z, t)�E(t)e�������� (13.G.1)

We seek the Langevin equation, for a laser medium with relative permittivity �
��

,
which this temporal envelope must satisfy. We write for the wave equation:

��
�z�

E(z, t)�
1

c�

��
�t�

�
��
E(z, t) (13.G.2)

Within the temporal envelope function approximation, ��E/�t� can be neglected,
and (13.G.1) and (13.G.2) lead to:

2i�
�
��
c�

�
�t
E(t)���

��
c�

�
��
� k��E(t) (13.G.3)

where the relative permittivity �
��

is by definition:

�
��
� (n

��
� i n

��
)� (13.G.4)

and n
��

and n
��

refer to the real and imaginary optical indices, respectively. The
real index n

��
is related to the propagation factor k through:

k�
�
c
n
��
�

�
c�

(13.G.5)

The imaginary portion of the index n
��

describes the decay of the wave amplitude
in the semiconductor medium. The absorption coefficient given by (3.36) can then
be written:

�� 2
�
c
n
��

(13.G.6)

(We recall in this case that the amplitude will vary as e����� and the power as e���.)
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In the laser medium, the effective absorption coefficient � in fact results from
competition between parasitic absorption �

<
and mirror losses �

�
(�
�
��1/

2Lln(R
�
R
�

) and �

� �

<
� �

�
) on the one hand and the gain � on the other so that:

�
c
n
��
�

1

2
(�

� �) (13.G.7)

At laser threshold, the gain matches the losses so that n
��
� 0 and the optical index

becomes purely real. In spite of this, fluctuations in the number of carriers �n lead
to fluctuations in the permittivity �

#
through:

�
��
� (n

��
��n

�
� i�n

��
)�

(13.G.8)
� n�

��
� 2in

��
�n
��

(1� i
�
)

where 
�

is the linewidth broadening factor defined as:


�
�

�n
�

�n
�� (13.G.9)

Linewidth broadening factor

Substituting the expression for �
��

(13.G.8) into the evolution equation, (13.G.3),
employing (13.G.5), and keeping only the first-order terms, we find that the
envelope function E(t) is a solution of the differential equation:

�
�t
E(t)���

�n
��

n
��

(1� i
�
)E(t) (13.G.10)

which can also be written as (see (13.G.7)):

�
�t
E(t)�

1

2
c�(�


� �)(1� i

�
)E(t)� 0 (13.G.11)

The reader will easily recognize this equation as being identical to (4.D.3) (where
the effect of fluctuations in the permittivity �

��
were ignored) with the exception of

an additional multiplication factor (1� i
�
) which takes the fluctuations in �

��
into

account.
This coefficient 

�
is null for atomic transitions, as in this case; laser oscillation

occurs at the peak of the Lorentzian gain curve, where �n
�

is zero (see Fig. 13.G.1).
The Kramers—Kronig relation stipulates that the real optical index n

�
is propor-

tional to the derivative of the absorption coefficient, which is itself tied to n
��

. On
the other hand, in condensed media, the gain curve is no longer Lorentzian, and
even at the peak of the gain curve, �n

�
is non-zero (see Fig. 13.G.1).

In step with the formalism developed in Complement 4.D, we introduce the
Langevin force F(t), which drives the electric field as:
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Fig. 13.G.1. (a) In atomic systems, the variation in optical index as a function of carrier
density �n

�
/�N is null given the symmetry of the Lorentzian gain curve. (b) In a

semiconductor medium, the gain curve is not symmetric and �n
�
/�N is non-zero leading to a

non-zero linewidth broadening factor �n
�

/�n
��

.

�
�t
E(t)�

1

2
c�(�


� �)(1� i

�
)E(t)�F(t) (13.G.12)

Introducing as in Complement 4.D the intensity I and the phase �, E(t)� I���e��,
this differential equation can be separated into:

d

dt
I� c�(�


� �)I� 2�IRe[F(t)e���] (13.G.13a)

d

dt
��

1

2
c�(�


� �)

�
�

1

i�I
Im[F(t)e���] (13.G.13b)

We now add to these two equations, the variation in the carrier number n, and
return to the notation introduced in Complement 13.F (see (13.F.2)). We thus
obtain the Langevin equations for a semiconductor laser medium:

d

dt
s� (�G� �


)s�R

����
�F

#
(t) (13.G.14a)

d

dt
��

1

2
(�g� �


)
�
�F�(t) (13.G.14b)
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d

dt
n� �

���
n�Gs�

1

qd

d

dt
J�F

�
(t) (13.G.14c)

Langevin equations for a semiconductor laser

Alongside (4.D.15), we have added to the evolution equation for the photon
number s (13.G.14a) the deterministic spontaneous recombination term R

����
, in

such a manner as to make the average of the random term �F
#
(t)
 zero. This term

R
����

(in cm�� s��) is the radiative recombination rate obtained in Section 7.5 and
was already introduced in Complement 13.E: R

����
� Bnp� n/#

��"
, where B is

the radiative recombination coefficient, #
��"

is the radiative lifetime (see Eq. (7.61)),
and  is the spontaneous emission coefficient (see Complement 13.E).

We still need to determine the autocorrelation functions for the Langevin
functions F

#
(t), F

�
(t), and F�(t). The procedure for the calculation is the same as

that developed in Complement 4.D. As the calculation is fairly involved, we will
limit ourselves here to a summary of the results:

�F
#
(t)F

#
(t�)
� 2D

##
�(t� t�); D

##
�R

����
s (13.G.15a)

�F
�
(t)F

�
(t�)
� 2D

��
�(t� t�); D

��
�R

����
s� �

���
n (13.G.15b)

�F�(t)F�(t�)
� 2D���(t� t�); D���
R

����
4s

(13.G.15c)

where we have neglected the cross terms in D
#�

. A fairly complete description of
this last calculation can be found in C. H. Henry (1982).

13.G.1 Linewidth broadening

Integration of equation (13.G.14b) yields:

�(t)��(t
�

)�
1

2

R
����
s
�


�
(t� t

�
)�

�

�
��

F�(u)du (13.G.16)

where we have made use of the fact that �G� �

�R

����
/s
�

at stationary state (Eq.
(13.G.14a)). Carrying out the same calculation as in Complement 4.D, we obtain a
laser emission linewidth �� of:

���
h�

2�#�

P

���

(1� �
�

) (13.G.17)

Emission linewidth for a semiconductor laser

whereP
���

is the output power of the laser. We now understand the justification for
referring to be as a ‘linewidth broadening factor’. With a typical value of 5 for 

�
at

room temperature, the linewidth is increased by a factor of 26 relative to the
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Schawlow—Townes linewidth obtained in (4.D.31).

Example
We consider a semiconductor laser cavity (h�� 1 eV) with a length of 300 �m, a
parasitic loss coefficient �

<
of 10 cm��, and two mirrors with reflectances of 0.3.

The mirror loss �
�

is then 1/(3� 10�� cm)� ln 0.3 or 40 cm��. If the semiconduc-
tor possesses an optical index of 3.3, the photon lifetime #


� 1/c��


is then

3.3/(3� 10�� cm s��� 50 cm��) or 2.2 ps. Assuming an output power of 1 mW and
a value for 

�
of 5, the laser diode will exhibit an emission linewidth of:

���
1.6� 10�� J

2�(2.2� 10��� s)� 10��W
(1� 5�)� 140 MHz

13.G.2 Relative intensity noise (RIN) and optical link budget

In order to determine the noise amplitude in laser diodes resulting from Langevin
force fluctuations, we expand (13.G.14a) and (13.G.14c) in the same fashion as in
Complement 13.F (see (13.F.7)). As we are not interested in fluctuations due to
current, we can set �J� 0 in these equations leaving:

(i���
�
)dn�G

�
�s�F�

� (13.G.18)
��G

�
s
�
�n� (i���

#
)�s�F�

#

where F�
�

and F�
#

are the Fourier transforms of the Langevin forces. We recall,
however, that these Fourier transforms do not possess a mathematical existence
per se, but are rather an intermediary step in the calculation as exposed in
Complement 4.D. Only the quantities �F

#
(t)�
��F�

#
F�
#
*
�f� 2D

##
�f and

�F
�
(t)�
��F�

�
F�
�
*
�f� 2D

��
�f are in fact defined and represent the noise power

contained in a bandwidth �f.
The system of equations in (13.G.18) can be solved immediately to find:

�� s�
�G

�
s
�
F�
�
� (i���

�
)F�
#

(��
!
���)� 2i��

!

(13.G.19)

The variance ��s�s*
 of �s can be obtained by writing:

��s�s*
�
(�G

�
s
�
)��F�

�
F� *
�

� (�����

�
)�F�

#
F� *
#



(��
!
���)�� (2��

!
)�

(13.G.20)

where the relaxation frequency �
!

and the laser damping coefficient �
!

are as
introduced in (13.F.12) and (13.F.13), respectively.

We define the ratio of the variance ��s�
 with s�
�

as the relative intensity noise
(RIN). The RIN relates to (13.G.20) according to:
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Fig. 13.G.2. Relative intensity noise (RIN) for a typical 1.55 �m laser diode using the
parameters listed in Table 13.F.1.

RIN�
��s�

s�
�
�f

�
��s�s*

s�
�

(13.G.21)

Given the variances in (13.G.15), the RIN may be written as:

RIN� 2
R

����
s
�

(�����
�

)� (�c�g
�
s
�
)�(1� �

���
n
#
/R

����
s
�

)

(��
!
���)�� (2��

!
)�

(13.G.22a)

Relative intensity noise or RIN for a laser diode

Dimensional analysis of this ratio shows that the RIN is expressed in units of Hz��
(and in accordance with definition (13.G.21)). As this number is generally weak, it
is customary to express it in terms of dB Hz��. The relative intensity fluctuations
��s�
/s�

�
over a bandwidth �f can then be obtained by the formula:

��s�

s�
�

� 10��."�����f�RIN �f

Therefore, a RINdB of�160 dB Hz�� corresponds to a RIN of 10���Hz��. Figure
13.G.2 shows the result of a RINdB calculation using Eq. (13.G.22). The par-
ameters used for this calculation are those presented in Table 13.F.1 for a typical
laser diode used in telecommunications applications. Several points are worth
noting from these results:
∑ the noise is at a maximum at resonance, which is also the general result from

electrical circuit theory;
∑ the noise decreases as the injection current and laser power increase;
∑ the noise levels drop rapidly at reduced modulation frequencies.
An interesting limiting condition for RIN occurs at very low modulation frequen-
cies (�� 0) and large photon densities s

�
(c�g

�
s
�

 �

���
and R

��
on s

�

 n

#
�
���

):
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Fig. 13.G.3. Optical budget considerations in optical telecommunications.

RIN � 2
R

����
#�


s
�

(13.G.22b)

where we recall that #


is the photon lifetime in the cavity. For typical laser
diode parameters given in Table 13.F.1, we find a RIN, assuming a power of
1 mW, of 2� 1.7� 10�� s��� (1.6� 10��� s)�/3.6� 10�� 2.4� 10���Hz�� or
�156 dB.

The RIN parameter is an essential component for calculating the optical budget
in telecommunications applications. The current i(t) generated in a photodetector
by a laser output signal P(t) is given by (11.18) or (11.41) to be:

i(t)� )q
P(t)

h�
(13.G.23)

where ) is the total efficiency, given the link and detector losses (see Fig. 13.G.3).
The fluctuations in P(t), will also cause the total diode current to fluctuate. Given
the proportionality relation (13.G.23), the relative variance ��i(t)�
/i�

�
in the

current is identical to the relative variance in the signal ��P(t)�
/P�
�

contributed
by the laser diode. As we have shown on several occasions (see Complements 4.D
and 11.A), variance of the temporal fluctuations and the frequency spectrum of the
fluctuations S

<
( f ) (i.e. the average noise power in the frequency bandwidth �f ) are

related according to:

��P(t)�
�
��

�
��

�P(t)�dt�

����

�
�

S
<
( f )df�S

<
( f )�f (13.G.24)

This allows one to relate the variance of the photodetector noise to the laser diode
RIN:

703 13.G Laser diode noise and linewidth



RIN�
��i(t)�

i�
�
�f

�
S
�
( f )

i�
�

�
S
<

( f )

P�
�

�
S
#
( f )

s�
�

(13.G.25)

In an optical budget calculation, (13.G.25) therefore allows one to calculate the
photodetector reception noise due to the laser diode. The laser RIN must then be
compared with the noise contributed by the detector itself (by employing the
concept of detectivity as explained in Complement 11.B), and by the optical fibre
(e.g. polarization noise, amplification noise, . . .).

Example
We consider a laser diode with the device parameters listed in Table 13.F.1.
Assuming an operational powerP

�
of 3 mW and a modulation frequency of 1 GHz

(�f� 10Hz), the laser diode will have a RIN of �150 dB (see Fig. 13.G.2). If the
global link efficiency )� 0.1, the photocurrent i

�
would be:

i
�
� )

P
�

(h�/q)
� 0.1

3� 10��W

0.8 eV
� 0.37 mA

The relative current fluctuation in the photodetector is then:

���i(t)�
� i
�

(10���� 10)���

implying a variance of 10��� i
�

or 3.7� 10��A.
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13.H Unipolar quantum cascade lasers

One characteristic of semiconductor laser diodes is that two carrier types (elec-
trons and holes) come into play in a forward biased diode. This makes traditional
laser diodes bipolar devices. Another class of lasers exists whose operation is
founded uniquely upon electrons — these are unipolar quantum cascade lasers. In
this case, the idea is to make use of intersubband transitions in quantum wells (see
Section 11.6). Just as intersubband absorption can be used in quantum well
detectors, intersubband gain is employed in this type of laser. The principal
concepts which enable the operation of this device are illustrated in Fig. 13.H.1:
∑ A quantum cascade laser is a four-level laser. Electrons coming from level �4
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Fig. 13.H.1. (a) Schematic representation of intersubband transitions in a quantum well
based quantum cascade laser. (b) Condition on momentum transfer in the E(k) diagram. (c)
Bias conditions allowing resonant tunnelling between successive quantum wells.

(actually a level �1
 belonging to an adjacent quantum well), tunnel across the
barrier material into level �3
 of the quantum well. Due to the existence of a
forbidden energy mini-band (resulting from the periodic succession of potential
barriers provided by the wells, which act as an ‘electron Bragg grating’), the
electrons cannot easily tunnel into continuum states and can only recombine in
the quantum wells (Fig. 13.H.1a).

∑ In order to ensure that the lifetime #
��

for transition �2
� �1
 is significantly less
than the lifetime #

��
for �3
� � 2
 (i.e. a requirement for population inversion —

see Chapter 4), the energy separation E
��

is made resonant with the optical
phonon energy in the host semiconductor (E

��
� ��

��
� 34 meV for GaAs, see

Complement 6.B) which leads to #
��

� 0.4 ps (Fig. 13.H.1b).
∑ The transition �3
� �2
 must involve significant momentum transfer q in terms

of optical phonon emission so that the lifetime #
��

becomes as long as possible
(see Complement 6.B and Eq. (6.B.39) where the transition rate was shown to
vary as 1/q�) (Fig. 13.H.1b).

∑ The barrier material which separates the quantum wells must be of the
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Fig. 13.H.2. Band structure for a quantum cascade laser. (C. Sirtori@THALES.)

appropriate composition and thickness so that under the influence of an electric
field, level �1
 in one well becomes resonant with level �3
 in an adjacent
‘downstream’ well (Fig. 13.H.1c).

When all these conditions are satisfied, we obtain the complex structure shown in
Fig. 13.H.2. The device structure is engineered so that the matrix elements z

��
are

as large as possible. The potential structure obtained under the influence of an
electric field appears as a staircase across which electrons will cascade (hence the
name for this type of laser). At each ‘step’ down the structure, an electron will
release a photon. If optical feedback is made available, laser oscillation over these
transitions becomes possible. We will calculate the operational characteristics for
a quantum cascade laser with the following device parameters:
∑ Emission wavelength �� 9.3 �m implying a radiative lifetime #

!
of 60 ns (see

Eqs. (3.69) and (3.71));
∑ lifetime in level �2
 #

�
� 0.23 ps (including the combined effects of optical

phonons and tunnelling);
∑ lifetime in level �3
 #

�
� 1.5 ps resulting in a quantum electroluminescence

efficiency )� #
�

/#
!

of 2.5� 10�� (see Eq. (13.13));
∑ 1 mm cavity length;
∑ effective optical index in the guide n

��
� 3.26 resulting in a reflectanceR

�
of 0.28

and a mirror loss coefficient �
�

of 1/LlnR� 18 cm��;
∑ a parasitic absorption coefficient �

�
of 45 cm�� due to free carrier absorption,

which is extremely efficient at these long wavelengths (see Complement 7.C and
Eq. (7.C.12), where �

�
is proportional to ��);

∑ the confinement factor forN quantum wells �
+

is given byN�
�

, where �
�

is the
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single well confinement factor (�
�
� d/d

��"	
, where d is the quantum well

thickness and d
��"	

is the mode width) so that �
+
� 0.33 for 25 wells.

The condition for laser oscillation is then given by setting the gain and the losses at
threshold equal to each other (13.26):

��
���	���
"

� �
�
� �

�
(13.H.1)

resulting in a gain for the quantum wells of 190 cm��. The gain � (cm��) due to the
interband transitions �3
� �2
 is given by either (8.87b) or (11.57) to be:

��
(qz
��

)�

�
Z
�
n
��

h�
��
��

�n
��
d

(13.H.2)

where d is the well thickness (10 nm), Z
�

is the vacuum impedance (377�), ��
��

is
the broadening of the transition (typically 10 meV), h� is the resonant photon
energy (130 meV), and z

��
is the dipolar matrix element (of the order of 2 nm). This

results in a threshold density of 2� 10�� cm�� — weak in comparison with that
obtained for interband lasers (�10�� cm��). This difference results from the larger
oscillator strengths associated with intersubband transitions. The inversion den-
sity �n

��
� n

�
� n

�
is related to the pump current through (13.3), i.e:

J

q
�

�n
��

#
�

(13.H.3)

We therefore obtain a threshold current of 5 kA cm��. This extremely large thresh-
old current results from the short lifetime in the excited state. In spite of these
elevated threshold currents, quantum cascade lasers possess a number of advan-
tages. The three dominant ones are:
∑ These lasers can be designed to operate at any fixed wavelength between 4 and

13 �m without changing material systems. This can be achieved through band-
gap engineering as described in Chapter 8.

∑ The output power emitted by anNwell quantum cascade laser is extremely high
(several hundred milliwatts) as a single electron can emit a total of N photons
(one per well). The output power can be written (from (13.34)) as:

P
���
� )

	��
N
h�
q

(I� I
���	���
"

) (13.H.4)

Clearly, as the applied voltage isN� h�, the wallplug efficiencyP
���

/P
	


remains
unchanged (see (13.37b)).

∑ We saw in Fig. 13.D.4 that the maximum operating temperatures were deter-
mined by Auger recombination. The Auger mechanism, however, is virtually
non-existent in intersubband transitions as the subbands are parallel (see Com-
plement 6.D and Fig. 6.D.1). As a result, the characteristic temperatures T

�
for
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Fig. 13.H.3. Maximum operational temperatures for quantum cascade lasers at various
wavelengths. (C. Sirtori@THALES.)

intersubband lasers are quite high. For example, for a laser that emits at 9.3 �m,
T
�
� 140 K. Quantum cascade lasers can therefore be operated in pulsed mode

all the way up to room temperature even at such long emission wavelengths (see
Fig. 13.H.3).

FURTHER READING
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Electron. QE-33, 89 (1997).

13.I Mode competition: cross gain modulators

We saw in Complement 11.E that near threshold, a semiconductor laser can
oscillate in multimode fashion even though the gain medium is homogeneous.
Driven sufficiently far from threshold so that spontaneous emission becomes
negligible in comparison with stimulated emission, the laser will eventually re-
cover its single mode behaviour. We will now study this phenomenon in greater
detail. We will show that this effect can be understood in terms of cross-saturation,
and see how this effect is harnessed in an optoelectronic device — the cross gain
modulator.

We start with (13.E.7), which describes the dynamic equations for a laser cavity
in a multimode regime. To simplify the calculations, we will assume that the laser is
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operated far above transparency so that n
 n
��

and R
����

is negligible, and that
only two modes are present. Equation (13.E.7) can then be written:

dn

dt
�
J

qd
�

n

t
���

� c�g
�
ns
�
� c�g

�
ns
�

(13.I.1)
ds
�

dt
��c�g

�
ns
�
�
s
�
#


, i� 1, 2

We recall that n and s are the electron—hole pair and photon densities, respectively,
J is the pump current density; d is the thickness of the active region; t

���
is the total

recombination time; #


is the photon lifetime in the cavity; g
�

the dynamic gains; c�
the speed of light in the medium; and � is the confinement factor. At stationary
state, (13.I.1) gives the electron—hole pair density:

n�
n
�

1� c�g
�
t
���
s
�
� c�g

�
t
���
s
�

(13.I.2)

where n
�
� Jt

���
/qd is the cold-cavity density of electron—hole pairs and leads to a

medium gain G
�

for the ith mode of:

G
�
�

G
��

1� �
�
s
�
� �

�
s
�

(13.I.3)

where G
��
��c�g

�
n
�

is the cold-cavity gain and �
�
� c�g

�
t
���

. As in Complement
11.F, and following common practice, the � terms designate the inverse photon
saturation densities s

���
for which the magnitude of the gain decreases by a factor of

2 (see Chapter 4). In this last equation, (13.I.3), we see that the gain at one
wavelength can be saturated by a pump beam at a different wavelength. This
cross-gain saturation effect is exploited in cross gain modulators. We will now
explain the operation of this device.

This device is able to transfer a modulated signal with carrier wavelength �
�

into
a modulated signal with carrier wavelength �

�
. To accomplish this, a semiconduc-

tor (MOPA type) optical amplifier is pumped by a continuous beam at �
�

with an
intensity which approaches the saturation density (see Fig. 13.I.1). The additional
signal at �

�
saturates the medium (see (13.I.3)) and the wave at �

�
experiences a

decrease in gain. The output power at �
�

therefore decreases when the input power
at �

�
increases. Thus, a signal initially carried at �

�
becomes ‘negatively’ mapped

onto a light beam at �
�

(see Fig. 13.I.1b).
We will now give a brief description of the dynamic behaviour of the laser due to

competition between modes 1 and 2. To do so, we will assume that the laser gainG
is in a stationary regime and that the optical modes are not. This comes down to
having t

���
�#


, which holds for atomic transition lasers but not for semiconductor

lasers. While it is not absolutely necessary to make this approximation, not doing
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Fig. 13.I.1. Operation of a cross gain modulator.

so would bury the key physical aspects of the problem we wish to expose.
Substituting the expression for the saturated gain (13.I.3) into (13.I.1) leads to:

s"
�
�

G
��

1� �
�
s
�
� �

�
s
�

s
�
�
s
�
#


, i� 1, 2 (13.I.4)

We assume that the medium is only slightly saturated (meaning �
�
s
�
� 1) allowing a

limited expansion of (13.I.4) as:

s"
�
� �

�
s
�
� �

�
s�
�
� "

��
s
�
s
� (13.I.5)

s"
�
� �

�
s
�
� "

��
s
�
s
�
� �

�
s�
�

In this last expression, we have introduced the following notation:

�
�
�G

��
�

1

#


, �
�
�G

�
�
�
, "
��
�G

�
�
�

(13.I.6a)

which are, respectively, the global gain (resulting from competition between the
cavity gain and losses), the autosaturation, and cross-saturation terms. Within the
context of approximation (13.I.5), we see that there are two stationary solutions in
terms of the photon density to the two equations:

(�
�
��

�
s
�
� "

��
s
�

)s
�
� 0

(13.I.6b)
(�
�
� "

��
s
�
� �

�
s
�

)s
�
� 0
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Fig. 13.I.2. Of the two stationary solutions to the mode competition equation, (13.I.5),
indicated by circles, only the mode with the greater gain (i.e. that furthest from the origin) is
stable.

It is straightforward to show that the lines �
�
� �

�
s
�
� "

��
s
�

do not intersect. The
solutions thus lie at the intersections of the lines defined by conditions (13.I.6b) and
the co-ordinate axes, and are represented in Fig. 13.I.2: point A (s

��
� 0 and

s
��
� �

�
/�
�
) and point B (s

��
� 0 and s

��
� �

�
/�
�

). We will see that only one of
these two points constitutes a stable solution to (13.I.5).

Near point A, the photon density can be expanded in the form of s
�
� �s

�
and

s
�
� s

��
� �s

�
. The differential Eqs. (13.I.5) are then linearized and can be written

in matrix form as:

�
�s"
�

�s"
����

��
�

�"
��

�
�

�
�

0 �
�
� "

��

�
�

�
�
� �

�s
�

�s
�� (13.I.7)

We see that the solution is stable only if:

�
�
�"

��

�
�

�
�

(13.I.8)

which, given definitions (13.I.6), corresponds to:

G
��

�G
��

(13.I.9)

In other words, although both wavelengths experience positive gain in the cavity,
at stationary state the laser will preferentially oscillate in the mode with the highest
gain (hence the term mode competition). Using the same formalism, we could have
shown that an inhomogeneously broadened medium will exhibit stationary multi-
modal operation.
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absorption
absorption coefficient, 98, 309—12
absorption coefficient and radiative lifetime, 110
absorption probability, 105
absorption saturation, 98, 99
Drude model for free carrier absorption, 336
Einstein coefficient for absorption and

stimulated emission, 111
and the Franz—Keldysh effect, 326—7
optical absorption and angle of incidence,

369—76
saturation, 102—4
separate absorption—multiplication photodiodes,

511
and spontaneous emission, 306—12
strong/weak states and SEED, 391—2
see also free-carrier absorption

acceptor, 222
acoustical phonons, 275—6
adiabatic approximation and corpuscular

interpretation, 100—1
Afromowitz model, and optical index of

semiconductors, 331—3
Airy function, and Franz—Keldysh effect, 323—5
amplified spontaneous emission (ASE), lasers,

683—9
angle of incidence and optical absorption, 369—76
anti-reflection coatings, photoexcited

semiconductors, 481
atomic orbitals, linear combination of, 230—4
atomic polarization, 97
Auger recombination, 262, 289—95

Auger coefficient, 294
and diode leakage current, 474
and total recombination rate, 614—15
in unipolar quantum cascade lasers, 707—8

autocorrelation spectrum concept, 117—19
autosaturation and cross-saturation, 710
avalanche breakdown, 285—9

and Lagrange’s method and multiplier, 286
and the lucky electron model, 287—9

avalanche photodetectors, 509—12
electron injection current multiplication factor,

512

generation current multiplication factor, 510
hole injection current multiplication factor, 512
separate absorption—multiplication photodiodes,

511

band folding, 203
bandgap, typical values, 300
bandgap engineering, applied to unipolar quantum

cascade lasers, 707
bandwidth considerations, lasers, 185—93
Bardeen model, surface phenomena, 451
Bernard—Durrafourg condition/criterion

in heterojunction diodes, 625
strained quantum well lasers, 666

bimolecular recombination coefficient, 313—16
binding energy, two-dimensional excitons, 386
birefringent phase matching, 573—9

graphical method, 575
index ellipsoid, 573
MATHEMATICA programs, 577—8
ordinary and extraordinary polarization, 573—4

blackbody radiation, 71—5
and Boltzmann law, 73
and the Bose—Einstein distribution, 74
Planck’s law (blackbody spectrum), 75

BLIP (background limited infrared performance)
see detectivity limits

Bloch functions, optical, 51—2
Bloch oscillations, 211—12, 245
Bloch—Floquet functions, 201—3, 232—3, 235,

296—8, 365
Bloch—Floquet theorem, 228
and envelope function formalism, 345—9

blue shifted resonant optical transitions, 38, 362
Bohr frequency, and time-dependent perturbations,

22
Bohr oscillation frequency, 6—7
Boltzmann’s equations, 214, 245—51

and the Boltzmann functions, 311
Boltzmann’s constant, 249
and Drude’s model, 251
and Einstein’s relation, 250
and Fick’s law, 250
and hot electrons, 257
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Boltzmann’s equations (cont.)
and Ohm’s law, 250
and thermal noise, 518—19
and the transport equations, 266

Boltzmann’s law, and blackbody radiation, 73
Born—von Karman cycle boundary conditions, 202,

208, 227, 243, 297, 354
Bose—Einstein distribution, and blackbody

radiation, 74
bosons, 65

and phonons, 280
bound-to-bound transitions, quantum wells, 368
bowing parameter, strained quantum well lasers,

667
Bragg waveguides and reflectors, 421—6

Bragg frequency, 662
Bragg gratings, 421
Bragg mirrors, 442—6, 660, 673—4
Bragg wavelength, 664
coupled modes, 423, 664
Fraunhofer-type diffraction problems, 422
length considerations, 425
MATHEMATICA program, 445—6
phase mismatch, 422—3
spectral bandwidth, 424

Brillouin zones, 205
first, 203, 204, 296, 302—3
and the nearly free electron model, 229—30
and optical interband transitions, 361—2

broadened energy spectrum, 306
broadening see homogeneous broadening;

inhomogeneous broadening

carrier statistics in semiconductors see doped
semiconductors; Fermi/Fermi—Dirac
statistics; intrinsic semiconductors

characteristic temperature, lasers, 682
chemical bonding, 34—5
coherence elements, density matrix, 26
coherence length, optical second harmonic

generation, 548
coherent state (Glauber) concept, 66, 67—71

corpuscular model, 71
Poisson’s law/distribution, 67—9
probability theory, 68

cold cavity gain, lasers, 142, 171, 172
collision mechanisms see scattering mechanisms
conditional distribution function, and thermal

noise, 519
conduction band, 213

effective mass typical values, 300
confinement energy, quantum wells, 354
confinement factor

with unipolar quantum cascade lasers, 706—7
waveguides, 407—10

continuity equation, 266
lasers, 174

convolution theorem, and detector noise, 516
corpuscular interpretation and adiabatic

approximation, 100—1
corpuscular model, 71
correspondence principle, 91—2

quantum mechanics, 4—5
Coulomb energy from electron—electron

interaction, 380
Coulomb gauge, 92—3
coupled mode theory, waveguides, 410—13
critical thickness, quantum wires and boxes, 379
cross gain modulators, 708—11
cross saturation and auto saturation, 710
crystal structures, 199—204

damping coefficient, lasers, 693
dangling bonds, 448
dark current, photodiodes, 472—3
de Broglie wavelength, 1

and quantum wells, 9
Debye wavevector/length

and scattering mechanisms, 252—4
and the transport equations, 267—70

deep defects in semiconductors, 242—4
deformation potential, strained quantum well

lasers, 667—8
degenerate systems, 217
density matrix, 23—8

coherence elements, 26
diagonal and off-diagonal elements, 25—6
diagonal relaxation time, 27
mixed quantum ensembles, 24—6
pure quantum ensembles, 24
relaxation time for a two-level system, 26—8
Schrödinger’s equation in density matrix

formalism, 24
Schrödinger’s equation for a mixed ensemble, 25
time-evolution of elements, 27

density of states, and effective mass, 206—10
depletion length, 447

and the transport equations, 268—70
Descartes—Snell waveguide theories, 397
detailed balance, principle of, 264
detectivity limits: background limited infrared

performance (BLIP), 530—7
MATHEMATICA program for noise equivalent

temperature, 536—7
noise equivalent power (NEP), 531—2
noise equivalent temperature difference (NETD),

535—6
detector noise, 513—30

autocorrelation function, 514—15
basic concept, 513, 514
ergodic process, 516
fluctuations, 514—18
gain noise, 529
generation noise, 513
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generation—recombination noise, 521—5
photoconductor with recombination, 524
photodiode without recombination, 523—4
quantum well photoconductor

generation—capture noise, 524—5
injection noise, 526
multiplication noise, 525—30

bulk generation, 527—8
electron injection, 528—9
hole injection, 529
multiplication noise factor, 527—8

photon noise and photoelectron noise, 529
physical origin, 518
power spectrum of generated current, 515, 522—3
readout circuit noise, 529
thermal noise, 518—21

and the conditional distribution function, 519
fluctuation—dissipation theorem, 520
noise power spectrum, 519—20
see also noise

diagonal relaxation time, density matrix, 27
difference frequency generation (DFG), 560—2
diode leakage current, 470—4

Auger recombination, 474
and the generation—recombination current limit,

473
ideality factor, 473
impurity recombination, 474
photodiode dark current, 472—3
radiative recombination, 473—4
saturation current, 473

diodes see diode leakage current; double
heterojunction laser diodes; Gunn diodes;
light emitting diodes (LEDs); p—i—n diode;
p—n heterojunction diode; p—n junction;
quantum well laser diodes;
superluminescent diodes/LEDs

dipolar elements in direct gap semiconductors,
296—301

dipole matrix element, 300
Dirac function, 20, 22, 115, 297, 310

Dirac notation, 2
and Lorentzian distribution, 304

Dirac’s operator algebra, 47
dispersion relation, waveguides, 400
displaced Maxwell approximation, and hot

electrons, 258
distributed feedback (DFB) lasers, 656, 660—6

Bragg condition, 665
Bragg frequency, 662
Bragg mirror, 660
Bragg wavelength, 664
MATHEMATICA program, 663
single longitudinal mode oscillation, 665

doped semiconductors, 222—4
Doppler effect, and inhomogeneous broadening,

120

double heterojunction laser diodes, 629—37
differential external quantum efficiency, 636—7
injection laser with two cleaved mirrors, 630
internal quantum efficiency, 635
intrinsic losses, 631
laser threshold, 629—33
origin of large gain, 630
output power, 634—7
parasitic loss, 631
rate equations, 634
threshold condition, 632
threshold current density, 635
wall-plug efficiency, 637
waveguide structure, 632

doubly resonant optical parametric oscillators
(DROPOs), 557—60, 590, 591, 595

basic principles and characteristics see optical
parametric oscillators (OPOs)

continuous wave characteristics
balanced DROPOs, 608—10
general case, 610—12

Drude’s model, 251
for free-carrier absorption, 336

edge emitting LEDs, 656
effective mass

and the concept of holes, 210—15
and density of states, 206—10
effective mass matrix, 206

eigenvalues/eigenvectors/eigenstates
and quantum mechanics, 2—4
stationary states, 7

Einstein’s coefficients and equations
absorption and stimulated emission coefficient,

111
for broadband optical transitions, 131—3
for quasi-monochromatic transitions, 131—3
rate equation, 111
spontaneous emission coefficient, 111

Einstein’s phonons (longitudinal phonons), and
harmonic oscillators, 49—50

electric dipole Hamiltonian, 93
electrical injection, LEDs, 613—14
electro-optic switches see optical coupling between

waveguides
electroluminescence, 617—19
electroluminescent diodes see light emitting diodes

(LEDs)
electromagnetic wave quantization, 61—3

creation and annihilation operators, 63
Hamiltonian

for electromagnetic field in real space, 61
for electromagnetic field in reciprocal space,

61—2
quantum Hamiltonian for the electromagnetic

field, 62—3
vacuum fluctuation field, 63
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electron, quantum mechanics of, 1—55
continuums, problems with, 29—33
correspondence principle, 4—5
de Broglie wavelength, 1
Dirac notation, 2
eigenvalues, 2—4
and electron spin, 30
Hamiltonian of systems, 4
Heisenberg’s uncertainty principles, 5
Hermitian operators, 2
Hermitian scalar product, 2
Hilbert space, 2
optical Bloch equations, 51—2
perturbations on a degenerate state, 33—7
Planck’s constant, 1
probabilistic interpretation, 3—4
pseudo-quantification, 29—30, 32
quantum confined Stark effect, 37—41
quantum states and functions, 2
Rabi oscillations, 53—4
representations, 4
time-dependent perturbation theory, 18—23
time-independent perturbation theory, 15—17
transition probabilities, 50—5
see also density matrix; perturbation theory;

quantum wells; Schrödinger equation
electron spin, 30
electron—photon interaction, quantum mechanics

of, 91—138
absorption saturation, 102—4
adiabatic approximation and corpuscular

interpretation, 100—1
atomic polarization, 97
correspondence principle, 91—2
Coulomb gauge, 92—3
dipolar interaction Hamiltonian for electrons

and photons, 91—3
Einstein coefficients for broadband optical

transitions, 131—3
Einstein coefficients for quasi-monochromatic

transitions, 131—3
electric pole Hamiltonian, 93
Fermi’s second golden rule, 128
Feynman diagram, 125—6
Göppert—Mayer gauge, 93
Hamiltonians A · p and D ·E equivalence, 133—8
homogeneous broadening, 116—20
linear optical susceptibility

absorption and optical gain, 96—100
by density matrix, 93—6

Lorentzian function, 115
Maxwell’s equations with, 97—8
oscillator strength, 99
polychromatic transitions and Einstein’s

equations, 110—11
population inversion, 103
Rabi frequency, 95

rate equations, 100—4, 111—14
monochromatic single-mode waves, 112—13
multimode monochromatic waves, 113—14
polychromatic waves, 114

saturation flux for a two level system, 103
Schrödinger’s equation, 94
second-order time-dependent perturbations,

123—31
interaction picture, 124

spontaneous emission and radiative lifetime,
104—10

and absorption probability, 105
and emission probability, 106
rate equations, 109—10
spontaneous emission factor, 110
spontaneous emission rate, 167

stimulated emission, 101—4
Thomas—Reiche—Kuhn sum rule, 99—100
two-photon absorption coefficient, 129—30

electronic affinity of semiconductors, 449—50
energy bands, 204—6
energy of a hole, 380
energy relaxation time, hot electrons, 258
envelope function

envelope function formalism, 344—50
and excitons, 383

ergodic principle, 118
ergodic process, detector noise, 516
Eulerian co-ordinates, 174—5
exchange—correlation potential, 380
excitons, 380—8

three-dimensional, 381—5
envelope function, 383
and the Rydberg, 383
Sommerfield factor, 384
and the two-body Schrödinger equation, 381
and the two-particle state, 381

two-dimensional, 385—8
binding energy, 386

Fabry—Pérot type cavity/resonance frequency,
437—42

cavity quality factor, 442
with lasers, 186, 191
and phasors, 440
transmittance, 437
see also Bragg waveguides and reflectors

far-field approximation, laser diode spatial
distribution, 656—8

Faraday—Ampere law/equation, 56, 77
Fermi level

and p—n junctions, 456—60
and surface phenomena, 448—50

Fermi/Fermi—Dirac statistics, 216—21
Fermi integral, 216
Fermi level, 217—19, 223—4, 225, 314
Fermi level and carrier concentrations, 220
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Fermi—Dirac distribution function, 216, 308, 313
Fermi—Dirac functions, 302—6, 311
Fermi—Dirac statistics for holes, 219
hole concentration and Fermi level, 219
occupied Fermi level: degenerate system, 217
quasi-Fermi level in a non-equilibrium system,

224—6
unoccupied Fermi level, 218—20

Fermi’s golden rule
and absorption and spontaneous emission,

306—7
and the Franz—Keldysh effect, 325
and optical intersubband transitions, 366
and time-dependent perturbations, 23

Fermi’s second golden rule, 128
Feynman diagram, 125—6
fibre amplifiers, 173
Fickian diffusion, and p—n junctions, 458
Fick’s law, and Boltzmann’s equations, 250, 266—7
fluctuation—dissipation theorem, and thermal

noise, 520
Fourier transform

Fourier space (reciprocal space), 58, 60
inverse Fourier transform, 58—9
Plancherel—Parseval identity, 59
properties of, 58—61

Fourier’s heat equation, and thermal aspects of
lasers, 676—7

Fowler’s law, and internal emission photodiodes,
499

Frantz—Nodvik model, lasers, 175, 176
Franz—Keldysh effect electromodulator, 321—8

and absorption in presence of an electric field,
326—7

and the Airy function, 323—4
and Fermi’s golden rule, 325
and the quantum confined Stark effect, 390
and Schrödinger’s equation for a crystal in an

electric field, 322
and the Zener effect, 322, 324

Fraunhofer-type diffraction problems, 422
free-carrier absorption, 333—41

Drude model, 336
interband transitions, 333
intraband transitions, 333
strong conductivity, 334—5
weak conductivity, 335—6

frequency conversion in non-linear waveguides,
427—34

TE mode in—TE mode out, 427—33
conversion efficiency, 429—30
phase matching length/coherence length, 429
quasi-phase matching, 430—3

TE mode in—TM mode out, 432—4
frequency conversion in semiconductors see optical

frequency conversion in semiconductors;
optical second harmonic generation; second

harmonic frequency generation, a
mechanical description

frequency pulling, lasers, 182
Fresnel representation of an electric field, 189
Fresnel theory on waveguides, 397
Fröhlich interaction, 280—5

and deformation potential scattering, 280
and the Lyddane—Sachs—Teller relation, 282—3
and phonon absorption/emission/scattering rate,

283—5
and the piezoelectric effect, 280—1
see also phonons

gain curve, semiconductor, 306
gain saturation and the K factor, 690—6
gain suppression coefficient, lasers, 691
Gauss—Poisson law, 56
Gaussian beam, lasers, 195—6
generation noise, 513
Giordmaine—Miller diagram, optical parametric

oscillators, 590, 591
Glauber’s coherent state see coherent state

(Glauber) concept
Göppert—Mayer gauge, 93
Gunn diodes, and hot electrons, 261

Hall effect, 271—3
Hamiltonian

basic concept, 199—200
electromagnetic field in free space, 61
electromagnetic field in reciprocal space,

61—2
quantum Hamiltonian for the electromagnetic

field, 62—3
Hamiltonian of systems, 4
Hamiltonians A · p and D ·E equivalence, 133—8
harmonic oscillator, 41—50

classical Hamiltonian for, 42
creation and annihilation operators, 43—4
and Einstein’s phonons, 49—50
number operators, 44
one-dimensional, Schrödinger’s equation for, 42
showing that eigenvalues of N are positive

integers or zero, 44—7
Heisenberg’s uncertainty principles, 5

first uncertainty relation, and harmonic
oscillators, 47

and the photon, 64—5
second uncertainty relation, and time-dependent

perturbations, 22
Henry C., laser linewidth model, 697—700
Hermitian operators, 2
Hermitian scalar product, 2
heterojunction diodes, optical amplification, 624—9
heterostructures/heterojunctions, 342—4

conduction bands, 343
critical thicknesses, 343
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Hilbert space, 2
hole, 214—15, 240
homogeneous broadening, 116—20

due to elastic collisions: temporal coherence,
116—20

due to finite lifetime (inelastic collisions), 116
see also inhomogeneous broadening

hot electrons, 257—61
and Boltzmann’s equation, 257
and the displaced Maxwell approximation, 258
energy relaxation time, 258
momentum relaxation time, 258
and negative differential velocity, 260—1
and phonon energy, 260
saturation velocity, 258—60
warm electrons, 257—8

ideality factor, diodes, 456, 473
idler beam, 551
impact ionization, 262
impurity recombination, diodes, 474
index ellipsoid, 573
infrared detectors, performance prediction, 88
inhomogeneous broadening, 120—2

an infinite quantum well, 121—2
Doppler effect, 120
probe beams, 122
pump beams, 122
and spectral hole burning, 122
see also homogeneous broadening

injection noise, 526
instantaneous saturation, lasers, 690
insulators, and band structures, 213
integrating circuit, 517
interaction picture, 124
interband and intersubband transition rates,

369—70
interband and intraband transitions/absorption,

333
interband saturation, 690
internal emission Schottky photodiode, 497—500
intraband relaxation, 690
intrinsic semiconductors, 221—2
inversion population, 103, 139—41, 141—2
ionization transition rate, quantum wells, 32, 33

Jacobian elliptic function, 586—7
joint density of states, 303

K factor, lasers, 694, 695, 696
Kane energy, 300—1
Kane—Kohn—Lüttinger parameters, 240
Kane’s k · p method, 234—41

Kane matrix element, 237
Kramers—Kronig relation, 698

and optical index of semiconductors, 330, 332

Lagrange’s method and multiplier, and avalanche
breakdown, 286

Lamb shift, 67
Langevin-noise force/equation, lasers, 187—9,

696—700
laser cavities

cavity dumping by loss modulation
(Q-switching), 159—63

cold cavity condition maintenance, 159
cold cavity gain, 142, 171, 172
dynamic equations for, 652
Fabry—Pérot type cavity/resonance frequency,

186, 191, 437—42
MATHEMATICA program for pulsed

behaviour, 601
parametric interactions in, 596—602
quality factor, 181
see also vertical cavity surface emitting lasers

(VCSELs)
laser oscillation concepts

bandwidth considerations, 185—93
build-up time, 170
cavity dumping by loss modulation

(Q-switching), 159—63
cold cavity condition maintenance, 159
cold cavity gain, 142, 171, 172
continuity equation, 174
damped oscillations, 158—9
dynamic behaviour, 157
dynamic coupled equations for laser cavity,

157—8
efficiency of, 193—8
electrodynamic equations, 178—85
emission wavelengths of significant media, 143
Fabry-Pérot type cavity/resonance frequency,

186, 191, 437—42
Frantz—Nodvik model, 175, 176
frequency pulling, 182
gain clamping, 150—2
gain condition, 148—9
Gaussian beam, 195—6
homogeneous gain spectrum, 155—6
inhomogeneous gain spectrum, 156
Langevin-noise force/equation, 187—9, 696—700
laser oscillation, 146—50
laser oscillation threshold, 148—9
linewidths of significant media, 143
MATHEMATICA program

Gaussian pulse distortion, 177—8
temporal response of a laser to modulated

cavity loss, 162—3
mode locking, 163—6, 182—3
optical amplification, 141—3
optical cross-sections of significant media, 143
optical feedback, 146
optical gain saturation, 142, 171—8
optical indices of significant media, 143

718 Index



optical resonators, 146—50
oscillation period, 158
output power, 152—4
phase conditions, 149
photon density and pump rate, 152
photon fluence, 176—7
Pockels cells, 159
population inversion, 139—41
pulse propagation amplifiers, 174—5
pump beams/mechanisms, 122, 143—5
pump power at threshold, 197
Q-switching, 159, 161
quality factor for cavities, 181
relaxation time, 158
saturation flux, 142
Schawlow—Townes equation/linewidth, 192
single-mode operation, 156
Slater concept/modes, 178—85
spatial hole burning, 156
spectral characteristics, 154—5
spontaneous emission, 167—70
spontaneous lifetimes of significant media, 143
three- and four-level systems, 143—6
threshold inversion density, 197
Wiener—Kintchine theorem, 191

lasers
amplified spontaneous emission (ASE), 683—9

MATHEMATICA program, 685—6, 688—9
spontaneous emission factor, 683

cross gain modulators, 708—11
damping coefficient, 693
diode pumped, 193—8
edge emitting LEDs, 656
emission linewidth, 700
gain suppression coefficient, 691
instantaneous saturation, 690
K factor, 694, 695, 696
linewidth and noise, 696—704
mode competition, 708—11
multimodal behaviour near threshold, 686
noise and linewidth, 696—704
optical budget, 703
photon saturation density, 690
relative intensity noise (RIN), 701—4
spatial distribution of emissions, 656—9

far-field approximation, 656—8
spectral distribution of emissions, 655—6, 657
thermal aspects, 676—82

characteristic temperatures, 682
dissipation on both sides of the junction,

680—1
emissive surface in an infinite medium, 677—9
Fourier’s heat equation, 676—7
Newton—Fick law, 676

thermal aspects: characteristic temperatures, 682
zero threshold laser concept, 686
see also amplified spontaneous emission (ASE);

distributed feedback (DFB) lasers; double
heterojunction laser diodes; quantum well
laser diodes; strained quantum well
lasers; unipolar quantum cascade lasers;
vertical cavity surface emitting lasers
(VCSELs)

lattice structures, crystals, 199—201
reciprocal lattice, 203

law of mass action (semiconductors), 221
leaky modes, waveguides, 401
LEDs see light emitting diodes
Lenz’s law, 56
light emitting diodes (LEDs), 613—711

applications, 623
construction/manufacture, 623—4
dielectric efficiency, 621
edge emitting LEDs, 656
and electrical injection, 613—17
electroluminescence, 617—19
energy efficiency, 622—3
external quantum efficiency, 622—3
frequency characteristics, 624
internal quantum efficiency, 621—2
non-equilibrium carriers/carrier density, 614—17

Auger recombination term, 614—15
non-radiative combination rate/time, 614—15
spontaneous radiative recombination, 614—15
stimulated recombination rate, 614
total recombination rate/time, 614—15

optical amplification in heterojunction diodes,
624—9

radiative lifetime, 617—18
semiconductor optical amplifiers (SOAs), 628,

629
spontaneous emission lineshape, 619, 620
superluminescent diodes/LEDs, 616, 656
total intensity, 619—20
transmission efficiency, 621—2

linear optical susceptibility
absorption and optical gain, 96—100
by density matrix, 93—6

lineshape function, 118—19
linewidth and noise, lasers, 696—704

emission linewidth, 700
linewidth broadening, 698, 700—1
Schawlow—Townes linewidth, 701

longitudinal phonons see Einstein’s phonons
Lorentz gauge, radiation field for an oscillating

charge, 76—84
Maxwell’s and Lorentz’s equations, 76—7
Poynting vector, 81
radiative lifetime of oscillating electrons, 83

Lorentz model, and the optical index of
semiconductors, 329

Lorentzian distribution, and Dirac function, 304
Lorentzian function, 115
Löwdin’s method, 237, 239
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lucky electron model, and avalanche breakdown,
287—9

Lüttinger parameters, 240, 241
Lyddane—Sachs—Teller relation, and Fröhlich

interaction, 282—3

Manley—Rowe relations, 550—1
many body theory, 380, 381
mass action law, semiconductors, 221
MATHEMATICA program

amplified spontaneous emission (ASE), 685—6,
688—9

asymmetric quantum wells, 571—2
birefringent phase matching, 577—8
Bragg mirror, 445—6
distributed feedback (DFB) lasers, 663
Gaussian pulse distortion, 177—8
for noise equivalent temperature, 536—7
for optical amplification in semiconductors,

318—19
for optical coupling between waveguides, 418—20
optical parametric oscillators (OPOs), 595—6
for pulsed behaviour with laser cavities, 601
quantum well laser diodes, 646
quantum wells, 13—14
temporal response of a laser to modulated cavity

loss, 162—3
for thermography, 89—90
for waveguide confinement factors, 410
waveguides, 403—4

Maxwell’s equations in reciprocal space, 56—8, 59,
267

Fourier space (reciprocal space), 58, 76—7
and linear optical susceptibility, 97—8
Maxwell—Lorentz equations, 57—8, 76
travelling plane waves, 57

Miller parameters, 542
mirrors, 434—7

Bragg mirrors, 442—6, 660, 673—4
injection laser with two cleaved mirrors, 630
metallic and dielectric, 434
and vertical cavity surface emitting lasers

(VCSELs), 434
modal dispersion, waveguides, 407
mode competition, lasers, 708—11
mode locking, lasers, 163—6, 182—3
momentum conservation in optical transitions, 298
momentum relaxation time

hot electrons, 258
and scattering mechanisms, 256

monoatomic lattice, 199
monochromatic waves

absorption, 309
multimode, 113—14
single mode, 112—13

monolithic optical amplifier (MOPA), 628
multiplication noise, 525—30

nearly free electron model, 204, 227—30
negative differential resistance (NDR), and hot

electrons, 260—1
negative differential velocity, and hot electrons,

260—1
negative temperature, 141
Newton—Fick law, thermal aspects of lasers, 676
noise

noise equivalent power (NEP), 531—2
noise equivalent temperature difference (NETD),

535—6
noise and linewidth, lasers, 696—704
relative intensity noise (RIN), lasers, 701—4
see also detectivity limits; detector noise

non-equilibrium carriers/carrier density, 614—17
non-linear waveguides see frequency conversion in

non-linear waveguides

ohmic contact, 455
Ohm’s law, and Boltzmann’s equations, 250, 266—7
optical amplification, 141—3

conditions for, 316—19
MATHEMATICA program for, 318—19
and transparency conditions, 317

optical attenuation constant, waveguides, 403
optical Bloch functions, 51—2
optical budget, lasers, 703
optical confinement, waveguides, 407—10
optical coupling between waveguides: electo-optic

switches, 414—20
MATHEMATICA program, 418—20
phase mismatch effects, 416, 417
photonic tunnelling constant, 418
switch implementation, 420
transfer distance, 417

optical frequency conversion in semiconductors,
538—612

application and basic concept, 538
conversion efficiency, 560, 561
difference frequency generation (DFG), 560—2
parametric fluorescence, 564
parametric oscillation, 562—4
quadratic non-linear susceptibility, a quantum

model for, 565—72
sum frequency generation (SFG), 562
see also Manley—Rowe relations; optical

parametric oscillators (OPOs); optical
second harmonic generation; parametric
amplification; quadratic non-linear
optical interaction, an electromagnetic
description; second harmonic frequency
generation, a mechanical description

optical gain saturation, lasers, 142, 171—8
optical index of semiconductors, 328—33

and the Afromowitz model, 331—3
far-infrared (Reststrahlen) region, 329
and Kramers—Kronig relation, 330, 332
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mid-infrared region, 329
near gap regime, 330—3
and Sellmeier’s formula, 329, 330

optical interband transitions and absorption see
under quantum wells

optical parametric oscillators (OPOs), 554—60,
587—96

basic principles, 554, 587—8
continuous wave characteristics, 602—12
degeneracy condition, 589
doubly resonant optical parametric oscillator

(DROPO), 557—60, 590, 591, 595, 608—12
Giordmaine—Miller diagram, 590, 591
MATHEMATICA program, 595—6
singly resonant optical parametric oscillators

(SROPOs), 554—7, 590, 591, 594, 603—8
spectral acceptance, 588
temporal behaviour equations, 593

optical phonons, 275—6
optical rectification, 540
optical second harmonic generation, 546—50

coherence length, 548
second harmonic generation yield, 547
see also second harmonic frequency generation,

a mechanical description
optical susceptibility of a semiconductor, 301—6
optical transition dipolar matrix element, typical

values, 300
oscillator strength, 99

p—i—n diode, 467—70
as a fast photodiode, 469

p—n heterojunction diode, 466—7
p—n junction, 456—65

diffusion current limit for electrons, 463
diffusion potential, 458
equilibrium considerations, 460
and Fermi levels, 456—60
and Fickian diffusion, 458
Shockley condition, 461—2

parametric amplification, 551—4
signal beams, pump beams and idler beams,

551—2
undepleted pump beams, 552

parametric fluorescence, 564
parametric interactions

in laser cavities, 596—602
pump depletion in, 582—7

parametric oscillation, 562—4
pentavalent impurities, 222, 223
perturbation theory

and coupled quantum wells, 35—7
perturbation on a degenerate state, 33—7

and chemical bonding, 34—5
Hamiltonians with, 33—4

perturbative polarization, waveguides, 411
time independent, 15—17

0th, 1st and 2nd order perturbations, 16—17
time-dependent perturbations and transition

probabilities, 18—23
and Bohr frequency, 22
and the Dirac function, 20, 22
and Fermi’s golden rule, 23
perturbation potential, 20
rotating phase/quasi-resonance approximation,

20
and Schrödinger’s time-dependent equation,

18—20
sinusoidal perturbation, 20—3
transitions induced between discrete levels,

21—3
phase condensation, 169
phase matching in semiconductors, 572—82

birefringent phase matching, 573—9
quasi-phase matching, 579—82

phasors, and Fabry—Pérot type cavity/resonance
frequency, 440

phonons, 273—80
acoustical phonons, 275—9
and bosons, 280
and mode density, 275
and Newton’s equations for atom displacement,

274
optical phonons, 275—9
phonon absorption, 283
phonon energy, and hot electrons, 260
transition to quantum mechanics, 280
and transverse modes, 276
see also Fröhlich interaction

photoconductors, 481—8
detectivity, 484—6
photoconduction gain, 481—4
responsivity, 483
time response, 486—8

photodetectors see avalanche photodetectors;
internal emission Schottky photodiode;
photoconductors; photoexcited
semiconductors, distribution of carriers;
photovoltaic detectors

photodiode dark current, 472—3
photoexcited semiconductors, distribution of

carriers, 475—81
anti-reflection coatings, 481
bandgap values, 478
boundary conditions, 479
dielectric constants, 478
dielectric relaxation time, 478
direct and indirect gap semiconductors, 476
internal quantum efficiency, 480
mobility values, 478
recombination lifetimes values, 478
total efficiency, 480

photon lifetime, and lasers, 148
photon noise and photoelectron noise, 529
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photon, quantum mechanics of, 56—90
basic theory, 63—7
blackbody radiation, 71—5
bosons, 65
coherent state (Glauber) concept, 66, 67—71
energy properties, 64
Fourier transform, 58—61
Maxwell’s equations in reciprocal space, 56—8,

59
photon fluence, 176—7
quantization of electromagnetic waves, 61—3
radiation field for an oscillating charge: the

Lorentz gauge, 76—84
tensor product space, 65
thermography (thermal imaging), 84—90
vacuum fluctuation field, 66

photon/phase condensation, 169
photonic tunnelling constant, electro-optic

switches, 418
photovoltaic detectors, 488—97

basic principles, 488—9
capacitive time constant, 495
diffusion current density, 488, 491
photocurrent mode, 490
photodiode detectivity, 492—4
photodiode time response, 494—7
photovoltage mode, 490
time constant due to diffusion current, 495
total quantum efficiency, 492

piezoelectric effect, and Fröhlich interaction, 280—1
pinch-off, on electron waveguides, 377
Plancherel—Parseval identity, 59
Planck’s constant, 1
Planck’s law (blackbody spectrum), 75
plasma frequency of electron gas, 339
Pockels cells, 159
Poisson modulus, strained quantum well lasers,

667, 668
Poisson’s equation

and the Lorentz gauge, 77
and p—n junctions, 458—9

Poisson’s law/distribution, 67—9
polychromatic transitions and Einstein’s equations,

110—11
polychromatic waves, 114
population inversion, 103, 139—41, 141—2
population lifetime, density matrix, 27
Poynting vector, 81
probability theory, and Poisson’s law, 67—8
probe beams, 122
propagation operator, 124
pseudo-quantification, 29—30, 32
pseudo-quantization condition, 301
pulse propagation amplifiers, lasers, 174—5
pump beams/mechanisms, 122, 143—5
pump depletion in parametric interactions, 582—7

Q-switching, lasers, 159, 161
quadratic non-linear optical interaction, an

electromagnetic description, 543—6
quadratic non-linear susceptibility, a quantum

model for, 565—72
MATHEMATICA program, 571—2
relaxation rates, 565—6
two-level system, 569—70
three-level system, 570—1

quantization of electromagnetic waves see
electromagnetic wave quantization

quantum confined Stark effect, 388—92
and the Franz—Keldysh effect, 390

quantum engineering, 350
quantum mechanics see electron, quantum

mechanics of; electron—photon interaction,
quantum mechanics of; photon, quantum
mechanics of

quantum well laser diodes, 637—51
attenuation coefficient for a quantum well,

640
dynamic gain, 652—3
laser threshold, 647—9
MATHEMATICA program, 646
optical amplification in a structure, 637—41
scaling rules for multi-quantum lasers, 649—51

optimal number of wells, 649—51
separate confinement heterostructure (SCH)

laser, 647—8
transparency threshold, 641—7
transparency and threshold densities, 644
two-dimensional critical density concept, 645

quantum well photodetectors (QWIPs), 500—9
bound-to-bound intersubband transitions, 502,

503
bound-to-free transitions, 501, 503
multi-quantum well detector photoresponsivity

504—7, 508
photoconductor model, 503—4, 506
photoemissive model, 505, 506
quasi-resonance situations, 502
transitions between two bound states, 501

quantum wells
basic principles of quantum engineering,

350—4
bound quantized levels, 13
boundary conditions, 10—13

even solutions, 11—12
odd solutions, 12—13

confinement energy, 354
and the de Broglie wavelength, 9, 14
delocalized/free quantized levels, 13
density of states, 354—8

two-dimensional, 356
general case, 8—14
hole states in the valence band, 358—9
infinite square well, 14, 15
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ionization transition rate, 32, 33
localized quantized levels, 13
MATHEMATICA program, 13—14
optical absorption and angle of incidence,

369—76
intersubband absorption, 374—6

optical transitions between valence and
conduction bands, 359—65

bound-to-bound transitions, 368
interband transitions, 359, 360—5
intersubband transitions, 359—60, 365—9
stimulated recombination, 364
transition rates, 362

and perturbation on a degenerate state, 35—7
and the quantum confined Stark effect, 38
response of detectors, 32
and the Schrödinger equation, 8, 14
subband critical density, 357
subband organization, 353—4
and tunnelling, 11—12
two-dimensional electron gas, 354
valence subbands, 392—5

quantum wires and boxes, 377—80
critical thickness, 379
fabrication methods, 377—8
pinch-off, 377
quantum atom, 379
quantum dot, 379
spin degeneracy coefficient, 378
unidimensional subbands, 378

quasi-phase matching, 579—82
QWIPs see quantum well photodetectors

Rabi frequency, 95
Rabi oscillations, 53—4
radiation field for an oscillating charge see Lorentz

gauge
radiative lifetime

LEDs, 617—18
of oscillating electrons, 83
and spontaneous emission, 104—10, 308

radiative recombination
bimolecular recombination coefficient, 313—16
diodes, 473—4
rate/time, 315—16

rate equations
adiabatic approximation and corpuscular

interpretation, 100—1
and monochromatic single-mode waves, 112—13
and multimode monochromatic waves, 113—14
and polychromatic waves, 114
saturated absorption, 102—4
and spontaneous emission, 109—10
stimulated emission, 101—2

Rayleigh—Jeans regime, 86
reciprocal lattice, 201
reciprocal space (Fourier space), 58

recombination mechanisms, 261—6
associated interactions, 262
Auger recombination, 262, 289—95
conservatism of nature, 262
impact ionization, 262
principle of detailed balance, 264
Shockley—Read—Hall recombination, 262—6
see also radiative recombination

recombination rate/coefficient, bimolecular,
313—16

reduced zone scheme, 230
reflectors seemirrors
relative intensity noise (RIN), lasers, 701—4
representations, of eigenvectors, 4
Reststrahlen region, 329
rotating phase/quasi-resonance approximation,

sinusoidal perturbation, 20
Rydberg, and excitons, 383

saturation
of absorption, 102—4
autosaturation and cross-saturation, 710
gain saturation and the K factor, 690—6
interband saturation, 690
optical gain saturation, lasers, 142, 171—8
photon saturation density, 690
saturation flux of a two-level system, 103

scattering mechanisms, 251—7
and Debye wavevector/length, 252—4

Schawlow—Townes equation/linewidth, lasers, 192,
701

Schottky model/barrier/contact/junction, 451—6
ideality factor, 456
Schottky diode, 454—6
surface phenomena, 450—1

Schrödinger equation
and the Bohr oscillation frequency, 6—7
for a crystal in the presence of an electric field,

322
in density matrix formalism, 24
and envelope function formalism, 345—9
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construction and operation, 704—6
power output, 707
typical operating characteristics, 706—7
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Wiener—Kintchine theorem, 119

lasers, 191

Zener effect, and the Franz—Keldysh effect, 322,
324

zincblende structure, and Kane’s k · p method, 238

725 Index


	Cover
	Half-title
	Title
	Copyright
	Dedication
	Contents
	Preface
	1 Quantum mechanics of the electron
	1.1 Introduction
	1.2 The postulates of quantum mechanics
	1.3 The time-independent Schrödinger equation
	1.3.1 Stationary states
	1.3.2 Calculation of stationary states in a one-dimensional potential

	1.4 The quantum well
	1.4.1 The general case
	(1) Even solutions
	(2) Odd solutions

	1.4.2 The infinite square well

	1.5 Time-independent perturbation theory
	0th order
	1st order
	2nd order

	1.6 Time-dependent perturbations and transition probabilities
	1.6.1 The general case
	0th-order term
	qth-order term

	1.6.2 Sinusoidal perturbation
	Case 1: transitions induced between discrete levels by single frequency excitation
	Case 2: transitions induced between a discrete level and a continuum state by single frequency excitation
	Case 3: transitions induced between two discrete levels by multi-frequency excitation


	1.7 The density matrix
	1.7.1 Pure quantum ensembles
	1.7.2 Mixed quantum ensembles
	(a) Diagonal elements
	(b) Off-diagonal elements

	1.7.3 Density matrix and relaxation time for a two-level system

	FURTHER READING
	Complement to Chapter 1
	1.A Problems posed by continuums: the fictitious quantum box and the density of states
	1.B Perturbation on a degenerate state
	FURTHER READING

	1.C The quantum confined Stark effect
	FURTHER READING

	1.D The harmonic oscillator
	FURTHER READING

	1.E Transition probabilities and Rabi oscillations
	FURTHER READING



	2 Quantum mechanics of the photon
	2.1 Introduction
	2.2 Maxwell’s equations in reciprocal space
	2.3 Properties of the Fourier transform
	2.4 Quantization of electromagnetic waves
	2.5 The photon
	2.6 The coherent state
	2.7 Blackbody radiation
	FURTHER READING
	Complement to Chapter 2
	2.A Radiation field for an oscillating charge: the Lorentz gauge
	FURTHER READING

	2.B Thermography
	FURTHER READING



	3 Quantum mechanics of electron–photon interaction
	3.1 Introduction
	3.2 Dipolar interaction Hamiltonian for electrons and photons
	Coulomb gauge

	3.3 Linear optical susceptibility obtained by the density matrix
	3.4 Linear optical susceptibility: absorption and optical gain
	3.5 The rate equations
	3.5.1 Adiabatic approximation and corpuscular interpretation
	3.5.2 Stimulated emission
	3.5.3 Absorption saturation

	3.6 Spontaneous emission and radiative lifetime
	3.6.1 Spontaneous emission
	3.6.2 The rate equations including spontaneous emission

	3.7 Polychromatic transitions and Einstein’s equations
	3.8 Rate equations revisited
	3.8.1 Monochromatic single-mode waves
	3.8.2 Multimode monochromatic waves
	3.8.3 Polychromatic waves

	FURTHER READING
	Complement to Chapter 3
	3.A Homogeneous and inhomogeneous broadening: coherence of light
	3.A.1 Homogeneous broadening
	1a Broadening due to finite lifetime (inelastic collisions)
	1b Broadening due to elastic collisions: temporal coherence

	3.A.2 Inhomogeneous broadening
	FURTHER READING

	3.B Second-order time-dependent perturbations
	FURTHER READING

	3.C Einstein coefficients in two limiting cases: quasi-monochromatic and broadband optical transitions
	3.D Equivalence of the A·p and D·E Hamiltonians and the Thomas–Reiche–Kuhn sum rule


	4 Laser oscillations
	4.1 Introduction
	4.2 Population inversion and optical amplification
	4.2.1 Population inversion
	4.2.2 Optical amplification and gain saturation

	4.3 Three-and four-level systems
	4.4 Optical resonators and laser threshold
	Gain condition
	Phase condition

	4.5 Laser characteristics
	4.5.1 Internal laser characteristics and gain clamping
	4.5.2 Output power
	4.5.3 Spectral characteristics
	Homogeneous gain spectrum (see Complement 3.A)
	Inhomogeneous gain spectrum (see Complement 3.A)


	4.6 Cavity rate equations and the dynamic behaviour of lasers
	4.6.1 Damped oscillations
	4.6.2 Laser cavity dumping by loss modulation (Q-switching)
	4.6.3 Mode locking

	FURTHER READING
	Complement to Chapter 4
	4.A The effect of spontaneous emission and photon condensation
	4.B Saturation in laser amplifiers
	FURTHER READING

	4.C Electrodynamic laser equations: electromagnetic foundations for mode locking
	FURTHER READING

	4.D The Schawlow–Townes limit and Langevin-noise force
	FURTHER READING

	4.E A case study: diode pumped lasers
	FURTHER READING



	5 Semiconductor band structure
	5.1 Introduction
	5.2 Crystal structures, Bloch functions, and the Brillouin zone
	5.3 Energy bands
	5.4 Effective mass and density of states
	5.5 Dynamic interpretation of effective mass and the concept of holes
	5.6 Carrier statistics in semiconductors
	5.6.1 Fermi statistics and the Fermi level
	Occupied Fermi level: degenerate system (Fig.5.15)
	Unoccupied Fermi level (Fig.5.16)

	5.6.2 Intrinsic semiconductors
	5.6.3 Doped semiconductors
	5.6.4 Quasi-Fermi level in a non-equilibrium system

	FURTHER READING
	Solid state physics
	Semiconductors

	Complement to Chapter 5
	5.A The nearly free electron model
	FURTHER READING

	5.B Linear combination of atomic orbitals: the tight binding model
	FURTHER READING

	5.C Kane’s k · p method
	FURTHER READING

	5.D Deep defects in semiconductors
	FURTHER READING



	6 Electronic properties of semiconductors
	6.1 Introduction
	6.2 Boltzmann’s equation
	6.3 Scattering mechanisms
	6.4 Hot electrons
	6.4.1 Warm electrons
	6.4.2 Hot electrons: saturation velocity
	6.4.3 Hot electrons: negative differential velocity

	6.5 Recombination
	6.6 Transport equations in a semiconductor
	FURTHER READING
	Complement to Chapter 6
	6.A The Hall effect
	6.B Optical phonons and the Fröhlich interaction
	6.B.1 Phonons
	6.B.2 The Fröhlich interaction
	FURTHER READING

	6.C Avalanche breakdown
	FURTHER READING

	6.D Auger recombination
	FURTHER READING



	7 Optical properties of semiconductors
	7.1 Introduction
	7.2 Dipolar elements in direct gap semiconductors
	7.3 Optical susceptibility of a semiconductor
	7.4 Absorption and spontaneous emission
	7.5 Bimolecular recombination coefficient
	7.6 Conditions for optical amplification in semiconductors
	FURTHER READING
	Complement to Chapter 7
	7.A The Franz–Keldysh-effect electromodulator
	FURTHER READING

	7.B Optical index of semiconductors
	7.B.1 Mid- and far-infrared regions
	7.B.2 Near gap regime
	FURTHER READING

	7.C Free-carrier absorption
	Strong conductivity (Sigma » EpsilonOmega)
	Weak conductivity (Sigma « EpsilonOmega)
	FURTHER READING



	8 Semiconductor heterostructures and quantum wells
	8.1 Introduction
	8.2 Envelope function formalism
	8.3 The quantum well
	8.4 Density of states and statistics in a quantum well
	8.5 Optical interband transitions in a quantum well
	8.5.1 Hole states in the valence bands
	8.5.2 Optical transitions between the valence and conduction bands

	8.6 Optical intersubband transitions in a quantum well
	8.7 Optical absorption and angle of incidence
	8.7.1 Summary for interband and intersubband transition rates
	8.7.2 Influence of the angle of incidence

	FURTHER READING
	Complement to Chapter 8
	8.A Quantum wires and boxes
	FURTHER READING

	8.B Excitons
	8.B.1 Three-dimensional excitons
	8.B.2 Two-dimensional excitons
	FURTHER READING

	8.C Quantum confined Stark effect and the SEED electromodulator
	FURTHER READING

	8.D Valence subbands


	9 Waveguides
	9.1 Introduction
	9.2 A geometrical approach to waveguides
	9.3 An oscillatory approach to waveguides
	Transverse electric (TE) waves
	Transverse magnetic(TM) waves

	9.4 Optical confinement
	9.5 Coupling between guided modes: coupled mode theory
	FURTHER READING
	Complement to Chapter 9
	9.A Optical coupling between guides: electro-optic switches
	FURTHER READING

	9.B Bragg waveguides
	FURTHER READING

	9.C Frequency conversion in non-linear waveguides
	9.C.1 TE mode in–TE mode out
	Quasi-phase matching

	9.C.2 TE mode in–TM mode out
	FURTHER READING

	9.D Fabry–Pérot cavities and Bragg reflectors
	9.D.1 The Fabry–Pérot cavity
	9.D.2 Bragg mirrors
	FURTHER READING



	10 Elements of device physics
	10.1 Introduction
	10.2 Surface phenomena
	10.3 The Schottky junction
	10.4 The p–n junction
	FURTHER READING
	Complement to Chapter 10
	10.A A few variants of the diode
	10.A.1 p–n heterojunction diode
	10.A.2 The p–i–n diode

	10.B Diode leakage current


	11 Semiconductor photodetectors
	11.1 Introduction
	11.2 Distribution of carriers in a photoexcited semiconductor
	11.3 Photoconductors
	11.3.1 Photoconduction gain
	11.3.2 Photoconductor detectivity
	11.3.3 Time response of a photoconductor

	11.4 Photovoltaic detectors
	11.4.1 Photodiode detectivity
	11.4.2 Time response of a photodiode

	11.5 Internal emission photodetector
	11.6 Quantum well photodetectors (QWIPs)
	11.7 Avalanche photodetectors
	FURTHER READING
	Complement to Chapter 11
	11.A Detector noise
	11.A.1 Fluctuations
	11.A.2 Physical origin of noise
	11.A.3 Thermal noise
	11.A.4 Generation–recombination noise
	11.A.5 Multiplication noise
	FURTHER READING

	11.B Detectivity limits: performance limits due to background (BLIP)
	FURTHER READING



	12 Optical frequency conversion
	12.1 Introduction
	12.2 A mechanical description for second harmonic frequency generation
	12.3 An electromagnetic description of quadratic non-linear optical interaction
	12.4 Optical second harmonic generation
	12.5 Manley–Rowe relations
	12.6 Parametric amplification
	12.7 Optical parametric oscillators (OPOs)
	12.7.1 Simply resonant optical parametric oscillators (SROPOs)
	12.7.2 Doubly resonant optical parametric oscillator (DROPO)

	12.8 Sum frequency, difference frequency, and parametric oscillation
	Difference frequency generation (DFG) 4…
	Sum frequency generation (SFG)…
	Parametric oscillation

	FURTHER READING
	Complement to Chapter 12
	12.A A quantum model for quadratic non-linear susceptibility
	FURTHER READING

	12.B Methods for achieving phase matching in semiconductors
	12.B.1 Birefringent phase matching
	12.B.2 Quasi-phase matching
	FURTHER READING

	12.C Pump depletion in parametric interactions
	FURTHER READING

	12.D Spectral and temporal characteristics of optical parametric oscillators
	FURTHER READING

	12.E Parametric interactions in laser cavities
	FURTHER READING

	12.F Continuous wave optical parametric oscillator characteristics
	12.F.1 Singly resonant OPO
	12.F.2 Doubly resonant OPO: the balanced DROPO
	12.F.3 Doubly resonant OPO: the general case
	FURTHER READING



	13 Light emitting diodes and laser diodes
	13.1 Introduction
	13.2 Electrical injection and non-equilibrium carrier densities
	13.3 Electroluminescent diodes
	13.3.1 Electroluminescence
	13.3.2 Internal and external efficiencies for LEDs
	13.3.3 A few device issues

	13.4 Optical amplification in heterojunction diodes
	13.5 Double heterojunction laser diodes
	13.5.1 Laser threshold
	13.5.2 Output power

	13.6 Quantum well laser diodes
	13.6.1 Optical amplification in a quantum well structure: general case
	13.6.2 Transparency threshold
	13.6.3 Laser threshold for a quantum well laser
	13.6.4 Scaling rules for multi-quantum well lasers

	13.7 Dynamic aspects of laser diodes
	13.8 Characteristics of laser diode emission
	13.8.1 Spectral distribution
	13.8.2 Spatial distribution

	FURTHER READING
	Complement to Chapter 13
	13.A Distributed feedback (DFB) lasers
	13.B Strained quantum well lasers
	FURTHER READING

	13.C Vertical cavity surface emitting lasers (VCSELs)
	13.C.1 Conditions for achieving threshold in a VCSEL
	13.C.2 VCSEL performance
	FURTHER READING

	13.D Thermal aspects of laser diodes and high power devices
	Emissive surface in an infinite medium: transient response
	Thermal dissipation on both sides of the junction under continuous operation

	13.E Spontaneous emission in semiconductor lasers
	FURTHER READING

	13.F Gain saturation and the K factor
	13.G Laser diode noise and linewidth
	13.G.1 Linewidth broadening
	13.G.2 Relative intensity noise (RIN) and optical link budget
	FURTHER READING

	13.H Unipolar quantum cascade lasers
	FURTHER READING

	13.I Mode competition: cross gain modulators
	FURTHER READING



	Index

